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Abstract Accurate and reliable classification of micro-
scopic biopsy images is an important issue in computer
assisted breast cancer diagnosis. In this paper, a new cascade
Random Subspace ensembles scheme with reject options is
proposed for microscopic biopsy image classification. The
classification system is built as a serial fusion of two dif-
ferent Random Subspace classifier ensembles with rejec-
tion options to enhance the classification reliability. The
first ensemble consists of a set of Support Vector Machine
classifiers that converts the original K -class classification
problem into a number of K 2-class problems. The second
ensemble consists of a Multi-Layer Perceptron ensemble,
that focuses on the rejected samples from the first ensemble.
For both of the ensembles, the reject option is implemented
by relating the consensus degree from majority voting to
a confidence measure, and abstaining to classify ambiguous
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samples if the consensus degree is lower than some threshold.
We also investigated the effectiveness of a feature descrip-
tion approach by combining Local Binary Pattern (LBP)
texture analysis, statistics derived using the Gray Level
Co-occurrence Matrix (GLCM) and the Curvelet Transform.
While the LBP analysis efficiently describes local texture
properties and the GLCM reflects global texture statistics,
the Curvelet Transform is particularly appropriate for the
representation of piece-wise smooth images with rich edge
information. The combined feature description thus provides
a comprehensive biopsy image characterization by taking
advantages of their complementary strengths. Using a bench-
mark microscopic biopsy image dataset, obtained from the
Israel Institute of Technology, a high classification accuracy
of 99.25 % was obtained (with a rejection rate of 1.94 %)
using the proposed system.

Keywords Breast cancer diagnosis · Biopsy image ·
Random subspace ensemble · Reject option ·
Combined feature

1 Introduction

Breast cancer accounts for nearly 1 in 4 cancers diagnosed
in US women, it is also the most common type of cancer
in women and the fifth most common cause of cancer death
worldwide [1]. There is substantial evidence that there is a
worldwide increase in the occurrences of breast cancer, espe-
cially in Asia, for example, China, India and Malaysia have
recently experienced rapid increase in breast cancer inci-
dence rates [2]. A recent study predicted that the cumulative
incidence of breast cancer will increase to at least 2.2 mil-
lion new cases among women across China over the 20-year
period from 2001 to 2021 [3].
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The most noticeable symptom of breast cancer is typi-
cally a lump or a tumor that feels different from the rest
of the breast tissue. However, it is not easy to distinguish a
malignant tumor from a benign one because there are struc-
tural similarities between the two. To accurately identify the
structural differences, physicians have to cautiously study a
patient’s clinical history and make various medical exami-
nations supported by imaging using mammography or ultra-
sound. However, the precise diagnosis of a breast tumor can
only be obtained through some form of biopsy where by a
small sample of cells or tissue is removed for examination.
Typical biopsy processes for breast cancer analysis include
Fine-Needle Aspiration (FNA), core needle, and excisional
biopsy [4]. Among these FNA is the most convenient because
it involves the use of very small needles (smaller than those
used for blood tests) [5]. This deterministic diagnosis is vital
as the potency of the cytotoxic drugs administered during
treatment can be life threatening.

As there is always a subjective element related to the
pathological examination of a biopsy, an automated tech-
nique will provide valuable assistance for physicians. Recent
years have witnessed a large increase in research related to
computer assisted breast cancer diagnosis. A large focus with
respect to biopsy image analysis has been on automated can-
cer type classification. Many recent studies have revealed that
biopsy images can be properly classified, without requiring
perfect segmentation if suitable image feature descriptions
are chosen [6–8]. Tabesh et al. aggregated color, texture, and
morphometric cues at the global and histological object lev-
els for classification, achieving 96.7 % classification accu-
racy in classifying tumor and non-tumor images [9]. The
wavelet package transform coupled with local binary patterns
were used for meningioma subtype classification in [10]. This
research, and similar work, demonstrated that by combining
different image description features it is possible to improve
medical image classification performance.

A great number of machine learning methods have been
proposed to design accurate classification systems for various
medical images [11]. Among them, ensemble learning has
attracted much attention due to the good performance from
many applications in medicine and biology [12]. Ensem-
ble learning is concerned with mechanisms to combine the
results of a number of weak learning systems. A weak learner
is defined to be a classifier which is only slightly correlated
with the true classification, it can label examples better than
random guessing. In contrast, a strong learner is a classi-
fier that is arbitrarily well-correlated with the true classifi-
cation [13]. In the case of ensemble classification, ensemble
learning is concerned with the integration of the results of a
number of classifiers (often called as ‘base classifiers’) [14]
to develop a strong classifier with good generalization per-
formance, therefore, ‘base classifiers’ are also referred as
‘weak classifiers’.

Among the representatives of ensemble learning, the
Random Subspace (RS) method [15] is often quoted as an
efficient way of combining the results of a number of clas-
sifiers. A recent application of RS for functional Magnetic
Resonance Imaging (fMRI) classification has shown promis-
ing results [16]; here RS outperformed single classifiers as
well as some of the most widely used alternative classifier
ensemble techniques such as bagging, AdaBoost, random
forests and rotation forests. The same outcome has also been
reported in the context of RS ensemble based gene expres-
sion classification [17]. RS divides the input feature space
into subspaces; each subspaces is formed by randomly pick-
ing features from the entire space, features may be repeated
across subspaces.

In previous studies of medical images classification, accu-
racy was the only objective; the aim was to produce a clas-
sifier that featured the smallest error rate possible. In many
applications, however, it is more important to address the
reliability issue in classifier design by introducing a reject
option which allowed for an expression of doubt. The objec-
tive of the reject option is thus to improve classification reli-
ability by leaving the classification of “difficult” cases to
human experts. Since the consequences of misclassification
may often be severe when considering medical image classi-
fication, clinical expertise is desirable so as to exert control
over the accuracy of the classifier in order to make reliable
determinations.

Classification with a rejection option has been a topic
of interest in pattern recognition. Multi-stage classifiers are
ensembles where individual classifiers have a reject option
[18]. Cascading [19] is a scheme to support multi-stage clas-
sification. At the first stage of a cascading system, the system
constructs a simple rule using a properly generalized classi-
fier; based on its confidence criterion, it is likely that the rule
will not cover some part of the space with sufficient confi-
dence. Therefore, at the next stage, cascading builds a more
complex rule to focus on those uncovered patterns. Even-
tually there will remain few patterns which are not covered
by any of the prior rules, these patterns can then be dealt
with using an instance-based nonparametric technique which
is good at unrelated, singular points [20]. Many cascad-
ing multi-stage classifier architectures have been proposed
[21–24] and plenty of promising results have been achieved
in medical and biological classification applications, such as
microarray data classification [25] and gene expression data
classification [26].

