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Abstract Face recognition algorithms can be divided into
two categories: holistic and local feature-based approaches.
Holistic methods are very popular in recent years due to their
good performance and high efficiency. However, they depend
on careful positioning of the face images into the same canon-
ical pose, which is not an easy task. On the contrary, some
local feature-based approaches can achieve good recognition
performances without additional alignment. But their com-
putational burden is much heavier than holistic approaches.
To solve these problems in holistic and local feature-based
approaches, we propose a fully automatic face recognition
framework based on both the local and global features. In this
work, we propose to align the input face images using multi-
scale local features for the holistic approach, which serves as
a filter to narrow down the database for further fine match-
ing. The computationally heavy local feature-based approach
is then applied on the narrowed database. This fully auto-
matic framework not only speeds up the local feature-based
approach, but also improves the recognition accuracy com-
paring with the holistic and local approaches as shown in the
experiments.
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1 Introduction

In general, face recognition algorithms are divided into two
categories based on the property of the features: holistic
approaches and local feature-based approaches. Since the
principal component analysis (PCA) [26] and the linear
discriminant analysis (LDA) [2] were introduced into face
recognition, various holistic approaches have been exten-
sively studied [23], such as variants of LDA [6,22,47,50–
52], marginal fisher analysis (MFA) [49], and eigenfeature
regularization and extraction (ERE) [24], due to their good
performance and low computational complexity. However,
the holistic approaches require a preprocessing procedure to
normalize the face image variations in pose and scale. This is
not an easy task because it depends on the accurate detection
of at least two landmarks from the face image [43]. Some
algorithms for eye localization have been proposed based on
the eyeball [7,11,18,25,30,32,39–42,48]. However, in many
real applications the appearances of eyeball are not distinct
or missing due to expressions, occlusions, illuminations or
image noise. Hence, some algorithms localize multiple facial
features like corners of eyes, nostrils, the tip of nose, cor-
ners of mouth, etc. Face alignment is performed based on
these semantic features [3,9,12,31,53,54]. The same prob-
lem encountered in the detection of eyes remains. Moreover,
in the training process, these semantic features are hand-
annotated, which is very labor-consuming. In [21], an unsu-
pervised approach is proposed for face alignment, which is
not based on the localizations of semantic facial features
(SF). As the performance of the face alignment algorithm
influences the final recognition performance, many research
papers on the holistic approaches report the recognition per-
formance on the pre-normalized faces. The recognition per-
formance will deteriorate considerably if the manual process
is replaced by an automatic alignment algorithm.
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In contrast to holistic methods, some local feature-based
approaches [17,34,35] for face recognition are more robust
to image variations in pose and scale. Furthermore, unlike
the holistic approaches, the face normalization is an inte-
grated part of the local approaches. Recently, some ini-
tial attempts apply the scale invariant feature transform
(SIFT) [34,35] in the face recognition tasks [4,10,14–
16,27,36,44]. Experimental results in [17] show that the
performance of the local feature-based approach is signif-
icantly better than the popular holistic approaches. How-
ever, its computational time is much longer. For instance,
to fulfill the face recognition task, one must search all
the images in the database and compare each local fea-
ture in every image, which causes very heavy computational
burden.

Although the computational complexity of holistic
approaches is much lower than local feature-based meth-
ods, they need an accurate face alignment. On the contrary,
some local feature-based approaches [17], which achieve
better recognition performance than holistic approaches,
are performed on unaligned face images. However, their
computational burden is much heavier. To solve these
two critical problems in holistic and local feature-based
approaches, we propose a fully automatic face recognition
framework (FAFF) based on both the local and global fea-
tures. To speed up the local feature-based approach, we
propose to use the holistic approach as a filter to retrieve
some candidate face images from the whole gallery set. The
selected face images have higher probabilities matching to
the probe, than the remains in the gallery. They form a new
gallery set with reduced size, on which we perform the local
feature-based approach for face recognition. The reduction
in the size of the gallery set will speed up the recognition
process of local feature-based approaches. To solve the align-
ment problem in holistic approaches, we design a face align-
ment scheme based on multi-scale local features instead of
relying on the semantic facial parts. In general, face align-
ment is performed based on the localizations of eyes, cor-
ners of mouth, nostrils and so on. However, in many real
applications the appearances of facial parts are not distinct
or missing due to expressions, occlusions, illuminations or
image noise, which makes the alignment results unreliable.
In face images, non-semantic facial features also hold dis-
tinct information, which can be utilized in the alignment
process. Hence, we propose to align face images based on
non-semantic multi-scale local features. The performance
of our face alignment strategy is validated by face recogni-
tion tasks using local binary patterns (LBP) [1] and holistic
approaches: LDA [2], UFS [47] and ERE [24]. Experimental
results show that our alignment approach outperforms those
based on localization of eyes [18,25,40–42], the localiza-
tion of facial parts [12] and the congealing approach [21].
In our FAFF, we adopt the holistic approach ERE [24] to

narrow down the database as it is one of the best performed
holistic approaches [8]. For the local feature-based approach,
we use the multi-scale local feature extraction and match-
ing framework (LFEM) in [17], as it achieves better per-
formance than many other face recognition approaches. We
firstly align face images based on the multi-scale local fea-
tures. Then ERE is performed on those well-aligned images
to retrieve candidate faces from the whole gallery set. Finally,
we perform LFEM on the narrowed gallery set. Our FAFF
not only speeds up the local feature-based approach, but also
improves the recognition performance. Our main contribu-
tions include:

1. We propose a face alignment approach based on multi-
scale local features. Given an unaligned face image
resulting from a face detector and a set of aligned face
images in the data set, we build an automatic transforma-
tion mechanism, under which the unaligned face image
can be precisely aligned for the recognition process.

