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Abstract A histogram is a compact representation of the
distribution of data in an image with a full range of applica-
tions in diverse fields. Histogram generation is an inherently
sequential operation where every pixel votes in a reduced
set of bins. This makes finding efficient parallel implemen-
tations very desirable but challenging, because on graph-
ics processing units thousands of threads may be atomically
updating a short number of histogram bins. Under these cir-
cumstances, collisions among threads will be very frequent
and such collisions will serialize thread execution, seriously
damaging the performance. In this paper we propose a highly
optimized approach to histogram calculation, which tack-
les such performance bottlenecks. It uses histogram repli-
cation for eliminating position conflicts, padding to reduce
bank conflicts, and an improved access to input data called
interleaved read access. Our so-called R-per-block approach
to histogram calculation has been successfully compared to
the main state-of-the-art works using four histogram-based
image processing kernels and two real image databases.
Results show that our proposal is between 1.4 and 15.7 faster
than every previous implementation for histograms of up to
4,096 bins.
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1 Introduction

Histograms are functions that count the number of observa-
tions that fall into disjoint categories, known as bins. They
permit to estimate the probability distribution of a vari-
able and in this manner, they are frequently used to obtain
the probability density function of the analyzed variable
by normalizing the histogram area to one. Histograms are
actively used in many applications, notably in the image
processing and pattern recognition fields [2,10]. For exam-
ple, in content-based image retrieval systems it is very com-
mon to compute several features, including histograms, of
very large image databases that typically include millions
of images. Thus, efficient codes for histogram generation
are required to compute as fast as possible all these histo-
grams.

One of the most successful trends in high performance
computing is general-purpose computation on graphics pro-
cessing units (GPGPU), thanks to programming environ-
ments such as CUDA [8] and OpenCL [3]. Nevertheless,
developing efficient codes for histogram generation consti-
tutes a quite challenging task due to the multithreaded archi-
tecture of GPUs. Histograms will be generated by thousands
of threads voting in a limited number of bins, while atomicity
will be required for each vote. This is generally resolved using
atomic additions, but these present a considerable objection:
if two or more threads try to update the same memory loca-
tion at the same time, accesses will be serialized. Such a
collision is a posi tion con f lict and the number of colliding
threads is the con f lict degree. Conflicts come from threads
belonging to both the same warp (intra-war p conflicts) and
different warps (inter -war p conflicts). Roughly, serializa-
tion will entail a latency penalization that is proportional to
the conflict degree. In the case of image processing, where
typically neighboring pixels will have similar or equal color
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values, conflicts will be very frequent, and performance of
histogram calculation will be significantly burdened.

An effective technique to reduce the number of position
conflicts consists of replicating the histogram, that is placing
private copies, called sub-histograms, in order to spread the
votes along more memory positions. Once the voting step has
finished, sub-histograms are reduced into a final histogram.
Replication has been used in previous main works in histo-
gram generation on CUDA-capable GPUs [4,11,12]. In these
works, one sub-histogram is used per thread or per war p
(i.e., basic Single-instruction Multiple-data unit in CUDA).
However, these per-thread and per-warp approaches present
several drawbacks, which limit the benefit of replication.

On the one hand, the per-thread approach by Shams et al.
[12] declares one sub-histogram per thread, which avoids the
need for atomic operations, but requires placing a vast num-
ber of sub-histograms in the high-latency off-chip global
memory. Position conflicts are eliminated at the expense of
a costly final reduction step. Nugteren et al. [4] propose a
per-thread approach in the scarce on-chip shared memory,
which presents other drawbacks, such as the limited maxi-
mum size of a histogram.

On the other hand, the per-warp approach in [11,12] places
one sub-histogram per warp in shared memory. This makes
necessary the use of atomic additions, since threads of a warp
might incur in many position conflicts, due to the typical
data distributions in real images. An attempt to overcome
this drawback is presented in Nugteren’s per-warp approach
[4], but it is based on uncoalesced global memory accesses,
which are one of the most undesirable bottlenecks for GPU
performance.

A conceptually different approach is presented by Shams
in [13]. This method is based on counting while sorting the
input data. Since sorting is a highly optimized technique
on GPU, the achieved performance is high, beating the per-
warp and per-thread approaches for histograms of more than
10,000 bins.