In this paper, we propose and evaluate a novel cascade
scheme, comprised of two random subspace ensembles, to
be applied to microscopic biopsy image classification with
a reject option. The first stage of our cascade scheme con-
sists of an ensemble of SVMs with reject option to classify
patterns with high level of confidence. The more complex
and slower second stage, which is an ensemble of MLPs,
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Fig. 1 Typical image instances. a carcinoma in situ: tumor confined to a well-defined small region, usually a duct (arrow); b invasive: breast tissue
completely replaced by the tumor; c normal: normal breast tissue, with ducts and finer structures

deals with the rejected patterns from stage 1, and is designed
to make further classifications or rejections. Compared with
some earlier cascading classifier paradigms, our proposed
system is composed of two different ensembles. In the first
stage, a one-vs-all SVM ensemble is employed to classify
“straight forward” samples (thus obtaining high accuracy)
and reject those which are less straight forward or ambiguous.
Only samples for which the ensemble’s confidence score, in
terms of consensus degree, is greater than a certain thresh-
old will be classified. The second stage consists of a random
subspace ensemble of MLPs which operates using majority
voting, any samples that have a low consensus degree will
be rejected for further consideration by human experts. It
is suggested that classification with the proposed cascaded
ensembles will provide an efficient means to simultaneously
reduce the error rate and enhance the reliability by controlling
the accuracy-rejection trade-off.

The rest of this paper is organized as follows: the breast
cancer biopsy image dataset used in our work and the image
feature extraction methods are introduced in Sect. 2. In
Sect. 3, we described and theoretically analyzed the proposed
two-stage ensemble cascading system in detail. In Sect. 4, the
experimental results are given based on the adopted bench-
mark image dataset. We compared the proposed cascading
system with its component classifiers as well as some widely
used aggregation techniques, such as bagging and AdaBoost.
The paper ends with some conclusions in Sect. 5.

2 Biopsy images and feature descriptions

In this section we will first introduce, in Sect. 2.1, the
benchmark breast cancer biopsy image dataset. The pro-
posed image feature extraction methods are then intro-
duced in Sect. 2.2. The choice of features for describing
the initial biopsy images depends on the nature of the input
images. For biopsy image classification, calculating global
features to estimate the global appearance of the images
is an effective approach. In this work, we propose to use

three image descriptors for biopsy image feature extrac-
tion: (1) local binary patterns (Sect. 2.2.1), (2) gray level
co-occurrence matrixes (Sect. 2.2.2) and (3) the curvelet
transform (Sect. 2.2.3).

2.1 Breast cancer biopsy images

With respect to the work described in this paper a breast can-
cer benchmark biopsy images dataset from the Israel Insti-
tute of Technology1 was used. The image set consists of 361
samples, of which 119 were classified by a pathologist as
normal tissue, 102 as carcinoma in situ, and 140 as invasive
ductal or lobular carcinoma. The samples were generated
from breast tissue biopsy slides, stained with hematoxylin
and eosin. They were photographed using a Nikon Coolpix®

995 attached to a Nikon Eclipse® E600 at magnification of
×40 to produce images with resolution of about 5 u per pixel.
No calibration was made, and the camera was set to automatic
exposure. The images were cropped to a region of interest
of 760 × 570 pixels and compressed using the lossy JPEG
compression. The resulting images were again inspected by
a pathologist to ensure that their quality was sufficient for
diagnosis. Figure 1 presents three sample images of healthy
tissue, tumor in situ and invasive carcinoma.

2.2 Feature descriptions

Shape feature and texture feature are critical factors for
distinguishing one image from another. For the biopsy
image discrimination, shapes and textures are also quite
effective. As we can see from Fig. 1, three kinds of
biopsy images have visible differences in cell external-
ity and texture distribution. Thus, we use Local Binary
Patterns (LBPs) for extracting local textural features, Gray
Level Co-occurrence Matrix (GLCM) statistics for represent-
ing global textures and the Curvelet Transform for shape
description.

1 http://ftp.cs.technion.ac.il/pub/projects/medic-image.
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2.2.1 Local binary patterns

Local Binary Patterns (LBPs) were first introduced as a tex-
ture descriptor for summarizing local gray-level structures
[27,28], LBPs are generated by taking a local neighborhood
around each pixel into account, thresholding the pixels of the
neighborhood at the value of the central pixel and then using
the resulting binary-valued image patch as a local image
descriptor. In other words, a binary code of 0 or 1 is assigned
to each neighborhoods pixel. The binary code of each pixel in
the case of a 3×3 neighborhoods would form an 8 bits code.
In this manner, a single scan through an image can generate
LBP codes for each pixel.

Formally, the LBP operator takes the form

L B PP,R =
P−1∑

p=0

s(gp − gc)2
p, s(x)=

{
1 if x ≥ 0
0 if x < 0

(1)

where gc is the gray value of the central pixel, gp is the value
of its neighbors, P is the total number of neighbors and R is
the radius of the neighborhood.

A useful extension to the original LBP operator is the
so-called uniform patterns [27]. An LBP is “uniform” if
it contains at most two bitwise transitions from 0 to 1 or
vice versa when the binary string is considered circular.
For example, 11100001 (with two transitions) is a uniform
pattern, whereas 11110101 (with four transitions) is a non-
uniform pattern. The uniform LBP describes those structures
which contain at most two bitwise (0 to 1 or 1 to 0) tran-
sitions. Uniformity represents important structural features
such as edges, spots and corners. Ojala et al. [27] observed
that although only 58 of the 256 eight-bit patterns are uni-
form, nearly 90 % of all observed image neighborhoods are
uniform. We use the notation LBPu

P,R for the uniform LBP
operator, meaning a neighborhood of P sampling points on
a circle of radius R. The superscript u stands for using uni-
form patterns and labeling all remaining patterns with a single
label. The number of labels for a neighborhood of 8 pixels is
256 for standard LBP and 59 for LBPu

8,1.
A common practice when applying an LBP coding over an

image is to generate a histogram of the labels, where a 256-bin
histogram represents the texture description of the image and
each bin can be regarded as a micro-pattern. The distribution
of these patterns represents the whole structure of the texture.
The number of patterns in an LBP histogram can be reduced
by only using uniform patterns without losing much informa-
tion. As noted above, there are 58 different uniform patterns
in an 8-bit LBP representation, the remaining patterns can
be assigned in one non-uniform binary number, thus repre-
senting the texture structure with a 59-bin histogram instead
of using 256 bins.