2. A FAFF integrates the local feature-based approach
LFEM and the holistic approach ERE in a cascaded way.
We firstly use ERE as a filter to retrieve some candidate
images which form a gallery set with reduced size, where
we perform LFEM for face recognition. This framework
not only speeds up the LFEM approach, but also achieves
better recognition performance than LFEM, ERE and
their parallel combination.

The rest of this paper is organized as follows. In Sect. 2, we
give the outline of our FAFF, and briefly explain the rationale
behind it. In Sect. 3, we describe the multi-scale LFEM [17].
In Sect. 4, face alignment based on multi-scale local features
is introduced in detail. In Sect. 5, we fulfill the whole auto-
matic face recognition framework by integrating ERE and
LFEM in a cascaded way. In Sect. 6, experiments are con-
ducted on AR [37], Georgia Tech (GT) [38] and ORL [46]
databases and show the performances of our methods. This
paper is finally concluded by discussion in Sect. 7.

2 Framework outline

Although some local feature-based approaches achieve bet-
ter recognition performances than holistic approaches [17],
their computational burden is much heavier. To speed up the
recognition process of local feature-based approaches, in
our FAFF, we firstly perform holistic approach to retrieve
candidate images from the whole gallery set. The selected
images have higher probabilities matching to the probe than
the remains. Then we perform local feature-based approach
for face recognition on the narrowed gallery set, composed
of the retrieved candidate images. The reduction in the size
of the gallery set will speed up the recognition process of
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local feature-based approaches. Before we use the holistic
approach as a filter, we must align face images into the
same canonical pose, which is the premise of most holis-
tic approaches. Usually, the alignment is done based on the
localization of semantic facial parts like corners of eyes, eye-
balls, corners of mouth, nostrils, etc. However, it is difficult
to precisely detect these structures in many real applications.
Besides semantic features, non-semantic facial features also
hold distinct information. Hence, we propose to perform face
alignment based on the non-semantic multi-scale local fea-
tures.

Figure 1 visually gives the outline of our FAFF based on
local and global features. It consists of offline training and
online recognition. In the offline training process, we firstly
extract local and global features from the face database. The
images in the database are aligned manually, where we learn
a common face template using multi-scale local features.
In the online recognition process, we build an automatic
transformation mechanism, under which the probe image
is aligned with the common face template learned during
the offline training. Then we perform the holistic approach
on the well-aligned probe image and the face database to
reduce the size of the gallery set. At last, the multi-scale
local feature-based approach is applied on the narrowed gal-
lery set and outputs the final image ID. In the following
sections, we will introduce each ingredient of our FAFF in
detail.

3 Local feature extraction and matching

3.1 Local feature extraction

3.1.1 Keypoint detection and scale selection

A keypoint is a pixel or the center of a local area that shows
some characteristics different from its neighbors. Obviously,
blob-like and corner-like structures are candidates of key-
points. A Laplace operator ∇2 applied to the image I (x, y)

produces extrema at both blob-like and corner-like struc-
tures. Therefore, the spatial extrema of the Laplace image
∇2 I (x, y) are keypoint candidates. However, local structures
have different scales so that the extrema may appear in the
images smoothed with different scales. To find the scale of
a possible keypoint we need to detect the extrema in the
scale space, too. As studied by Lindeberg [33], the normal-
ized Laplacian of Gaussian (LoG), σ 2∇2G, provides scale
invariance. Thus, automatic scale selection is done in the
output images of the normalized LoG filter O(x, y, σ 2) =
σ 2∇2G(x, y, σ ) ∗ I (x, y), where G(x, y, σ ) is a Gaussian
smooth filter with zero mean and diagonal covariance matrix
σ 2I.

To detect the blob-like and corner-like structures and rep-
resent them at the optimal scales, points of the normalized
LoG images that are extrema in both spatial and scale spaces
are selected. Unlike most other visual objects, which have

Fig. 1 Fully automatic face recognition framework based on both the local and global features
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sharp corner structures with high contrast, human faces are
round and smooth and hence have many indistinct structures
that are yet very informative to differentiate persons. There
are few obvious blobs and corners with high contrast, because
the intensity changes in face images are gradual and slow in
the most areas. On the other hand, the shape of the structures
could be complex and some structures are close to each other
or overlap. As a result, many local structures in the smooth
area such as forehead, cheeks and chin cannot be detected
due to the strict condition of the extrema in the 26 neigh-
bors as proposed by Lowe [34,35]. To solve this problem,
we proposed in [17] to compare a candidate point with its
eight neighbors in the current scale and the corresponding
one neighbor in the scale above and below. A keypoint will
be selected if it is larger than all of these 10 neighbors or
smaller than all of them. Figure 2 visually shows the pro-
posed detection approach.

3.1.2 Descriptor representation

There are several descriptors proposed in the literature to
represent the local image structures [5,20]. In this work, we
adopt Lowe’s descriptor, which is a set of histograms con-
sisting of oriented gradients. In Lowe’s SIFT framework,
the support area proportional to the scale of the keypoint is
divided into 4 × 4 blocks. An 8-bin oriented gradient histo-
gram is computed in each block. Thus, a histogram vector h
for each keypoint has 4 × 4 × 8 = 128 dimensions. In the
application of face recognition, we aim to distinguish differ-
ent face images. Keypoints near the face edge carry important
information about the shape of the facial contour are often of
large scale and hence their support area will exceed the image
area, if the image is cropped tightly to the face size. To make
use of these important keypoints, we introduce a mask vector
m = (m1, m2, . . . , m128)

T for each keypoint defined as

Fig. 2 Extrema of the normalized LoG images are detected by com-
paring a pixel (marked with cross) to its eight neighbors at the current
scale and the corresponding pixels at the adjacent scales (marked with
circles)

mk =
{

1, if the block is in the image;
0, if the block is outside the image.