In this paper we propose a new approach to histogram
calculation which applies replication and padding for opti-
mizing the voting process in shared memory. Our replication
approach declares a number R , called replication f actor ,
of sub-histograms per block of threads in shared memory.
Adjacent threads will vote in different sub-histograms in
order to minimize the number of position conflicts. How-
ever, since the shared memory is divided into memory banks
[7], if the size of the histogram is a multiple of the number of
banks, position conflicts will turn into bank con f licts which
serialize memory accesses too. Therefore, we propose the use
of padding for reducing the amount of bank conflicts. More-
over, a read access optimization, called interleaved read
access, reduces inter-warp conflicts.

In addition, unlike the former works that experimented
solely with reduced ad hoc data sets, we present evaluation

results using a very large amount of real images. Shams et al.
only used uniform and degenerate (i.e., all input elements
set to the same value) data distributions in [12]. In [13] they
present a comparison of their per-thread, per-warp and sort-
and-count approaches using two 3D medical images from the
Vanderbilt database [14]. Nugteren et al. [4] used uniform and
degenerate distributions, and four real images.

Therefore, in this work our main contributions are:

• An optimized approach to histogram generation, called
R-per -block, which applies replication, padding and
interleaved read accesses.

• Guidelines for an efficient kernel configuration: number
of blocks, number of threads per block and replication
factor R.

• Comparison of our approach to the implementations
developed by other authors [4,12,13] for histograms of
up to 4,096 bins. Tests with four histogram-based kernels,
using two natural image databases (monochrome [1] and
color [9]) show significant speedups of our approach.1

The rest of the paper is organized as follows. In Sect. 2
GPU hardware and atomic additions are introduced. Sec-
tion 3 depicts our approach to histogram calculation and
presents the set of techniques that it uses. Section 4 shows the
experimental evaluation of our approach and a comparison to
the existing implementations. Finally, the main conclusions
and future work are stated.

2 Atomic additions in shared memory

GPUs consist of a high-capacity off-chip global memory and
an array of streaming multi-processors (SM) [7], which
contain processing cores, registers and an on-chip shared
memory. From a programmer’s point of view, threads are
arranged into blocks of size up to 1,024, but they are executed
on the SMs as collections of 32 threads called warps. SMs
schedule alternate instructions from active warps, in a way
that enables hiding long latencies due to memory accesses or
read-after-write register dependencies. With this aim CUDA
literature [6] recommends a number of active warps over a
minimum. Such a number is conditioned by the availability
of registers and shared memory.

Threads can access global and shared memories. Since
global memory is a hundred of times slower than shared
memory, every calculation that requires repeated accesses
to certain memory addresses, such as histogram computa-
tion, should be performed in shared memory. In this way, we
focus on histogram computation in shared memory.

1 Source code of R-per-block approach to these histogram-based ker-
nels is available at http://www.ac.uma.es/~vip/downloads.html
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The shared memory is a scratchpad memory divided into
equally-sized memory modules, called banks, which can
be accessed simultaneously. Successive 32-bit words are
assigned to successive banks. If the number of banks is N
and A is the address of a 32-bit word, A resides in bank
mod(A, N ), that is, the remainder of the division of A by N .
This permits to achieve a high bandwidth if threads access
addresses that fall in distinct memory banks. However, if two
addresses of a memory request fall in the same bank, there
is a bank conflict and the access has to be serialized. In the
current Fermi architecture [5], the shared memory has 32
banks, which is the warp size too. Thus, the granularity of
memory requests is 32 and bank conflicts are only possible
among threads belonging to the same warp.

For devices of compute capability 1.2 and above, CUDA
offers atomic functions which perform a read-modify-write
operation on a word residing in shared memory. Specifically,
atomicAdd() reads a word at some address, adds a num-
ber to it and writes the result back to the same address. It
is atomic in the sense that no other threads can access this
address until the operation is complete. In this regard, threads
compete for locking the access to those addresses which are
to be atomically updated. This fact exposes the serialization
that threads of a warp suffer when a position conflict occurs
(i.e., more than one thread try to update the same address).
Moreover, since the thread scheduler of the GPU launches
alternately instructions for different warps, some of them
may compete if they must update the same locations. Thus,
some warp may have to wait until other warp finishes the
atomic operation. From the former observations, we distin-
guish between intra-warp and inter-warp position conflicts.