LBP has been shown to be an efficient image texture
descriptor. Recently, a complete modeling of the local binary

Fig. 2 Framework of CLBP

pattern operator was proposed and the associated Complete
LBP (CLBP) scheme developed for texture classification
[28]. Different to traditional LBP, in CLBP, a local region is
represented by its center pixel and a Local Difference Sign-
Magnitude Transform (LDSMT). With a global threshold-
ing, the center pixel is coded by a binary code and the binary
map is called C L B P_C . Two other complementary com-
ponents are also obtained by LDSMT: the difference signs
and the difference magnitudes, two operators C L B P_S and
C L B P_M are used to code them. The framework of CLBP
is presented in Fig. 2. The CLBP could achieve much better
rotation invariant texture classification results than conven-
tional LBP based schemes.

We briefly review three operators in CLBP here, namely,
C L B P_S, C L B P_M and C L B P_C . Given a central pixel
gc and its P neighbors gp, p = 0, 1, . . . , P − 1, the differ-
ence between gc and gp can be calculated as dp = gp − gc.
The local difference vector [d0, . . . , dP−1] describes the
image local structure at gc, dp can be further decomposed
into two components:

dp = sp ∗ m p, and

{
sp = sign(dp)

m p = |dp| (2)

where sp = 1, when dp ≥ 0, otherwise, sp = 0. m p is the
magnitude of dp. Equation (2) is called the local difference
sign-magnitude transform (LDSMT).

The C L B P_S operator is defined as the original LBP
operator in Eq. (1).

The C L B P_M operator is defined as:

C L B P_MP,R =
P−1∑

p=0

t (m p, c)2p,

t (x, c) =
{

1 if x ≥ c
0 if x < c

(3)

where c is a threshold set as the mean value of m p from the
whole image.

The C L B P_C operator is coded as:

C L B P_CP,R = t (gc, cI ) (4)

where t is defined in Eq. (3) and cI is a threshold set as the
average gray level of the whole image.

In this work, we use the 3D joint histogram of these
three operators to generate textural features of breast cancer
biopsy images, according to [28], the joint combination of

123



Breast cancer diagnosis from biopsy images 1409

the three components gives better classification than conven-
tional LBP and provides a smaller feature dimension.

2.2.2 Statistics from gray level co-occurrence matrix

Global texture distribution is one of the important charac-
teristics used in identifying objects or regions of interest in
an image. The co-occurrence probabilities provide a second-
order method for generating texture features [29]. The basis
for features used here is the gray level co-occurrence matrix,
the matrix is square with dimension Ng , where Ng is the num-
ber of gray levels in the image. Element [i, j] of the matrix
is generated by counting the number of times a pixel with
value i is adjacent to a pixel with value j and then dividing
the entire matrix by the total number of such comparisons
made. Each entry is therefore considered to be the probabil-
ity that a pixel with value i will be found adjacent to a pixel
of value j [30], the matrix can be seen in Eq. (5).

C =

⎡

⎢⎢⎢⎣

p(1, 1) p(1, 2) · · · p(1, Ng)

p(2, 1) p(2, 2) · · · p(2, Ng)
...

...
. . .

...

p(Ng, 1) p(Ng, 2) · · · p(Ng, Ng)

⎤

⎥⎥⎥⎦ (5)

With respect to the work described in this paper, a total
of 22 features were extracted from gray level co-occurrence
matrices in our work, these are listed in Table 1. Each of
these statistics has a qualitative meaning with respect to the
structure within the GLCM, for example, dissimilarity and
contrast measure the degree of texture smoothness, unifor-
mity and entropy reflect the degree of repetition amongst
the gray-level pairs, and correlation describes the correlation

Table 1 Features extracted from gray level co-occurrence matrix

Index Features Index Features

1 Energy 12 Sum of squares

2 Entropy 13 Sum average

3 Dissimilarity 14 Sum variance

4 Contrast 15 Sum entropy

5 Inverse difference 16 Difference variance

6 Correlation 17 Difference entropy

7 Homogeneity 18 Information measure
of correlation (1)

8 Autocorrelation 19 Information measure
of correlation (2)

9 Cluster shade 20 Maximal correlation
coefficient

10 Cluster prominence 21 Inverse difference
normalized

11 Maximum probability 22 Inverse difference moment
normalized

between the gray-level pairs. For details of these statistical
features, see [29–32].

2.2.3 Curvelet transform

The Curvelet transform [33–37] is one of the latest develop-
ments in non-adaptive transforms. Compared to the wavelet
transform, the curvelet transform provides a more sparse rep-
resentation of an image, with improved directional elements
and better ability to represent edges and other singularities
along curves. Sparse representation usually offers better per-
formance with its capacity for efficient signal modeling. So
far, successful applications of the curvelet transform have
been found in many medical and biological image analy-
sis tasks, including digital mammogram analysis [38] and
phenotype recognition [39].

In the curvelet transform, fine-scale basis functions are
long ridges; the shape of the basis functions at scale j is
2− j by 2− j/2 so the fine-scale bases are skinny ridges with
a precisely determined orientation. The curvelet coefficients
can be expressed by:

c( j, l, k) := 〈 f, ϕ j,l,k〉 =
∫

R2

f (x)ϕ j,l,k(x)dx (6)

where ϕ j,l,k denotes the curvelet function, and j, l and k are
the variables of scale, orientation, and position, respectively.

In the last few years, several discrete curvelet transforms
have been proposed. The most influential approach is based
on the Fast Fourier Transform (FFT) [36]. In the frequency
domain, the curvelet transform can be implemented with ϕ by
means of the window function U . Defining a radial window
W (r) and an angular window V (t) as follows:

∞∑

j=−∞
W 2(2 j r) = 1, r ∈ (3/4, 3/2) (7)

∞∑

j=−∞
V 2(t − 1) = 1, t ∈ (−1/2, 1/2) (8)

where W is a frequency domain variable and r and θ are polar
coordinates within the frequency domain. For each j ≥ j0,
U j is defined over the Fourier domain by:

U j (r, θ) = 23 j/4w(2− j r)v

(
2[ j/2]θ

2π

)
(9)

where [ j/2] denotes the integer part of j/2.
The fastest curvelet transform currently available is

curvelets via wrapping [36], which will be used for our work.
From the curvelet coefficients, some statistics can be calcu-
lated from each of these curvelet sub-bands. In this paper,
the mean μ, the standard deviation δ and the entropy H
are used as the simple features. If n curvelets are used for
the transform, 3n features G = [Gμ, Gδ, H ] are obtained,
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where Gμ = [μ1, μ2, . . . , μn], Gδ = [δ1, δ2, . . . , δn] and
H = [h1, h2, . . . , hn] . A 3n dimensional feature vector can
be used to represent each image in the dataset.