(1)

As face recognition is always following a face detection pro-
cess, the rough position and size of a face in the image are
known, thus, we can have the mask vector m, which enables
a partial descriptor. The feature vector f is computed by
f = Mh, where M is a diagonal matrix whose diagonal
elements are the elements of the mask vector m. To invalid
the contribution of the possible non-image region out of the
descriptor matching, the similarity between two descriptors
i and j is computed as

si j = fT
i f j√

fT
i M j fi fT

j Mi f j

(2)

It is easy to see that si j is a normalized similarity between two
keypoints i and j in the common face region. It enables the
participation of partial descriptors in the matching process.

3.2 Local feature matching

To determine the identity of a probe face image based on
a set of gallery images, local structures of the probe image
represented by the keypoints and their descriptors are com-
pared with those in the gallery. The gallery image whose local
structures have the maximum similarity to the probe image
establishes the identity of the probe.

3.2.1 Search the k-nearest neighbors of the nearest subject
and affine transform estimation

In the identification tasks, there are many similar gallery
images. As a result, the nearest keypoints to the probe often
disperse to many candidates in the gallery, and hence the
probability that the largest number of the nearest keypoints
fall into the right candidate is low. This problem becomes
severe if the gallery contains a large number of subjects.
Moreover, multiple templates per subject in the gallery make
it even worse. To circumvent the problem caused by multi-
ple templates per subject, we propose to search the k-nearest
neighbors of the nearest subject. The best candidate match of
a keypoint in the probe image is found by identifying its first
nearest neighbor in the keypoint set of all gallery images.
The first nearest neighbor is defined as the gallery keypoint
whose descriptor has the maximum similarity based on 2 to
that of the probe keypoint. The subject ID of the first nearest
neighbor is recorded. Then, we further identify the k-nearest
neighbors that have the same subject ID as the first nearest
neighbor so that the (k+1)th-nearest neighbor has a different
subject ID. If two or more such nearest neighbors fall into a
same gallery image, only the one with highest similarity is
chosen from them. A candidate image is identified if at least
three such k-nearest neighbors are found from it. We often
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obtain multiple candidate images. The minimum similarity
sm of all the probe keypoints to their k-nearest neighbors is
recorded for the second stage of the image matching.

Based on the correspondence between the keypoints in the
probe image and those in a candidate gallery image found in
the k-nearest neighbor search, we can compute the affine
transform parameters between the two images. We follow
Lowe’s approach here [35]. Some k-nearest neighbors are
rejected by this process due to their geometric inconsistence.

3.2.2 Further matching between probe and each candidate
gallery image

Although the proposed method that searches the k-nearest
neighbors of the nearest subject to a probe keypoint cir-
cumvents the problem of multiple templates per subject, the
k-nearest neighbors often disperse to many different subjects
if the gallery contains a large number of subjects. In general,
the more subjects the gallery contains, the smaller the number
of the k-nearest neighbors can be found in a candidate gallery
image. This decreases the probability that the largest number
of the nearest keypoints fall into the gallery image with the
correct ID. This problem can be very severe if the gallery
contains a large number of subjects. Thus, in an identifica-
tion problem, the k-nearest neighbors of the probe keypoints
found in a gallery image are often only a small portion of the
keypoints that can be well matched with those in the probe
image. Only considering the k-nearest neighbors in the whole
database as the matched keypoints in a gallery image greatly
weakens the discriminative power of the local structures of
an image. Therefore, we propose to further search the key-
points in each single candidate gallery image that can well
match with those in the probe.

We have obtained the six affine transform parameters
m1, m2, m3, m4, tx and ty based on the matched keypoint
pairs in the k-nearest neighbor search. We project the loca-
tion of a probe keypoint [x p, yp] to the gallery image [x ′

p, y′
p]

by the affine transform as
[

x ′
p

y′
p

]
=

[
m1 m2

m3 m4

] [
x p

yp

]
+

[
tx
ty

]
. (3)

The geometric distance d between the location [xg, yg] of
a gallery keypoint and that of a transformed probe keypoint

is computed as d =
√

(xg − x ′
p)

2 + (yg − y′
p)

2. If a gal-

lery keypoint i is geometrically close to a transformed probe
keypoint j, di j < dt , and their descriptor is similar, si j > st ,
keypoint i is identified as a candidate matched with key-
point j . The thresholds dt and st are chosen, respectively,
to be the one-fourth of the translation bin width used in
the Hough transform and the minimum similarity sm of the
probe keypoints to their k-nearest neighbors. If multiple gal-
lery keypoints satisfy the above conditions, the one with the

maximum descriptor similarity is chosen as the matched key-
point. If there is no gallery keypoint that satisfies the above
conditions, the probe keypoint is not matched.

The thresholds dt and st will affect the number of matched
keypoints of two images. It is difficult to find the optimal
thresholds for all applications. To reduce the sensitivity of
the image matching to the thresholds dt and st , instead of the
number of matched keypoints, we proposed to use the accu-
mulated similarities over all probe keypoints. The similarity
of a probe keypoint j to a candidate gallery image is defined
as

s j =
{

max(si j )i∈I j , if I j �= ∅;
0, if I j = ∅.

(4)

where I j ={i |di j < dt & si j > st } and i is the index of
the keypoint in the candidate gallery image. The similarity
score of the probe image to the candidate gallery image Spg

is then the accumulated similarities of all probe keypoints:
Spg = ∑q

j=1 s j , where q is the number of keypoints in the
probe image. The identity of the probe image is established
as that of the gallery image that has the highest similarity
score Spg .