As it can be seen, a proper approach to histogram compu-
tation in shared memory should deal with intra-warp position
and bank conflicts and inter-warp position conflicts.

3 An optimized approach to histogram generation

The use of atomic additions in shared memory is necessary
for designing a histogram calculation approach independent
of histogram size, because per-thread approaches are limited
by the availability of shared memory [4] or require voting in
the slower global memory [12].

On the other hand, the per-warp approach in [12] is sub-
ject to many intra-warp position conflicts when working with
real images. In a typical image or video application on GPU,
threads belonging to the same warp will read contiguous pix-
els of an image or frame stored in global memory. Such an
access pattern is recommended on GPUs in order to fulfill
coalescing requirements, which permit a faster access to
global memory [7]. Real images typically present high spa-
tial correlation of pixels. Thus, color values of neighboring
pixels will be generally in the same range. Furthermore, adja-

Fig. 1 Detail of a Lenna’s grayscale image. Neighboring pixels on her
forehead present similar or equal luminance values

cent pixels will often have the same value. For instance, Fig. 1
shows the luminance values of one Lenna’s image window.
Threads of the same warp will vote in a reduced range of
the histogram, due to the spatial similarity of the input distri-
bution. Since these threads vote in the same sub-histogram,
position conflicts will be very frequent.

In this way, we propose a per-block replication approach
that reduces the number of conflicts. Replication is used to
turn position conflicts into bank conflicts by making con-
secutive threads vote in consecutive sub-histograms, as it is
explained below. However, bank conflicts entail a latency
penalty as well. In this way, padding is necessary to mini-
mize the number of bank conflicts. Finally, we complete our
approach proposing an interleaved read access which deals
with the access to the input data, and permits to decrease
inter-warp conflicts.

Our approach uses a number of blocks whose threads read
pixels from global memory and vote in R sub-histograms in
shared memory. It is applicable to histograms up to 4,096
bins on current Fermi GPUs, with bin size equal to 32 bits.

Figure 2 shows the kernel function that implements
our approach. It basically consists of three steps: first,
threads initialize sub-histograms in shared memory; second,
threads read image pixels in an interleaved manner, perform
optionally some computation and vote in a number R of
sub-histograms per block, called replication factor; third, the
R sub-histograms per block are reduced, and finally, merged
into a final histogram in global memory. This reduction step
uses the same code as the per-warp approach [11,12].

3.1 Replication

Replication consists of placing several sub-histograms in
shared memory with the aim of reducing or eliminating posi-
tion conflicts during the voting process.

In this work, we propose a replication approach per block
in which consecutive threads belonging to a block will access
consecutive sub-histograms in shared memory, as Fig. 3
shows. Thus, if the replication factor is R, thread ThId (such
that 0 ≤ ThId ≤ block_size−1, where block_size is the num-
ber of threads within a block) will vote in sub-histogram
mod(ThId, R). This strategy will mainly permit to reduce the
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Fig. 2 Kernel code of our R-per-block approach to histogram calcu-
lation. threadIdx.x, blockIdx.x, blockDim.x and grid-
Dim.x are built-in variables that stand for thread index, block index,
block size and number of blocks, respectively. size is the image size.

Constant off_rep indicates in which of the R per-block sub-histo-
grams thread threadIdx.x will vote. histo is the final histogram
in global memory

Fig. 3 Replication in shared memory consists of allocating several pri-
vate copies, called sub-histograms. If the replication factor is 8, thread
T hI d votes in sub-histogram mod(T hI d, 8). Probability of collision
among threads of the same warp is reduced by 8

serialization caused by threads of the same warp (i.e., intra-
warp conflicts) when updating the same memory location.
Moreover, it will also reduce inter-warp conflicts, if the num-
ber of sub-histograms is higher than the size of a warp.

The potential benefit of replication can be figured out when
observing Fig. 1. Unlike in the per-warp approach, threads
in the same warp vote in several different sub-histograms.
Hence, the number of position conflicts will significantly
decrease.