2.2.4 Combined features

Each feature extracted from the above three descriptors
characterizes individual aspects of image content. The joint
exploitation of different image descriptions is often neces-
sary to provide a more comprehensive description in order
to produce classifiers with higher accuracy. Using 5 levels
of the curvelet transform, 82 sub-bands of curvelet coeffi-
cients are computed, therefore, a 246-dimensional curvelet
feature vector is generated for each image. With a 64 gray-
level quantization, we used 10 different relative interpixel
distances to generate 10 different gray level co-occurrence
matrices for each image. The 22 statistics listed in Table 1 are
computed for each of these 10 gray level co-occurrence matri-
ces, thus, we have a 220-dimensional GLCM feature vector
for each image. The CLBP feature vector of each image has
a dimension of 200. The three feature vectors are normal-
ized, respectively, into the range of [−1, 1], then concate-
nated together to produce a 666-dimensional feature vector
of each image for classification. One of the difficulties of
multiple feature aggregation lies in the high dimensionalities
of the feature space. However, by using Random Subspace
classifier ensembles (see following section) this problem can
be resolved due to its dimension reduction capability.

Due to the differences existing in different molecular
imaging devices and staining methods, histology images of
biopsies may change significantly in colors and intensities.
The above explained feature extractors can cope with this
situation effectively, since all of them work in the grayscale
color space. Before feature extraction, all the biopsy images
will be converted from a chromatic color space to a grayscale
color space with an intensity interval from 0 to 255. The con-
version eliminates the adverse effects from color and inten-
sity variations because the feature extractors work in the same
space. Moreover, as the features are extracted from the whole
images, the distribution and structures of different patterns
such as tissues, ducts, fat and tumors, will be automatically
described by the feature extractors, thus, they will not affect
the performance of the combined feature.

3 Serial fusion of random subspace ensembles

Although many supervised learning algorithms such as
neural networks, the k-nearest neighbor algorithm and SVM
have been extensively applied to many medical image classi-
fication problems, few of them has addressed the issue of clas-
sification reliability (the extent that one can rely upon a given
prediction). Note that we are interested in the assessment of

a classifier’s performance on a single example such as the
diagnosis associated with am individual patient. In such cases
an overall quality measure of a classifier (e.g., classification
accuracy) would not provide the desired information, even
where good accuracies are achieved using some state-of-art
method. With respect to some real applications, such as med-
ical diagnosis, highly reliable classifiers are required so that
a correct therapeutic strategy can be selected. Therefore, it is
desirable to have a reject option in order to avoid making a
wrong decision when classifier is presented with ambiguous
input, i.e., an option to withhold a classifier decision.

In this paper a new two-stage classifier for the breast can-
cer biopsy image classification, consisting of a random sub-
space ensembles with reject option, is proposed. With respect
to the work described in this paper, we adopted the definitions
of recognition rate, rejection rate and reliability proposed in
[40], as presented below, so as to facilitate the performance
evaluation of classifiers with a reject option:

– Recognition rate (RR)=no. of correctly recognized
images/no. of testing images

– Rejection rate (ReR)=no. of rejected images/no. of test-
ing images.

– Reliability (RE)= (no. of correctly recognized images +
no. of rejected images)/no. of testing images.

– Error rate (ER) :=100 % − reliability.

From the above we can see that Reliability = Recognition
rate + Rejection rate. According to this definition of relia-
bility, high reliability can be achieved with an appropriate
trade-off between error rate and rejection rate.

3.1 Reject option for classification

The optimal classification rule with reject option was defined
by Chow [21]. Consider a binary classification task with an
instance dataset X = {x1, x2, . . . , xm} and a class label set
C = {−1, 1, 0} where class 0 is the reject option. We need
to seek a classification rule, L (X ⇒ C)such that L(x) = 0
indicates that no definite judgement will be made for x and
a reject option taken. Chow’s rule rejects a pattern if the
maximum of its a posterior probabilities is lower than a pre-
defined threshold t , the pursuit of maximum of the posterior
probabilities can be identified as a measure of classification
reliability. Such a rule can be expressed as:

f (x) =
{

argmaxCi
(p(Ci |x)) if maxCi (p(Ci |x)) ≥ t

reject if ∀i p(Ci |x)< t

(10)

where p(Ci |x) is the posterior probability, which can be
obtained by Bayes formula.

123



Breast cancer diagnosis from biopsy images 1411

Fig. 3 Operation of the hybrid
classification scheme
comprising a cascade of two
Random Subspace classifier
ensembles

The rejection rate is the probability that the classifier
rejects a given example:

p(reject)=
∫

reject

p(x)dx = p(max(p(Ci |x))< t). (11)

In Chow’s theory, an optimal classifier can be found only
if the true posterior probabilities are known. This is rarely
reachable in real applications.

The key issue with respect to the reject option is to define
the threshold t , in our work, we do not deeply consider the
optimal error-reject trade-off. We used different rejection
thresholds and the results of rejection against accuracies and
reliabilities were compared.

3.2 A cascade two-stage classification scheme

As already noted, it has been demonstrated that classification
accuracy can be enhanced by using an ensemble of classi-
fiers. Over the last few years a number of successful ensem-
ble methods have been proposed [14,16]. The most popular
method for creating a classifier ensemble is to build multiple
parallel classifiers, and then to combine their outputs accord-
ing to some fusion strategy. Alternatively, a serial architecture
can be adopted with different classifiers arranged in cascade
form such that the output of a classifier acts as the input to
another classifier. In this paper, we will propose a hybrid
classification scheme which serially connects two parallel
random subspace ensemble classifiers (Fig. 3). Note that all
classifiers have a rejection option.

In our current implementation the first ensemble (Classi-
fier Ensemble 1 in Fig. 3) consists of a collection of SVM
classifiers, the second (Classifier Ensemble 2 in Fig. 3) con-
sists of a collection of MLP classifiers. From Fig. 3 it can
be seen that rejected samples from Classifier Ensemble 1 are
passed to Ensemble 2, any samples that remain rejected once
Classifier Ensemble 2 has been applied are passed to a human
expert for “adjudication”.