4 Face alignment

The objective of our face alignment algorithm is not to local-
ize facial feature points such as eye-brows, eyes, nose, mouth
and contour of chin. The purpose of our alignment is to rec-
tify face images into the same canonical pose for subsequent
holistic recognition tasks. As mentioned in Sect. 1, face align-
ment algorithms based on localizations of facial parts are not
reliable as the appearances of semantic facial features vary
with expressions, illuminations, occlusions or image noise.
Hence, we propose an approach for face alignment not just
relying on the semantic features. In the field of face recog-
nition, there is one interesting phenomenon: the variations
between the images of the same identity due to expression,
illumination and viewing direction are almost always larger
than image variations due to change of face identity. This is
because the appearance of faces is highly constrained, for
example, any frontal view of a face has eyes on the sides,
nose in the middle, mouth in the lower part. Moreover, the
appearances of facial components of different identities may
be similar. Our face alignment approach is inspired by this
phenomenon.

4.1 Generate the common face template

Given a set of face images O in the training database, we
align them in pose and scale with manually detected two eye
coordinates. Our goal in this step is to learn a common face
template based on these aligned face images I. As mentioned
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above, the similarities are high, among the facial componen-
tial appearances of different subjects. The mean face m of I
captures the common information of various identities and
removes noises. The SIFT keypoints detected in m tell us the
locations of the common and stable features in I. Figure 3a
shows the mean face m computed from I with SIFT key-
points. We further add extra keypoints to meet the symmetry
property of face images, as shown in Fig. 3b. The keypoints in
Fig. 3b are the anchor points in the common face template m.

The anchor points in m tell us the possible locations of
common features in I. However, their descriptors provide
little information, as m is the mean face image. The support
area of SIFT descriptors in m is smoothed by the mean. We
need to compute the descriptors directly from the individual
images in the original training set O. As there are pose vari-
ations, the locations of the detected keypoints in O cannot
be used in the alignment process. We should project their
locations into the coordinates of the well-aligned image set
I. Let Pq = {pq

i }, q = 1, . . . Q, where Q is the number
of images in the training set O, represent the keypoint set
detected in the qth image of O, where pq

i is the i th keypoint
in Pq . Suppose that the two eye coordinates of the qth face
image in the set O are [e1x , e1y; e2x , e2y], and the two eye
coordinates in the corresponding well-aligned face image in
the set I are [a1x , a1y; a2x , a2y]. Based on these two pairs of
corresponding points, we can compute the similarity trans-
formation parameters [s, θ, tx , ty] between image sets O and
I as below:

⎡
⎢⎢⎣

s cos θ

s sin θ

tx
ty

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

e1x −e1y 1 0
e1y e1x 0 1
e2x −e2y 1 0
e2y e2x 0 1

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

a1x

a1y

a2x

a2y

⎤
⎥⎥⎦ (5)

Once we get the transformation parameters, we can project
the location of the keypoint pq

i , [x p, yp], to the correspond-
ing well-aligned coordinates [x ′

p, y′
p] by

Fig. 3 Mean face m with a SIFT keypoints; b symmetric keypoints K

[
x ′

p
y′

p

]
=

[
s cos θ −s sin θ

s sin θ s cos θ

] [
x p

yp

]
+

[
tx
ty

]
(6)

We perform this projection on the locations of each keypoint
in the set P . Thus the keypoint descriptors of P capture var-
ious pose information, and their locations are well-aligned.

Let K = {ki }, i = 1, . . . t , denote the anchor point set
in m, where t is the number of anchor points in the com-
mon face template. Image set O is the original images with
pose variations. The keypoint descriptors of P capture var-
ious pose information. To enhance the representative power
of the template image m, we embed the descriptors of P into
the anchor keypoint set K. In a region R around the location
of ki , we search its neighbors in {P1, . . . ,PQ}. R is set to 1/6
times the image size in the experiments. If there are multiple
keypoints in one face image falling into R, we select the one
which is nearest to the location of ki . In this way, around
each anchor point ki , we can find a series of keypoints Ni

from different face images. Comparing with the scheme of
one anchor point with one descriptor from one face image,
variance of keypoints coming from the same semantic region
of different faces enrich feature representation and are less
subject to pose variations. Note that we only use the location
information of anchor point ki to locate candidate keypoints
nearby in P . We do not use the location or the descriptor of
the anchor point ki during the alignment process.

Now around each anchor point ki , there is a series of key-
points Ni . To make the number of keypoints in Ni less depen-
dent to the number of images Q in the training database O,
we adopt hierarchical clustering [19] to group the descriptors
of each keypoint set Ni into h clusters. The cluster center ci

j ,
where j = 1, . . . , h, is selected as the descriptor who has the
largest accumulated cosine similarities among all the other
descriptors in the same cluster. If the number of keypoints
in Ni is smaller than h, we keep all the keypoints in Ni .
Hence, in the common face template m, the final number of
keypoints is smaller than or equal to t × h. And we denote
these keypoints in the template image m as final anchor point
set T .