Such a decrease can be observed in Fig. 4, which presents a
quantitative analysis of the number of position conflicts while
changing the replication factor. We have studied the pixel
distributions of Van Hateren’s natural image database [1], in
order to count the number of position conflicts while com-
puting 256-bins histograms. We focus on intra-warp position
conflicts, so that pixels are analyzed as sets of 32 consecutive
ones that will be read by the threads belonging to one warp.

123



An optimized approach to histogram computation on GPU 903

Fig. 4 Percentage of position conflicts when computing 256-bins his-
tograms of Van Hateren’s image database, while changing the replica-
tion factor between 1 and 32

(a)

(b)

Fig. 5 Degenerate case in a 32-bin histogram in shared memory. The
use of replication (a) avoids position conflicts but provokes bank con-
flicts. Therefore, threads 0–3 access bank 1 sequentially. Replication
and padding (b) make threads vote in different banks in parallel

For each image we computed the number of position conflicts
of every degree, and obtained a grand total by weighting these
numbers by their degree. Replication factor changes between
1 and 32. As expected, the number of position conflicts dimin-
ishes as the replication factor increases. A replication factor
equal to 32 ensures a complete removal of the intra-warp
position conflicts.

3.2 Padding

As it has been explained, the use of replication in shared
memory reduces the number of position collisions. However,
position conflicts turn into bank conflicts, that limit the per-
formance as well. This is shown in Fig. 5a. In this regard, the
use of padding is recommended to improve the performance.
Padding strengthens replication by avoiding bank conflicts
when two or more threads of the same warp access the same
histogram bin in contiguous sub-histograms in shared mem-
ory. Figure 5b explains the use of padding in histogram cal-
culation.

Fig. 6 Naive (left) and interleaved (right) read accesses. Pixels
accessed by warps belonging to different blocks are highlighted in dif-
ferent colors (red, green, blue). Bi − w j stands for warp j in block i .
In the naive access, consecutive warps of a block access consecutive
groups of 32 pixels. In the interleaved access, warps w j only access
part j of the image

3.3 Interleaved read access

As it has been seen in Fig. 1, any image is typically composed
by many different regions with similar color values. In this
way, read access to pixels can have an important influence on
how voting is performed, that is, how many position conflicts
occur.

When processing an image, read access patterns to global
memory typically consist of consecutive threads of a warp
reading consecutive pixels in order to take advantage of coa-
lescing. A naive addressing makes also consecutive blocks
access consecutive chunks of pixels, as Fig. 6 (left) shows,
and consecutive warps access consecutive groups of 32 pix-
els. In this regard, thread ThId in block Bi will read pixel
Bi× block_size + ThId. Such an access ensures a good per-
formance in most image processing applications, especially
if computations are not input dependent. Nevertheless, exe-
cution time of histogram generation is dependent on pixel
distribution. Thus, since real images are divided into color
regions, it is very probable that consecutive warps access pix-
els with similar or equal color values while using the men-
tioned naive addressing. In this way, they will incur in many
inter-warp conflicts.

For this reason, we propose a read access method that sep-
arates warps belonging to the same block as much as possible.
This consists of dividing the image in as many parts as warps
within a block, so that warp wi of any block will only access
part i of the image. Thread ThId in block Bi will start reading

pixel image_size
warps_per_block × wi + warp_size × Bi + mod(ThId,

warp_size). Figure 6 (right) illustrates the method. This way,
probability of inter-warp conflicts will likely decrease. More-
over, this access method ensures coalesced reads to global
memory since consecutive threads within a warp read con-
secutive addresses.
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Table 1 Hardware and software features in NVIDIA GeForce GTX
580

Parameter GeForce GTX 580

Architecture GF110 (Fermi)

Compute capability 2.0

Multi-processors/GPU 16

Processors/multi-processor 32

Threads/warp 32

Threads/block Up to 1,024

Threads/multi-processor Up to 1,536

Blocks/multi-processor Up to 8

32-Bit registers/multi-processor 32,768

Shared memory/multi-processor 48 Kb

Global memory 1,536 Mb

Table 2 Recommended execution configurations for histogram gener-
ation on GeForce GTX 580