SVM and MLP have obtained better performance than
other kinds of classifiers in many medical image analysis
tasks, especially in histopathological image analysis [11],
therefore, they have been selected as the base classifiers in
our two ensembles. The proposed cascade system here is
consistent with a principle in statistical pattern recognition
that an improved classification performance can be expected

when a local classifier is appended after a global one [41]. The
SVM ensemble in the first stage is trained as a global classi-
fier. Compare with SVM, the MLP is relatively local, since it
has been proven that a feed-forward network of just two lay-
ers (not including the input layer) is enough to approximate
any continuous function [42]. Note that the classification per-
formance of the whole system will not change too much if
we use another SVM ensemble in the second stage, because
under the same training strategy, the obtained support vectors
in stage 1 and stage 2 will be very similar.

Another reason we use different base classifiers for the
two ensembles is to achieve‘diversity’ between classifiers,
which is also deemed as an important factor for the success
of ensemble learning [43]. Making use of different individual
classifiers in an ensemble can improve the ensemble perfor-
mance, here we expand the concept to employ different base
classifiers for the two ensembles to improve the ‘diversity’
between the ensembles.

The major issue for designing the above grid classifica-
tion system is to decide when a pattern is covered by a rule
and should be classified accordingly, and when it should be
rejected and either passed on to the second ensemble or the
human expert (depending on which stage in the process we
are at). The reject option has been formalized in the context
of statistical pattern recognition according to the minimum
risk theory presented in [21] and [44]. Intuitively, a suggested
classification should be rejected if the confidence in that clas-
sification is below some threshold.

The standard approach to rejection in classification is to
estimate the class posteriors, and to reject classifications that
have a low class posterior probabilities [21]. To simplify the
design of the SVMs in the first ensemble with appropriate
posteriors estimation, we decompose the multi-label classifi-
cation problems with K classes (K = 3 in current work) into
K independent two-class problems (the one-vs-all approach
where each classifier classifies records as belonging or not
belonging to a class). The desired multi-class classification
can then be conducted according to the output of the binary
classifiers.

To estimate class posteriors from SVM’s outputs, a
mapping can be implemented using the following sigmoid
function [45]:

P(y = +1|x) = 1

1 + exp(aρ(x) + b)
(12)
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Fig. 4 SVM ensemble with
rejection option in stage 1,
which consists of a set of binary
SVMs (experts)

where the class labels are denoted as y = +1,−1, while a
and b are constant terms to be defined on the basis of sample
data. Such a method provides estimates of the posterior prob-
abilities that are monotonic functions of the output ρ(x) of
an SVM. This implies that Chow’s rule applied to such esti-
mates is equivalent to the rejection rule obtained by directly
applying a reject threshold on the absolute value of the output
ρ(x) [23].

In our scheme, K binary SVM classifiers are constructed
for K different image classes (K = 3). And we term such
K collection of binary SVMs an expert to avoid the con-
fusion with ensemble. The i th SVM output function Pi is
trained taking the examples from i-th class as positive and
the examples from all other classes as negative. In another
word, each binary SVM classifier was trained to act as a
class label detector, outputting a positive response if its label
is present and a negative response otherwise. Therefore, for
example, a binary SVM trained as a “in situ detector” would
classify between in situ and not in situ. For a new sample x ,
the corresponding SVM assigns it to the class with the largest
value of Pi following

Class = argmax Pi , i = 1, . . . , n (13)

where Pi is the signed confidence measure of the i th SVM
classifier. Such a SVM expert can then act as a base classifier
in the stage 1 ensemble, trained with randomly chosen subsets
of all available features (i.e., random subspace) following
the Random Subspace strategy [15]. In the random subspace
method, base classifiers are learned from random subspaces
of the data feature space. In other words, the ensemble is
trained by dividing the feature space randomly into subsets
and submits each one to a base SVM expert.

As we aim to construct a serially fused, cascade classifier
ensembles in order to produce a high confidence classifi-
cation, it is essential to examine the output from the VM
ensemble consisting of the base SVM experts. In combining
the decisions from the M experts, a sample is assigned the

class for which there is a predefined consensus degree, or
when at least t of the experts are agreed on the label, other-
wise, the sample is rejected, the threshold t can be decided
in advance, for example, a simple rule as follows can be used
to decide the value of t .

t ≥
{ M

2 + 1 if M is even

M+1
2 if M is odd.

(14)

Since there can be more than two classes, the combined
decision is deemed to be correct when a majority of the
experts are correct, but wrong when a majority of the deci-
sions are wrong. Obviously, t is a tunable threshold that con-
trols the rejection rate, and we use t to relate the consensus
degree from the majority voting to the confidence measure,
and abstain from classifying ambiguous samples. A rejection
is considered neither correct nor wrong, so it is equivalent
to a neutral position or an abstention [46]. Figure 4 further
explains the principle of the SVM ensemble in stage 1.

The rejected samples from the SVM ensemble in stage 1
will be handled by the second ensemble, which is a Random
Subspace ensemble of neural network classifiers, simultane-
ously trained with the stage 1 SVM ensemble. The neural
network classifier is a Multiple Layer Perceptron (MLP),
which has one hidden layer with a few hidden neurons and 3
output nodes, each representing a class label. The activation
functions for the hidden and output nodes are a logistic sig-
moid function and linear function, respectively. Following
the principle of RS, a number of individual MLP models are
trained on randomly chosen subsets of all available features.
That is, an ensemble of MLP classifiers is created with each
base classifier trained on an individual subspace by randomly
selecting features from the entire space.

The last step of the second Random Subspace ensemble is
to combine the base MLP models to give final decisions fol-
lowing the similar procedure of majority voting as in the first
stage, as shown in Fig. 5. In combining the decisions from
the M base MLPs, a sample (selected from the collection of
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Fig. 5 Illustration of the stage
2 Random Subspace classifier
ensemble which consists of a set
of MLPs

rejected samples from stage 1) is assigned the class label
when at least t of the MLPs are agreed on the decision.
Otherwise, the sample is rejected. Again, t is the thresh-
old that decide the rejection rate. The consensus degree from
the ensemble acts as confidence measure to switch between
acceptance and rejection.

3.3 Theoretical analysis of the ensemble cascade

If we have p(Ci ) as the prior probability of observing class
Ci , the posterior probability of class Ci when given an
instance vector x can be calculated as:

p(Ci |x) = p(x |Ci )p(Ci )

p(x)
= p(x |Ci )p(Ci )∑N

i=1 p(x |Ci )p(Ci )
(15)

where N is the number of classes, p(x |Ci )is the conditional
probability of x given a class Ci , and p(x) is the probability
of x .