4.2 Establish the feature correspondences

Now in the template image m, there are at most t × h anchor
points extracted from various face images. Suppose that
image I is the output of some face detector, which should be
aligned into the same canonical pose as the template image
m for the subsequent holistic recognition process. SIFT key-
point set B is extracted from the image I . The best candidate
match of a probe keypoint in B is found by identifying its
nearest neighbor in the anchor point set T . The nearest neigh-
bor is defined as the anchor point whose descriptor has the
maximum similarity to that of the probe keypoint.
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Fig. 4 Sample images a before alignment; b after alignment

The nearest-neighbor search can only establish putative
correspondences between keypoint sets B and T . To elimi-
nate spurious keypoint pairs, we further check their geomet-
ric consistencies. There are four parameters for each SIFT
keypoint: 2D location, scale and orientation. We use Hough
transform to cluster keypoint pairs with similar poses. The
orientation bin size used in the Hough transform is 30◦,
the scale bin size is 2, and the location bin size is 0.25 times
the image size. Each keypoint pair votes for the two closest
bins in each dimension. Each bin with at least three keypoints
is used to estimate the affine projection parameters that pro-
ject the keypoint set B from the probe image I to the anchor
point set T . An affine transformation correctly accounts for
3D rotation of a planar surface under orthographic projec-
tion, but the approximation can be poor for 3D rotation of
non-planar faces. A more general solution would be to solve
for the fundamental matrix. However, a fundamental matrix
solution requires at least seven keypoint pairs as compared
to only three for the affine solution and in practice requires
even more matches for good stability. Note that the affine
transformation here is used to select keypoint pairs which
are geometrically consistent. We can account for errors in
the affine approximation by allowing large residual errors.
When the number of keypoint pairs in the bin is larger than
3, least-squares solution is adopted to compute the affine
transformation parameters. After the geometric verification,
we can obtain keypoint pairs Bsub and Tsub, which are subsets
of B and T , respectively. Note that some putative keypoint
pairs are rejected by this process due to their geometric incon-
sistency. The anchor point set Tsub contains the final anchor
points for the keypoint set Bsub to align to.

4.3 Face alignment by similarity transformation

The purpose of our face alignment is to rotate, resize and crop
the output face images of face detectors automatically, which
transforms them into canonical pose for the subsequent holis-
tic recognition tasks. We do not want to change their struc-
tures. Hence, we adopt similarity transformation in the final
alignment step. The similarity transformation gives the map-
ping of a model point [x, y] to an image point [u, v] in terms

of an image scaling s, rotation θ , and translation [tx , ty]. We
project the location of a probe keypoint [x p, yp] in Bsub to
its corresponding anchor keypoint [x p

′, yp
′] in Tsub by the

similarity transforma as⎡
⎢⎢⎣

x p −yp 1 0
yp x p 0 1

· · ·
· · ·

⎤
⎥⎥⎦

⎡
⎢⎢⎣

s cos θ

s sin θ

tx
ty

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x p
′

yp
′

·
·

⎤
⎥⎥⎦ (7)

Each matched keypoint pair contributes two rows to the first
and last matrices in 7. At least two matches are needed to
provide a solution. We can write this linear system as

Ax = b (8)

The least-squares solution for the parameters x can be deter-
mined by solving the corresponding normal equations

x = [ATA]−1ATb, (9)

which minimizes the sum of the squares of the distances from
the projected model locations to the corresponding image
locations.

Once we obtain the transformation parameters [s, θ, tx ,
ty], we can transform the probe image I according to the
2-D spatial similarity transformation. Figure 4a shows some
sample images before alignment. Figure 4b shows the corre-
sponding images aligned by our approach.

5 FAFF based on local and global features

5.1 Eigenfeature regularization and extraction

Jiang [24] proposed a holistic approach named ERE, which
facilitates a discriminative and a stable low-dimensional
feature representation of the face image. Experiments com-
paring ERE with some other popular subspace methods on
various databases show that ERE consistently outperforms
others [8,24].

Given a set of properly normalized w-by-h face images,
we can form a training set of column image vectors Xi j ,
where Xi j ∈ R

n=wh . Let the training set contain p persons
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and qi sample images for person i . The number of total train-
ing sample is l = ∑p

i=1 qi . For face recognition, each person
is a class with prior probability of ci . The within-class scatter
matrix is defined by Sw = ∑p

i=1
ci
qi

∑qi
j=1(Xi j − X̄i )(Xi j −

X̄i )
T, where X̄i = 1

qi

∑qi
j=1 Xi j . By solving the eigenvalue

problem, we have

� = �wT Sw�w, (10)

where �w = [φw
1 , . . . , φw

n ] is the eigenvector matrix of Sw,
and �w is the diagonal matrix of eigenvalues λw

1 , . . . , λw
n

corresponding to the eigenvectors.
The eigenspace R

n spanned by eigenvectors {φw
k }n

k=1
is decomposed into three subspaces: a reliable face var-
iation dominating subspace (or simply face space) F =
{φw

k }m
k=1, an unstable noise variation dominating subspace

(or simply noise space) N = {φw
k }r

k=m+1 and a null
space ∅ = {φw

k }n
k=r+1, where r is the rank of Sw. To

determine the start point of the noise dominant region
m + 1, we first find the median of non-zero eigenvalues
λw

med = median{∀λw
k |k ≤ r}. The distance between λw

med and
the smallest non-zero eigenvalue is dm,r = λw

med − λw
r . The

start point of the noise region m + 1 is estimated by

λw
m+1 = max{∀λw

k |λw
k < (λw

med + μ(λw
med − λw

r ))}, (11)

where μ is a constant. The optimal value of μ may be slightly
larger or smaller than 1 for different applications.

