
Machine Vision and Applications (2012) 23:479–490
DOI 10.1007/s00138-012-0410-z

ORIGINAL PAPER

Multi-camera head pose estimation

Rafael Muñoz-Salinas · E. Yeguas-Bolivar ·
A. Saffiotti · R. Medina-Carnicer

Received: 24 March 2010 / Revised: 26 April 2011 / Accepted: 19 January 2012 / Published online: 21 February 2012
© Springer-Verlag 2012

Abstract Estimating people’s head pose is an important
problem, for which many solutions have been proposed. Most
existing solutions are based on the use of a single camera and
assume that the head is confined in a relatively small region
of space. If we need to estimate unintrusively the head pose
of persons in a large environment, however, we need to use
several cameras to cover the monitored area. In this work,
we propose a novel solution to the multi-camera head pose
estimation problem that exploits the additional amount of
information that provides multi-camera configurations. Our
approach uses the probability estimates produced by multi-
class support vector machines to calculate the probability
distribution of the head pose. The distributions produced by
the cameras are fused, resulting in a more precise estimate
than the one provided individually. We report experimental
results that confirm that the fused distribution provides higher
accuracy than the individual classifiers and a high robustness
against errors.
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1 Introduction

Head pose estimation is an important problem with appli-
cations in several fields, such as ambient intelligence and
human–computer interaction. It has been an active topic of
research in the last decade or so, which has led to the devel-
opment of a large number of solutions. These can be roughly
divided into two categories: 2D view-based and 3D model-
based approaches. Examples of the former include the use of
support vector machines (SVM) [16,22], PCA [32], Kernel
PCA (KPCA) [8], independent subspace analysis [33], Gabor
filters [41,42] and networks [19], active appearance models
(AAM) [11], shape-from-shading [9] and 2D geometric heu-
ristics [23], amongst others. Model-based approaches can be
tackled from a concise mathematical formulation [15], or if
real-time analysis is required, by simplifying the problem
using affine transformations [13]. Examples of this class of
approaches include the use of vanishing points [39,40], dif-
ferent shape models such as planar [4], cylindrical [7], ellip-
soidal [2,10] and deformable ones [21]. In some cases, the
problem is tackled from a tracking point of view that can be
solved by fusing multiple cues [31] or using infrared light to
detect the pupils [17]. In others, range information is used to
improve the results [24,29].

Despite the impressive advances in this field, most of the
existing works employ a single camera for estimating the
head pose. A single camera configuration, however, is not
a feasible solution if we need to observe people’s behav-
iour in large environments [25,27,28]. In these applications,
multiple cameras are needed to cover the monitored area, and
techniques able to exploit the additional amount of infor-
mation are therefore preferable. The presence of multiple
cameras can also be exploited to provide a greater degree of
robustness, since failure of one camera can in principle be
compensated using the others.
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Few solutions for head pose estimation using multiple
cameras have been reported in the literature. One of them is
proposed by Zhang et al. [43]. The authors employ a Float-
Boost detector to classify head poses into only five categories
and fuse the classifications from each camera using a naive
Bayesian network. This approach has a main limitation in the
limited range of head poses covered.

Canton-Ferer et al. [6] propose a model-based approach.
They apply a skin colour filter to all images, and then fit a
ellipsoid to the skin colour patches found. The face region
is then located by finding the 3D centroid of the skin colour
patches. A problem with this approach is the strong reliance
on the skin colour filter. If this filter fails in one of the cam-
eras, producing either an over- or an undersegmentation, the
centroid calculation is heavily affected. Another problem is
that all views are required to calculate the head pose, so the
method is very sensitive to occlusion. We claim that it would
be preferable to produce a hypothesis from each camera that
has the head in view, and then fuse the available hypotheses.
In this way, the failure of one camera would not strongly
affect the final performance. The approach that we present
in this paper follows this road.

Brunelli and Lanz [20] tackle the problem using a Monte
Carlo filter that examines colour and gradient information.
Instead of using a classifier, a colour model of the body and
head is created from which head pose is estimated via inter-
polation. The multi-view problem is then gracefully tackled
in the Bayesian context by jointly considering evidences of
the multiple cameras. Although the reported accuracy is low,
compared to other approaches on the same data set, the main
advantage of their method is the lack of training. Similarly,
the work of Ba and Odobez [1] presents a head pose esti-
mator based on a particle filter. The main weakness of their
approach is that the head estimation is strongly based on
the skin detection, which might run the risk of making the
method environment dependent.

Probably, the most sophisticated approach is the one pre-
sented by Voit and colleagues [36–38]. In their last works,
they propose a model that combines view-based approaches,
tracking and a method to determine the camera reliability.
Aiming at determining the head pose in a video sequence,
they employ a particle filter that tracks the head. At each pos-
sible location, two neural networks (NN) (one for pan and
another one for tilt) are employed to estimate the head pose.
The networks are trained to output a probability distribution
of the estimated angle that can be merged with the estimates
of other cameras. Additionally, since the image patches might
not be properly centred at the head location, an external anal-
ysis using histograms of gradient (HOG) is applied. The HOG
provides a confidence value indicating whether the head is in
the center of the image path. The value is employed as a con-
fidence factor when fusing multiple views by assigning less
relevance to unaligned views. Nevertheless, the work has two

main limitations. First, it uses a very large input feature vec-
tor (2,048 inputs), which might easily result in over-fitting.
Second, there are some known limitations in the use of neural
networks, like the need to choose an appropriate topology and
the use of a training method that might fall into local minima.