We adopted the mechanism proposed in [47] to derive
the error rate of our system. For both stages in our scheme,
given an input instance x , the proposed classification is
accepted or rejected according to the highest posterior prob-
ability for all the classes: max j∈[1,...,N ] p(C j |x). Since the
result of our classifiers is only an approximation of the real
situation, we use Si (i=1,...,N ) to denote the approximation
posterior probability for each class obtained by our sys-
tem. Let M AX1

p = max j∈[1,...,N ] p(C j |x) denote the real
posterior probabilities for all classes given an instance x ,
and M AX1

S = maxi∈[1,...,N ]S1
i represents the approximation

posterior probabilities obtained by stage 1 of our system. The
error rate of stage 1 ε1 can be obtained by:

ε1 =
∫

A

(1 − M AX1
S)p(x)dx (16)

where A is the region composed of all accepted instances.
Using some simple manipulations on Eq. (16), we then get
the following:

Fig. 6 Error rate of stage 1

ε1 =
∫

A

(1 − M AX1
S)p(x)dx

=
∫

A

(1 − M AX1
p + M AX1

p − M AX1
S)p(x)dx

=
∫

A

(1 − M AX1
p)p(x)dx

+
∫

A∩I S

(M AX1
p − M AX1

S)p(x)dx

where I S is the region composed of all the instances that
satisfy M AX1

p − M AX1
S �= 0, which means that for some

input instances, the results of our classifiers are different from
the real ones. Notice that the first term of ε1 is in fact the
optimal Bayes error

∫
(1 − p(x))p(x)dx . The second term

comes from the errors generated during stage 1. This situation
can be illustrated as in Fig. 6, where R represents the rejected
patterns, A represents the patterns accepted by the classifier
and the crosses represent erroneous classifications made by
the ensemble of stage 1.

The same procedure can be used to analyze the error rate
of stage 2. Instead of a wide input instance space, stage 2
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only processes the rejected instances from stage 1. Let R
denote the region composed by all the rejected instances
from stage 1, R = {x |max(p(Ci |x)) < t}, M AX2

p =
max j∈[1,...,N ] p(C j |x) and M AX2

S = maxi∈[1,...,N ]S2
i .

The error rate of stage 2 can then be obtained by:

ε2 =
∫

R

(1 − M AX2
p)p(x)dx

+
∫

R∩I M

(M AX2
p − M AX2

S)p(x)dx (17)

where I M = {x |M AX2
p − M AX2

S �= 0}, which represents
the errors generated by the stage 2 ensemble.

Given the above, the error rate of the whole system can be
calculated as:

ε = ε1 + ε2

=
∫

A

(1 − M AX1
p)p(x)dx +

∫

R

(1 − M AX2
p)p(x)dx

+
∫

A∩I S

(M AX1
p − M AX1

S)p(x)dx

+
∫

R∩I S

(M AX2
p − M AX2

S)p(x)dx

= εBayes +
∫

A∩I S

(M AX1
p − M AX1

S)p(x)dx

+
∫

R∩I M

(M AX2
p − M AX2

S)p(x)dx . (18)

From Eq. (18), for approaching the goal that ε = εBayes,

we must set A ∩ I S = ∅ and R ∩ I M = ∅. This means that
even if both stages are not optimal, we still have chance to
reach the optimal classification error rate. However, this can
rarely be expected in real classification tasks.

Different from many existing cascade systems, we use
classifier ensembles in our architecture. As has already been
pointed out in [40], under the sum voting ensemble schemes,
the variance of the ensemble is less than that of the individual
classifier and a smaller variance in an ensemble will lead to
a lower error rate than any individual classifier. From the
above theoretical analysis, with a cascade system composed
of two ensembles, a lower error rate can be expected than
when using non-ensemble or non-cascade methods.

4 Experiments

MATLAB version 7 was used to implement the software
in the current work. Six different individual classifiers were
applied to the image dataset first, their results are com-

pared and analyzed. Then several popular classifier ensemble
methods were employed to construct the ensemble classi-
fiers. In order to ascertain the effectiveness of the proposed
feature combinations, several different feature combinations
were computed and compared. The performance (accuracy
and reliability) of the proposed two-stage ensemble cascade
scheme was evaluated using different ensemble sizes and
different rejection rates.

4.1 Comparison among single classifiers

In this section, we show the results obtained using six dif-
ferent classifiers on the biopsy image dataset where each
image was described in terms of the three kinds of fea-
tures introduced in Sect. 2. The six classifiers were (1)
kNN, k = 3, (2) single MLP, (3) single SVM, (4) Logis-
tic Regression [48], (5) Fisher Linear Discrimination [48]
and (6) Naive Bayesian Classifier [49]. For MLP, we experi-
mented with a three-layer network. Specifically, the number
of inputs is the same as the number of features, one hidden
layer with 20 units was used and a single linear unit repre-
senting the class label. The network was trained using the
Conjugate Gradient learning algorithm for 500 epochs. The
library for support vector machines, LIBSVM,2 was used
for the experiments. We used the radial basis function ker-
nel for the SVM classifier. The parameter γ that defines the
spread of the radial function was set to 5.0 and the para-
meter C that defines the trade-off between the classifier
accuracy and the margin to 3.0. For the microscopic biopsy
images, we randomly split it into training and testing sets,
each time with 20 % of each class’ images reserved for test-
ing while the rest was used for training. The classification
results were then averaged over 100 runs, such that each run
used a random split of the data for the training and testing
sets.

In Fig. 7, we compared the classification accuracies with
respect to the six classifiers. The averaged classification
accuracies of the MLP and SVM were 94.90 and 94.85 %,
respectively, which are far beyond the other four classifiers.
The standard deviations of the classification accuracies are
also compared in Fig. 7. Although the FLD has the small-
est averaged standard deviation (0.0571) on its classifica-
tion accuracy, it has the lowest classification performance.
The averaged standard deviations of MLP and SVM are
0.0934 and 0.1040, respectively, which are relatively smaller
than that of the other classifiers, which means they are more
stable with respect to classification performance.