The eigenspectrum is regularized by replacing the noise
dominating λw

k in N with a model α/(k + β) and replac-
ing the zero λw

k in the null space ∅ with the a constant. The
regularized eigenspectrum λ̃w

k is given by

λ̃w
k =

⎧⎪⎨
⎪⎩

λw
k , k < m;
α

k+β
, m ≤ k ≤ r ;

α
r+1+β

, r < k ≤ n,
(12)

where α = λw
1 λw

m (m−1)

λw
1 −λw

m
, and β = mλw

m−λw
1

λw
1 −λw

m
. The training data

are transformed to Ỹi j = �̃
wT
n Xi j , where

�̃
w

n =
[
φw

1 /

√
λ̃w

1 , . . . , φw
n /

√
λ̃w

n

]
. (13)

After the feature regularization, a new total scatter
matrix is formed by vectors Ỹi j of the training data as
S̃t = ∑p

i=1
ci
qi

∑qi
j=1(Ỹi j − Ȳ )(Ỹi j − Ȳ )T, where Ȳ =∑p

i=1
ci
qi

∑qi
j=1 Ỹi j .

The regularized features Ỹi j will be decorrelated for S̃t

by solving the eigenvalue problem similar to 10. The eigen-
vectors in the eigenvector matrix �̃

t
n = [φ̃t

1, . . . , φ̃
t
n] are

sorted in a descending order of the corresponding eigen-
values. The dimensionality reduction is performed by keep-
ing the eigenvectors with the d largest eigenvalues �̃

t
d =

[φ̃t
k]d

k=1 = [φ̃t
1, . . . , φ̃

t
d ], where d is the number of features

usually selected by a specific application. The feature regu-
larization and extraction matrix U is given by U = �̃

w

n �̃
t
d ,

which transforms a face image vector X, X ∈ R
n , into a

feature vector F, F ∈ R
d , by F = UT X .

5.2 FAFF based on both the local and global features

Some local feature-based approaches achieve better recog-
nition performance than holistic approaches [17], but their
computational burden is much heavier. To speed up the
local feature-based approach, we propose to use the holis-
tic approach as a filter to retrieve candidate images from the
whole gallery set. The retrieved images form a narrowed gal-
lery set, on which we perform the multi-scale local feature-
based approach for face recognition. The reduction in the size
of the gallery set will significantly relieve its computational
complexity.

Image I is the output of a face detector. Firstly, we align
image I by the approach proposed in Sect. 4. Then the aligned
image I ′ can be used as the input of the holistic approach ERE
[24]. To calculate the similarities between the probe image
I ′ and all the gallery images, each n-D face image vector is
transformed into d-D feature vector F using the feature reg-
ularization and extraction matrix U obtained in the training
stage. Then the cosine similarity measure between a probe
feature vector Fp and a gallery feature vector Fg is applied,

S(Fp, Fg) = FT
p Fg

‖Fp‖2‖Fg‖2
, (14)

where ‖ · ‖2 is the norm 2 operator.
There are m similarity scores S = {S1, S2, . . . , Sm}

between image I ′ and m gallery images. The scores Si , i =
1, . . . , m are ordered as

S(1) ≥ S(2) ≥ . . . ≥ S(m), (15)

and the gallery images with the top n highest similarity scores
are selected as the input of the following multi-scale LFEM.
The final image ID is the one with the highest similarity score
of the n candidate gallery images computed by the LFEM
approach. The rationale behind this cascaded process is as
follows:

1. ERE is one of the best performed holistic approaches.
2. The probability that the true image ID is included in the

top n gallery images is high.
3. The computational complexity of the ERE approach

at the recognition stage is significantly lower than the
LFEM approach.

4. The recognition performance of LFEM is better than the
ERE approach.
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5. For the LFEM approach, comparing image I ′ with n gal-
lery images is much faster than comparing it with all the
m gallery images (n < m).

6 Experimental results

In this section, we will test our proposed approaches on AR
[37], GT [38] and ORL [46] databases. Firstly, we will val-
idate our face alignment strategy through LBP [1] and three
holistic face recognition approaches: LDA [2], UFS [47] and
ERE [24]. Secondly, we will report the results of our fully
automatic face recognition framework based on both the local
and global features (FAFF).

6.1 Validation of our face alignment strategy

Eight face alignment approaches are compared: adaboost eye
detector [18,25], eye localization by pixel differences (PD)
[41], eye localization by rank order filter (ROF) [40], eye
localization by cascaded asymmetric principal and discrimi-
native analysis (C-APCDA) [22,42], localization of semantic
facial features [12], congealing [21], our proposed approach
(Prop.) and manual alignment (MA).

6.1.1 Results on AR database

The color images in AR database are converted to gray-scale
and cropped into the size of 60 × 85 pixels. We conduct two
sets of experiments on this database.

In the first set, 75 persons with 14 non-occluded images
per person are selected, which makes the database containing
1,050 images. At the alignment stage, for the C-APCDA eye
detector [42], the first seven images per subject serve as train-
ing images and are aligned manually by two eye coordinates.
The remaining seven images per subject serve as the output of
the face detector, which should be aligned. For our proposed
alignment approach, the first seven images per subject are
aligned manually to generate the face template. At the rec-
ognition stage, images are divided into 5×5 windows for the
LBP [1] approach. For the three holistic approaches LDA [2],
UFS [47] and ERE [24], the first 7 images of all subjects are
used in the training and gallery sets, which are normalized
manually. The remaining seven images of all subjects serve as
probe, which are aligned by different approaches. The best
recognition performances of the holistic approaches LDA
[2], UFS [47] and ERE [24] over all possible numbers of
features are recorded.