Blocks/SM

1 2 3 4 5 6 7 8

Threads 768 384 256 192 192 128 128 128

/Block 1,024 512 384 256 256 192 192 192

768 512 384 256

The same number of blocks is used in each SM, in order to ensure
load balancing. Moreover, the number of threads per block follows rec-
ommendations in CUDA literature [6], that is, a multiple of 64 and a
minimum of 768 threads per SM

4 Experimental evaluation

In this section we evaluate our approach to histogram gener-
ation, in which kernel code exploits the use of optimization
techniques in Sect. 3, and compare it to Shams’ and Nugt-
eren’s implementations using four histogram-based kernels.
As an important novelty in the evaluation of histogram cal-
culation in GPUs, we have used Van Hateren’s natural image
database [1], which contains 4,164 monochrome images, and
McGill’s color image data-base [9] with 1,152 images.

Tests in this section use kernel execution configurations
(i.e., the number of blocks and the number of threads per
block) that are chosen for achieving load balancing across
hardware resources following recommendations in CUDA
literature [6]. Thus, configuration values are selected to
obtain an evenly distributed number of blocks among SMs
and a high occupancy, which is the ratio between the num-
ber of active warps within a SM and the maximum number of
active warps. Table 2 collects all the execution configurations
that have been used in this work on the device presented in
Table 1.

Once determined the execution configuration, a number R
of sub-histograms must be declared per block. In preliminary
experiments using Van Hateren’s database, we have tested all

Table 3 Recommended replication factor R for histogram generation
on GeForce GTX 580

Histogram size Blocks/SM

1 2 3 4 5 6 7 8

32 372 186 124 93 73 62 52 46

64 189 94 63 47 37 31 26 23

128 95 47 31 23 18 15 13 11

256 47 23 15 11 9 7 6 5

512 23 11 7 5 4 3 3 2

768 15 7 5 3 3 2 2 1

1,024 11 5 3 2 2 1 1 1

2,048 5 2 1 1 1

4,096 2 1

R is the maximum replication factor per block that does not burden the
occupancy. It is obtained with Eq. 1

possible replication factors from 1 to a maximum that does
not burden the occupancy, as shown in Sect. 4.1. This maxi-
mum is dependent on the size of the histogram, the possible
use of padding, the number of blocks per SM and the shared
memory size. It is calculated with the following expression:

R = ShMemsize
BSM × (Histogramsize + 1)

(1)

where ShMemsize is the size of the shared memory in
4-byte words, BSM is the number of blocks per SM and
Histogramsize is the size of the histogram (1 is added if pad-
ding is used).

Those preliminary tests led us to use the highest possi-
ble replication factor per block which does not reduce the
occupancy. This maximum replication factor per block will
depend on the number of blocks mapped onto each SM, as
presented in Table 3. It should be noticed that the total num-
ber of sub-histograms is evenly distributed among the blocks
in a SM. For instance, if two blocks are used on each SM,
the maximum replication factor will be half the replication
factor when only one block is mapped. The highest the total
number of sub-histograms, the lowest the probability of con-
flict. In addition, we have observed that the execution time
due to sub-histograms reduction is not significant and does
not impact on the overall performance.

In summary, the guidelines for an efficient kernel config-
uration are:

• The number of blocks is chosen as a multiple of the num-
ber of SMs. Thus, the same number of blocks will be
mapped on each SM.

• The number of threads per block is a multiple of 64. More-
over, the total number of threads per SM is at least 768.

• The replication factor is given by Eq. 1. Table 3 contains
recommended replication factors on GeForce GTX 580.
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First, we evaluate the impact of the optimization tech-
niques used in our approach in Sect. 4.1.

Then, we compare our R-per-block approach to Shams’
[12,13] and Nugteren’s [4] implementations. Shams’ and
Nugteren’s codes are downloadable at the respective authors’
sites.2 Since the name of our approach, R-per-block, remarks
the number of sub-histograms used per block, we extend this
kind of naming to per-warp and per-thread approaches by
calling them 1-per-warp and 1-per-thread respectively.