Figure 8 presents a box plot of the classification results
obtained by these six single classifiers on the biopsy image
dataset. From the figure it can be seen that the MLP and
SVM classifiers have small variance ranges in classification

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm.
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Fig. 7 Classification accuracies and standard deviations from applying
kNN, single MLP, single SVM, Logistic Regression (LR), Fisher Linear
Discrimination (FDL), and Naive Bayesian (NB)

Fig. 8 Boxplot of classification accuracies from applying single MLP,
single SVM expert, Random Subspace SVM ensemble (RS-SVM) and
Random Subspace MLP ensemble (RS-MLP)

results, and their averaged classification accuracies are quite
close to each other. The results here contrast to the gener-
ally accepted perception that SVM classifiers outperform
neural network classifiers. The most reasonable explana-
tion for the better performance of MLP with respect to
our experiment is that MLP, as a memory-based classi-
fier, is more resistant to errors introduced from insuffi-
cient data than the margin or distance-based SVM. Given
a limited amount of data, Naive Bayesian classifier, Lin-
ear Discriminant and Logistic Regression perform worse
than SVM and MLP, this is because these classifiers’
performances depends on the amount of training data,
correlations between features, and the probability distribu-
tion of each feature, which may vary with empirical data.
This part of the experiment demonstrated a common result,
also obtained with respect to other research work, that in

general SVM and MLP can achieve better classification
performance on biopsy image analysis.

4.2 Evaluation of random subspace ensembles

Table 2 shows the classification accuracies obtained using
7 different ensemble classifiers with different image feature
combinations. The classifier ensemble methods compared
here are: (1) Bagging [50] with SVM (BagSVM), (2) Bag-
ging with MLP (BagMLP), (3) AdaBoost [51] with SVM
(BoostSVM), (4) AdaBoost with MLP (BoostMLP), (5) Ran-
dom Forest [52] with decision trees (RandF), (6) Random
Subspace with MLP (RSMLP) and (7) Random Subspace
with SVM (RSSVM). The three different image feature types
introduced earlier were considered: Curvelet, GLCM, and
LBP, they are represented by the letters C, G, and L in Table 2,
respectively. Each image has a 666-dimensional feature vec-
tor with all of these three features. Each randomly selected
subspace used 80 % of the features for the training phase of
the classifiers. For example, a 532-dimensional (666 × 0.8)

feature vector is used for training when three kinds of features
are all used (C, G and L in Table 2). In order for comparison,
the full (100 %) feature vectors were also used for classifier
training, the results of using full feature vectors are listed in
the last column of the table. The ensemble size is fixed as 25
for all the classifiers in Table 2.

One can note from Table 2 that the use of ensembles does
improve the classification accuracy. RSSVM and RSMLP
produced the best performance, both obtain classification
accuracies around 95 % regardless of the types of image fea-
tures used for the training (Curvelet, GLCM orLBP), which is
much better than the results obtained by other feature com-
binations. The results of the Random Subspace ensemble
(RSSVM, RSMLP) using 80 % features for training are also
better than the results of using the whole feature vector in the
training phase, which means the classification task benefits
from Random Subspace ensemble.

The results on this image dataset from using other kinds
of features are also compared in the experiment, as in [5],
the level set method was used to extract image features, and
a 42-bin histogram was constructed to represent information
of connected components; a 6.6 % classification error rate
was obtained.

Two important parameters for Random Subspace ensem-
bles are ensemble size (L) and the cardinality of the fea-
ture vectors (M). A “rule of thumb” has been put forward
with respect to the fMRI data classification problem [16] in
which the authors proposed a feature subset size M = n

2
and a consequent ensemble size of L = n

10 , where n is the
dimension of the original feature vector. In order to find the
appropriate values for the ensemble size and feature vector
cardinality for the current biopsy image classification work,
the size of the ensembles was varied from 5 to 145 with a
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Table 2 Classification accuracy (%) of 7 Ensemble classifiers on the biopsy image data with different image feature combinations

Ensemble Features used

C G L C&G C&L G&L C&G&L 100 %

BagSVM 87.56 87.21 88.53 89.65 90.06 90.48 92.04 91.67

BagMLP 87.56 87.42 88.84 90.75 90.58 90.67 93.44 93.02

BoostSVM 86.81 86.06 87.54 89.25 89.54 90.70 92.70 92.88

BoostMLP 87.72 87.21 88.44 90.17 90.22 90.44 93.22 93.56

RandF 82.73 82.61 83.25 85.81 84.61 87.03 89.81 92.44

RSMLP 90.43 90.82 91.79 92.58 93.39 93.89 95.05 94.88

RSSVM 90.13 90.09 90.44 92.08 92.51 92.78 94.85 94.12

Fig. 9 Classification results of the RSSVM ensemble with different ensemble sizes and different cardinalities of training feature

step size of 10. For each ensemble value size, the cardinal-
ity of the feature vectors used for training was changed from
10 % of the original dimension to 100 %, with equally spaced
intervals of 10 %. The classification results using RSSVM
and RSMLP with different ensemble sizes and different
feature vector cardinalities are shown in Figs. 9 and 10,
respectively.

The same conclusion as in [24] can be drawn from Figs.
9 and 10, namely that the classification performance does
not rely on the increase of the ensemble size. The dif-
ferent cardinalities of the feature vectors produced differ-

ent performances. The Random Subspace MLP ensemble
obtains its best classification accuracy of 96.83 % using
M = 4n

5 and ensemble size L = 105. The Random Sub-
space SVM ensemble also achieved good performance with
an accuracy 96.56 % at 80 % feature cardinality; how-
ever, different from the MLP ensemble, the SVM ensem-
ble has the same top performance for ensemble sizes 85 to
115. Therefore, the most appropriate feature cardinality of
M = 4n

5 and ensemble size L = 105 were identified for
both of the Random Subspace MLP ensemble and the SVM
ensemble.
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Fig. 10 Classification results of the RSMLP ensemble with different ensemble sizes and different cardinalities of training feature

4.3 Results of the proposed ensemble cascade system

In this experiment, we first use the RSSVM-ensemble and
the RSMLP-ensemble to construct different cascade classi-
fication systems. Four different two-stage cascade classifiers
were built: RSSVM-RSSVM, RSMLP-RSMLP, RSSVM–
RSMLP, and RSMLP-RSSVM; where RSSVM-RSSVM
indicates that a RSSVM ensemble was employed in both
stages 1 and 2, RSSVM–RSMLP indicates that a RSSVM
ensemble was used in stage 1 and a RSMLP ensemble in
stage 2, and so on.

The parameters for the RSSVM and RSMLP ensembles
were as determined in the previous experiment, with ensem-
ble sizes equal to 105 and feature cardinality set to 80 %.
A rejection threshold 84 (0.8 × 105) was set for both ensem-
bles (stages 1 and 2), which means that only when more
than 80 % of the classifiers agree on some decision will the
decision be adopted, otherwise, the instance will be rejected
by the ensemble. This relatively high threshold was used
because we wished to insure a high level of reliability with
respect to classification decisions. The results of different
cascade schemes on the biopsy image dataset are listed in
Table 3.