To verify the performance of our alignment approach on
occluded face images, in the second set of experiments, we
select 55 persons with 12 occluded images per person (some
sample images are shown in Fig. 5). The first 6 images of all
55 subjects are used in the training and gallery sets and the

Fig. 5 Sample images of occluded face

Table 1 Recognition rate on AR database

LBP (%) LDA (%) UFS (%) ERE (%)

SET 1

MA 98.10 93.90 95.05 95.05

Adaboost [18,25] 95.81 89.71 91.05 90.67

PD [41] 87.24 80.38 82.86 82.29

ROF [40] 73.52 69.71 70.48 71.24

C-APCDA [42] 94.67 89.52 90.10 89.14

SF [12] 91.05 84.76 87.05 86.48

Prop. 95.43 92.95 92.95 94.10

SET 2

MA 86.67 72.12 72.12 80.30

SF [12] 50.91 23.64 27.58 32.12

Prop. 76.06 58.79 60.00 62.73

remaining 6 images of all subjects serve as probe. Obviously,
alignment approaches that are only based on eye localiza-
tions fail in this case because of the occlusion. Therefore, we
compare the performances of three alignment approaches:
localization of semantic facial features [12], our proposed
approach and the manual alignment.

Table 1 shows the rank one recognition rates on AR data-
base of four recognition algorithms based on seven differ-
ent alignment approaches. From this table, we can see that
in the first set of experiments, the recognition performance
achieved by our alignment approach, though slightly worse
than manual alignment, outperforms all other automatic
alignment approaches. Because in our alignment approach
we do not just depend on the positions of semantic facial
parts, our approach can get more reliable alignment results.
Figure 6a gives the cumulative matching curves obtained
from seven different alignment approaches based on the ERE
approach. The cumulative recognition performance obtained
by our alignment approach is significantly better than other
automatic alignment approaches. The second set of experi-
ments is conducted on the occluded face images. The results
in Table 1 show that our proposed alignment approach signif-
icantly outperforms the alignment approach based on local-
izations of semantic facial features [12]. The recognition
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Fig. 6 Cumulative matching curves of different alignment approaches obtained by ERE on a AR database; b GT database; c ORL database

rates are quite low because all face images in the training/gal-
lery and probe sets are occluded.

6.1.2 Results on GT database

The GT database consists 750 color images of 50 subjects (15
images per subject). These images have large variations in
both pose and expression and some illumination changes.
Images are converted to gray scale and cropped into the
size of 60 × 80. At the alignment stage, for the C-APCDA
approach [42], the first eight images per subject serve as train-
ing images and are aligned manually based on the two eye
positions. The remaining seven images per subject serve as
the output of the face detector, which should be aligned. For
our proposed approach, the first eight images per subject are
aligned manually to generate the template. At the recognition
stage, images are divided into 5 × 5 windows for the LBP
approach [1]. For the three holistic approaches LDA [2], UFS
[47] and ERE [24], the first eight images of all subjects are
used in the training and gallery sets, which are normalized
manually. The remaining seven images of all subjects serve
as probe images, which are aligned by different approaches.
The best recognition performances of the holistic approaches
LDA [2], UFS [47] and ERE [24] over all possible numbers
of features are recorded.

Table 2 shows the rank one recognition rates on GT
database of four recognition algorithms based on eight
different alignment approaches. Comparing different auto-
matic face alignment approaches, the performance of our
face alignment approach is significantly better than eye-
based approaches: Adaboost [18,25], PD [41], ROF[40] and
C-APCDA [42], semantic feature-based approach [12] and
the unsupervised approach: Congealing [21]. Figure 6b gives
the cumulative matching curves obtained from eight differ-
ent alignment approaches based on the ERE approach. The
cumulative recognition performance obtained by our align-
ment approach is significantly better than other automatic
alignment approaches.

Table 2 Recognition rate on GT database

LBP (%) LDA (%) UFS (%) ERE (%)

MA 90.29 92.00 91.43 92.86

Adaboost [18,25] 85.43 82.29 81.71 83.71

PD [41] 72.00 64.29 69.14 71.43

ROF [40] 84.29 60.29 64.00 67.43

C-APCDA [42] 85.43 83.43 83.71 86.29

Congealing [21] 83.43 84.29 82.29 85.71

SF [12] 85.43 83.43 84.57 86.00

Prop. 84.29 92.57 90.57 92.00

6.1.3 Results on ORL database

Images of ORL database are cropped into the size of 50×57.
The ORL database contains 400 images of 40 people (10
images per person). At the alignment stage, for the learning-
based approach [42], the first five images per subject serve
as training images and are aligned manually by the two eye
coordinates. The remaining five images per subject serve as
the output of the face detector, which should be aligned. For
our proposed alignment approach, the first five images per
subject are aligned manually to generate the template. At
the recognition stage, for the LBP approach [1], images are
divided into 3×3 windows. For the three holistic approaches
LDA [2], UFS [47] and ERE [24], the first five images of all
subjects are used in the training and gallery sets, which are
normalized manually. The remaining five images of all sub-
jects serve as probe images, which are aligned by different
approaches. The best recognition performances of the holis-
tic approaches LDA [2], UFS [47] and ERE [24] over all
possible numbers of features are recorded.

Table 3 shows the rank one recognition rates on ORL
database of four recognition algorithms based on seven
different alignment approaches. Comparing different auto-
matic alignment approaches, our proposed approach achieves
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Table 3 Recognition rate on ORL database

LBP (%) LDA (%) UFS (%) ERE (%)

MA 95.0 92.5 83.5 97.0

Adaboost [18,25] 87.5 88.5 77.0 91.0

PD [41] 85.5 80.5 69.5 84.5

ROF [40] 86.5 74.5 65.5 80.0

C-APCDA [42] 85.5 83.0 62.5 88.0

SF [12] 93.5 93.0 81.5 96.5

Prop. 94.0 93.0 83.0 95.5

comparable performance as the semantic feature-based
approach SF [12], but consistently significantly outperforms
others over different face recognition algorithms. Figure 6c
gives the cumulative matching curves obtained from seven
different alignment approaches based on the ERE approach.
The cumulative recognition performance obtained by our
alignment approach is ,though slightly worse than the SF [12]
approach, significantly better than other automatic alignment
approaches.