Tests have been performed using the execution config-
urations in Table 2 and the replication factors in Table 3.
It is remarkable that Shams’ 1-per-thread approach works
properly only with a power-of-two number of blocks and
a power-of-two number of threads. Thus, we have tested 20
execution configurations for R-per-block, Shams’ 1-per-warp
and Shams’ sort-and-count approaches, while Shams’ 1-per-
thread approach has been tested with 30 execution config-
urations. The number of blocks and the number of threads
per block in Nugteren’s implementations are fixed, otherwise
they do not work correctly. The number of blocks is equal to
the image size divided by the number of threads per block.
In the case of Nugteren’s 1-per-warp approach, the number
of threads per block is fixed to 256. Nugteren’s 1-per-thread
implementation uses 32 threads per block.

Histogram-based kernels for monochrome and color
images are presented in Sect. 4.2 and 4.3. Results are dis-
cussed in Sect. 4.4.

4.1 Impact of the optimization techniques

Figure 7 shows the impact of replication, padding and inter-
leaved read access on GeForce GTX 580. As it can be seen,
the use of replication combined with padding makes the exe-
cution time diminish as the replication factor increases, fol-
lowing a similar trend to that in Fig. 4. Replication reduces
the number of position conflicts, while padding avoids bank
conflicts. Moreover, the interleaved read access reduces the
execution time due to the reduction of the number of inter-
warp conflicts. These observations have been ratified for his-
togram sizes between 32 and 4,096, and for every execution
configuration in Table 2.

4.2 Histogram calculation of monochrome images

This kernel calculates a histogram for a monochrome image.
We have used all 4,164 1,536×1,024, 12-bit depth, images
of Van Hateren’s database. This depth permits to experi-
ment with histograms of 32–4,096 bins length. We have

2 We have updated Shams’ per-warp code in order to use hardware
atomic additions that replace the original simulated ones. Sort-and-
count code has been re-implemented using explanations and code
included in [13].

Fig. 7 Average execution time (ms) for 256-bins histogram calculation
of images from Van Hateren’s database on GeForce GTX 580, while
changing the replication factor. The interleaved read access introduces
an additional improvement. Results correspond to an execution config-
uration of 32 blocks of 384 threads, and a maximum R per block of
23

measured the number of gigabytes per second processed for
every approach and every histogram size. Table 4 presents an
average value, obtained with all the execution configurations
tested, and the best performance value (in parentheses).

4.3 Histogram-based kernels for color images

We have implemented three common histogram-based ker-
nels. Our R-per-block approach to these kernels is compared
to Shams’ and Nugteren’s approaches using all 1,152 2,560
× 1,920 RGB images of McGill’s database. Table 5 shows
average and minimum execution times of all the approaches.

First kernel consists of converting a RGB image to gray
scale and then voting in a 256-bin histogram.

Second kernel generates the direct color histogram of a
RGB image. The size of the histogram depends on the reso-
lution of the RGB color space. We have considered two reso-
lutions of 8 and 16 levels per color component. These values
entail two histogram sizes of 512 and 4,096 bins respectively.

Third kernel calculates three color histograms, one per
color component. This is equivalent to computing a histo-
gram of 3 × 256 = 768 bins.

4.4 Discussion

Results in Tables 4 and 5 show that our R-per-block approach
clearly outperforms the rest of approaches.

In the case of histogram calculation of monochrome
images, the best performance of our R-per-block approach
obtains a speedup with respect to the best performance of
Shams’ 1-per-thread approach, which is the best of the rest of
approaches, between 1.6 and 2.8. Moreover, our R-per-block
approach is much more stable along execution configura-
tions: the coefficient of variation (i.e., the ratio of the standard
deviation to the mean) for every histogram size is between
6 and 25 %, while it is between 71 and 81 % for Shams’
1-per-thread approach. Thus, our algorithm does not need to
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Table 4 Average performance in gigabytes per second for R-per-block, Shams’ and Nugteren’s approaches to histogram calculation on GeForce
GTX 580

Histogram size (Bins) Performance (GB/s)

Our approach Shams’ approaches Nugteren’s approaches

R-per-block 1-per-warp 1-per-thread Sort-and-count 1-per-warp 1-per-thread

32 51.8 (66.5) 19.0 (21.0) 14.6 (41.6) 3.0 (3.8)

64 58.2 (63.9) 21.7 (24.1) 12.8 (41.3) 3.0 (3.7)

128 58.1 (64.2) 23.8 (27.7) 11.1 (32.7) 3.0 (3.7)