From Table 3, it can be observed that all the two-stage
cascade classifiers obtain a better classification performance

Table 3 Classification accuracy and reliability of different cascade
schemes on the biopsy image data with rejection threshold of both stages
equal to 84

Cascades RR (%) Re (%) ReR (%) ER (%)

RSSVM-RSSVM 97.19 97.63 1.43 2.38

RSMLP-RSMLP 97.39 98.22 1.19 1.78

98.61 98.65 0.53 1.35

RSMLP-RSSVM 97.89 98.40 1.71 1.60

RR recognition rate, Re reliability, ReR rejection rate, ER error rate,
see Sect. 3 for details

than the non-cascade ensembles tested in the last experiment,
this confirms the effectiveness of the cascade classification
system, which benefits from the fact that the samples rejected
by the first ensemble still have the chance to be correctly
classified by the second ensemble. Among the four different
cascade classifiers, the RSSVM–RSMLP cascade classifier
obtained the best classification accuracy with a relatively low
rejection rate. The reasonable explanation is that use of dif-
ferent base classifiers in the ensembles increase the diversity
of the whole cascade system, and compared with SVM, MLP
is a more ‘localized’ classifier which is more suitable to be
put in stage 2 to achieve better performance [24].
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Fig. 11 Averaged stage 2 accuracies with 10 varying stage 2 rejection
rates

To have a closer look at how the rejection rate influ-
ences the classification accuracy, we adjusted the threshold
t2 for the majority voting of the stage 2 ensemble (t2-out-of-
L , L = 105), while fixing the threshold in stage 1 at t1 = 84
(0.80×105), resulting in average rejection rates at stage 2 of
between 14.29 and 26.36 % from t2 = 85, . . . , 95. The cor-
responding overall rejection rates were then in the range of
0.68, . . . , 1.94 %. The plots of stage 2 accuracies and corre-
sponding overall accuracies from the varying rejection rates
are displayed in Figs. 11 and 12, respectively. It is not dif-
ficult to appreciate that higher accuracy could be expected
from higher rejection rate. However, it is worth noting that
when the rejection rate of stage 2 is 26.36 %, the classifica-
tion accuracy of stage 2 is 100 %, as we continued increasing
the value of the threshold t2, the increased rejection rate did
not bring any more improvement with respect to the classi-
fication performance.

With t1 = 84 and t2 = 95, the classification accuracies
and reliabilities from stage 1, stage 2 and the whole system
can be seen in Table 4. Compared with the results in Table
3, where the same thresholds t1 = t2 = 84 was set for both
stages, the overall classification accuracy and reliability were
improved by increasing the value of t2, and the correspond-
ing error rate drops. However, this improved performance is
obtained at the cost of an augmented rejection rate, which
means there will be more images left for human experts to
analyze. The trade-off between accuracy and rejection rate
could be empirically decided in practice.

The confusion matrix from the overall performance that
summarize the detailed situations of rejection rate 1.94 %
were displayed in the Table 5. In the confusion matrix
representation, the rows and columns indicate the true and
predicted classes, respectively. The diagonal entries represent
correct classification while the off-diagonal entries represent
incorrect ones.

Fig. 12 Averaged overall classification performances from 10 varying
overall rejection rates

Table 4 Averaged classification performance of the cascade schemes
on the biopsy image data with rejection threshold t1 = 84 and t2 = 95

RR (%) Re (%) ReR (%) ER (%)

Stage 1 (RSSVM) 98.61 99.31 7.73 0.69

Stage 2 (RSMLP) 1 83.64 26.36 0

99.25 97.65 1.94 1.25

Table 5 Averaged confusion matrix with overall rejection rate
1.94 % (%)

Insitu Normal Invasive

Insitu 97.97 0.74 1.29

Normal 0 100 0

Invasive 0.22 0 99.78

5 Conclusion and future work

In this paper, a reliable classification scheme based on ser-
ial fusion of Random Subspace ensembles has been proposed
for the classification of microscopic biopsy images for breast
cancer diagnosis. Rather than simply pursuing classification
accuracy, we emphasized the importance of a reject option
in order to minimize the cost of misclassifications so as to
ensure high classification reliability. The proposed two-stage
method used a serial approach where the second classifier
ensemble is only responsible for the patterns rejected by the
first classifier ensemble. The first stage ensemble consists of
binary SVMs which were trained in parallel, while the sec-
ond ensemble comprises MLPs. During classification, the
cascade of classifier ensembles received randomly sampled
subsets of features following the Random Subspace proce-
dure. For both of the ensembles the rejection option was
implemented by relating the consensus degree from majority
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voting to a confidence measure and abstaining to classify
ambiguous samples if the consensus degree was lower than
the threshold.

The effectiveness of the proposed cascade classification
scheme was verified on a breast cancer biopsy image dataset.
The combined feature representation from LBP texture
description, Gray Level Co-occurrence Matrix and Curvelet
Transform exploits the complementary strengths of differ-
ent feature extractors; the combined feature was proved effi-
cient with respect to the biopsy image classification task. The
two-stage ensemble cascade classification scheme obtained
a high classification accuracy (99.25 %) and simultaneously
guaranteed a high classification reliability (97.65 %) with a
small rejection rate (1.94 %). Moreover, the cascade archi-
tecture provides a mechanism to balance between classifica-
tion accuracy and rejection rate. By adjusting the rejection
threshold in each ensemble, the classification accuracy and
reliability of the system can be modulated to a certain degree
according to the specification of specific applications. For
example, medical diagnosis tasks usually require high accu-
racy and reliability, therefore the rejection thresholds in each
stage will be set to a high level in order to guarantee the
correctness of the diagnosis.

Although the proposed system has shown promising
results with respect to the biopsy image classification task,
there are still some aspects that need to be further investi-
gated. The benchmark images used in this work were cropped
from the original biopsy scans and only cover the important
areas of the scans. However, often it is difficult to find Regions
of Interest (ROIs) that contain the most important tissues
in biopsy scans, more efforts therefore needs to be put into
detecting ROIs from biopsy images. In this paper, the parame-
ters for the cascade system, such as ensemble size and rejec-
tion threshold, were decided empirically; this may not have
produced the most satisfactory performance with respect to
all application contexts. Therefore, some self-adaptive rules
or algorithms for automatically optimizing these parameters
would be desirable.
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