6.2 Validation of our FAFF

In this section, we will validate our FAFF based on the holistic
approach ERE [24] and the multi-scale LFEM [17], on three
databases AR, GT and ORL. Our FAFF utilizes the classi-
fication results of both the ERE and the LFEM approaches.
From some points of view, it is a kind of score fusion [45] for
multiple algorithms. To validate the efficacy of our proposed
framework, we compare it with ERE, LFEM and two score
fusion approaches: sum rule with equal weights (SRew) [45]
and sum rule with weights learned by LIBLINEAR (SRlw)
[13]. The experimental settings in this section are similar to
those in Sect. 6.1. The only difference is that in this section,
the images used in the holistic approaches are aligned auto-
matically by our proposed face alignment strategy. Table 4
gives the percentage of the gallery images retrieved by the
holistic approach ERE at two different levels r1 and r2. Our
FAFF approach achieves the same recognition performance
as LFEM by comparing one probe with r1 images in the
gallery. And by comparing with r2 images, the recognition
performance of our framework reaches the best. Table 5 gives

Table 4 Percentage of the gallery images selected by ERE where FAFF
achieves the same recognition performance as LFEM on the original
database at r1 and the best performance at r2

AR database GT database ORL database

r1 r2 r1 r2 r1 r2

40 % 40 % 15 % 80 % 20 % 40 %

Table 5 Recognition rate on AR, GT and ORL databases

AR (%) GT (%) ORL (%)

ERE 94.10 92.00 95.5

LFEM 99.05 95.43 98.0

SRew 98.48 96.86 98.5

SRlw 99.05 96.29 98.0

FAFF 99.05 97.43 99.0

LBP 95.43 84.29 94.0

LDA 92.57 92.57 93.0

UFS 92.95 90.57 83.0

AFS 97.14 94.00 −

the rank one recognition rate of the holistic approach ERE
[24], local feature based approach LFEM, score fusion of
ERE and LFEM by sum rule with equal weights (SRew) [45]
and learned weights (SRlw) [13], and the best recognition
performance of FAFF by selecting r2 images of all the gal-
lery. To compare the performances of FAFF and other face
recognition algorithms, we also report the recognition accu-
racies of LBP, LDA, UFS and the attribute face service (AFS)
[28,29]. Because currently the AFS cannot handle grayscale
images, we only give its performance on the AR and GT
databases.

From Table 5, we see that on AR database, the best recog-
nition rate is achieved by LFEM, SRlw and FAFF. However,
the proposed FAFF is about twice as faster as LFEM and SRlw

because the number of gallery images is reduced to 40% by
ERE (from Table 4) and the time consumption of ERE is
negligible comparing to LFEM. On GT database, the FAFF
approach outperforms all other approaches in Table 5 and is
yet less time consuming than LFEM, SRew and SRlw because
the number of gallery images is reduced to 80% by ERE.
SRew and SRlw outperform LFEM at a price of greater com-
putational complexity as they parallel combine LFEM with
ERE. In contrast, the proposed FAFF not only speeds up the
LFEM, but also enhances its accuracy more than the two par-
allel combination approaches SRew and SRlw. According to
Table 4, the proposed FAFF can achieve the same recognition
rate as LFEM by comparing the probe with only 15% gal-
lery images. Similarly, on ORL database, by comparing the
probe with 20% gallery images, the proposed FAFF reaches
the same performance as LFEM. Increasing the number of
images to 40% of the whole gallery set, the recognition rate
of the proposed FAFF is the highest among all approaches in
Table 5.

7 Conclusion

Face recognition algorithms can be divided into two cat-
egories based on the types of features: holistic and local
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feature-based approaches. Holistic approaches become pop-
ular due to their efficacy and efficiency. However, they
depend on careful positioning of the face images into the
same canonical pose. This is not an easy task because it
depends on the accurate detection of at least two land-
marks from the face image. Besides eye detection, some
face alignment algorithms rely on other semantic facial
parts. However, in real applications the appearances of these
semantic features may not be distinct or missing due to
expressions, occlusions, illuminations or noise. Local fea-
ture-based approaches to face recognition [17,34,35] are
more robust to image variations in pose and scale than holistic
ones. The multi-scale LFEM proposed in [17] even achieves
better recognition accuracy than many popular holistic meth-
ods. However, its computational burden is much heavier.

In this paper, we propose a FAFF based on both the
local and global features. To relieve the computational bur-
den of local feature-based approaches, we firstly apply the
holistic method to retrieve candidate images from the whole
gallery set. The selected gallery images have higher prob-
abilities matching to the probe than the remains, which
form a new gallery set with reduced size. Then the local
feature-based approach is performed on the narrowed gal-
lery set. The reduction in the size of the gallery set
relieves the computational burden of local feature-based
approaches. Furthermore, the recognition accuracy is bet-
ter than the holistic approach, local feature-based approach
and their parallel combination. As the local features can be
used to align images automatically, we propose an align-
ment strategy based on non-semantic multi-scale local fea-
tures. Given a set of aligned images in the training data
set, a common face template with common keypoints is
trained. Putative correspondences are established between
the keypoint sets from the unaligned probe face image
and the learnt face template. Geometric verifications are
performed to eliminate spurious matches with inconsistent
poses.

Experimental results demonstrate that the proposed FAFF
not only speeds up the local feature-based approach for face
recognition, but also improves the recognition accuracy over
the holistic approach, local feature-based approach and their
parallel combination.
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