256 50.0 (54.5) 21.6 (26.3) 9.2 (27.5) 3.0 (3.7) 15.9 (15.9) 22.4 (22.4)

512 40.8 (43.6) 17.5 (21.1) 7.2 (22.0) 3.0 (3.7)

1,024 32.1 (39.3) 7.9 (12.1) 5.3 (15.8) 3.0 (3.7)

2,048 25.6 (36.9) 7.0 (7.5) 3.9 (11.5) 3.0 (3.7)

4,096 19.7 (21.9) 2.6 (7.7) 2.8 (3.7)

Best performance values are in parentheses

Table 5 Average and minimum (in parentheses) execution times per image in milliseconds for R-per-block, Shams’ and Nugteren’s approaches to
three histogram-based kernels on GeForce GTX 580

Histogram-based kernals Execution time (ms)

Our approach Shams’ approaches Nugteren’s approaches

R-per-block 1-per-warp 1-per-thread Sort-and-count 1-per-warp 1-per-thread

RGB to grayscale 0.51 (0.48) 0.70 (0.66) 4.55 (2.94) 8.04 (6.05) 1.73 (1.73) 3.15 (3.15)

Direct color

8 levels/component 0.73 (0.54) 2.74 (2.43) 3.75 (1.09) 8.04 (6.22)

16 levels/component 1.65 (1.54) 5.28 (2.53) 8.43 (6.28)

Color histograms 0.88 (0.78) 1.67 (1.43) 13.40 (7.56) 23.16 (17.73) 5.06 (5.06) 5.55 (5.55)

be optimally tuned to obtain a good performance. This com-
pensates for the impossibility of determining in advance the
best execution configuration while applying our R-per-block
approach, that is caused by the strong variability of pixel
distributions within images.

The sort-and-count approach gives a very flat performance
which is independent of histogram size and data distribution
due to the use of a sorting procedure. It is a specially interest-
ing approach for very big histograms. In fact, it outperforms
Shams’ 1-per-thread approach for monochrome histogram of
4,096 bins in average.

Shams’ 1-per-warp approach reports good performance
values in RGB to grayscale conversion and color histograms
kernels although it is burdened by intra-warp conflicts. The
author reported a good performance with uniform data dis-
tributions [12], but this is far from real conditions in image
processing as explained with Fig. 1.

Nugteren’s implementations work only for 256 bins his-
tograms. Despite that the authors proclaimed performance
improvements with respect to previous implementations [4],
they did not compare their implementations to the latest ones
by Shams. Together with the rigid establishment of the num-

ber of blocks and threads, Nugteren’s 1-per-warp approach is
burdened by the use of two separate kernels: the first one for
voting and the second one for reducing the sub-histograms.
This corresponds to the original CUDA SDK implementa-
tion of 256 bins histogram [11], which was later improved
to use one single kernel. Nugteren’s 1-per-thread approach
performs better but does not improve the best performance
of the latest Shams’ 1-per-thread implementation. A severe
drawback of this method is the fixed block size of 32 threads
which makes possible to place 3 blocks per SM. This means
only 96 active threads per SM, which is a too low occupancy
for Fermi devices.

5 Conclusions and future work

This work has presented a highly optimized approach to his-
togram calculation on GPU, called R-per-block approach.
This approach uses several optimization techniques that over-
come the drawbacks of previous per-warp and per-thread
implementations. Our approach applies a histogram replica-
tion scheme, devised for eliminating position conflicts among
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consecutive threads that are typical in histogram calculation
of real images. Thus, position conflicts are turned into bank
conflicts, and their associated penalties are further reduced
using padding. Moreover, an interleaved read access dimin-
ishes inter-warp conflicts.

Our approach is completed by giving some recommended
execution configurations and replication factors R that ensure
best performance rates.

Finally, we have carried out an exhaustive comparison
with the main state-of-the-art implementations using four
histogram-based kernels and two natural image databases.
Our R-per-block approach is between 1.4 and 15.7 faster than
the rest of implementations.

As our R-per-block approach is only applicable to his-
tograms of up to 4,096 bins, due to the limited size of the
shared memory, we plan to design a new approach in global
memory. Thus, larger histograms could be calculated.
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