In this paper, we propose a new approach to the multi-view
head pose estimation problem which is based on multi-class
support vector machines (MSVM). The head images are pre-
processed using PCA, and an MSVM classifier is trained on
a discretisation of the angular space. Our contribution is two-
fold. First, we propose a head pose estimator that uses the
probability estimates produced by an MSVM. In particular,
we show how we can use the voting probability distribution
(vpd) to improve the head pose estimate, rather than simply
picking the most voted class. Second, we show how the above
head pose estimator can be extended to deal with the multiple-
camera case, by fusing information from multiple cameras to
create a consensus estimate. As we show in the experiments,
the fused distribution provides higher accuracy than the indi-
vidual classifiers, as well as high robustness against errors.

The rest of this paper is organised as follows. Section 2
introduces the principles of SVM. Section 3 formulates the
problem and Sect. 4 explains the proposed solution. Sec-
tion 5 presents the experiments and the results. The data set
employed for this work is publicly available for evaluation.
Finally, Sect. 6 draws some conclusions.

2 Support vector machines

Support vector machines are maximum margin classifiers
that appear as a consequence of the research on structural
risk minimisation [35]. They map input vectors to a higher
dimensional space where a maximal separating hyperplane is
constructed. Suppose that we are given with the training data

(x1, y1), . . . , (xm, ym) ∈ X × {±1},

where xi ∈ Rd represent the patterns and yi the labels.
Let us define a kernel function k : X × X → R that

measures the similarity of two patterns and a mapping func-
tion � : X → H that translates the patterns to a higher
dimensional feature space. Then, the kernel is defined as
k(xi , x j ) = 〈�(xi ),�(x j )〉. The problem of finding the opti-
mal hyperplane w that separates the classes is solved by the
following minimisation problem:

min
1

2
||w||2

subject to

yi (〈w,�(xi )〉 + b) ≥ 1, i = 1, . . . , m.
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Making use of the Lagrangian dual, the optimisation prob-
lem can be transformed into:

L(α) =
m∑

i=1

αi − 1

2

m∑

j=1

αiα j yi y j k(xi , x j ),

subject to

0 ≤ αi ≤ C, i = 1, . . . , m,
m∑

i=1

αi yi = 0,

where αi are the Lagrangian multipliers and C is its upper
bound. The optimal decision function is then expressed as:

f (x) = sgn

(
m∑

i=1

yiαi k(x, xi ) + b

)
.

2.1 Regression vector machines

SVMs can also be applied for regression problems, thus lead-
ing to the regression vector machines (RVM). Let us consider
a set of data points {(x1, z1), . . . , (xm, zm)} such that z ∈ R1

is the desired output. Then, the support vector regression can
be solved by maximising

− 1

2

l∑

i=1

(α∗
i − αi )(α

∗
j − α j )k(xi , x j )

− ε

l∑

i=1

(α∗
i + αi ) +

l∑

i=1

zi (α
∗
i − αi )

(1)

subject to

l∑

i=1

(α∗
i − αi ) = 0,

0 ≤ α∗
i , αi ≤ C,

providing the solution:

f (x) =
l∑

i=1

(α∗
i − αi )k(x, xi ) + b (2)

From the point of view of the problem addressed in this
work, to estimate people’s head pose from camera data, RVM
seems to provide a very interesting solution. However, we
would also like to fuse the information coming from the dif-
ferent cameras to improve the robustness of the classifier. In
that sense, the RVM formulation has a serious limitation in
that it can only deal with one input. Thus, we explore a novel
solution based on the use of MSVM, and of the probability
estimates that they provide.

2.2 MSVM with probability estimates

The SVM is a two-class classifier, but many problems involve
k classes. The multi-class problem can be tackled by a com-
bination of multiple binary classifiers to create a multi-class
support vector machine classifier (MSVM). A popular
approach to do this is the “one-against-one” method [18] that
employs k(k − 1)/2 pairwise classifiers, each of which has
training data from two different classes. When classifying,
all the binary classifiers are evaluated and a voting scheme
employed, i.e. the class receiving the maximum number of
votes is assumed to be the correct one.

Selecting the most voted class as the correct one might
exclude relevant information about the nature of the patterns
to be classified. Instead, information about the vpd can be
effectively employed to improve the results in certain prob-
lems. A very convenient approach for obtaining the vpd has
been proposed by Wu and Trivedia [34], and it can be sum-
marised as follows.

Given k classes, the goal is to estimate the probability of
pattern x belonging to each class c:

pc = p(y = c | x), c = 1, . . . , k.

For that purpose, it is necessary to estimate first the pairwise
class probabilities

rab ≈ p(y = c |x, y = a or y = b),

such that rab + rba = 1. This can be done as proposed by
Lin et al. [14]:

rab ≈ 1

1 + eA f̂ +B
,

where A and B are estimated by minimising the negative log-
likelihood function from training data and their correspond-
ing decision values f̂ . For further information, the reader is
referred to the above paper [14].

Given the pairwise class probabilities, the problem of esti-
mating the probability distribution

p = {pc} ∀c,

turn into the following minimisation problem:

argmax
p

= 1

2

k∑

a=1

∑

b:b �=a

(rab pa − rba pb)
2

subject to

k∑

a=1

pa = 1, pi ≥ 0,∀a.

After operating on this equation, the problem is reformulated
as

argmin
p

= 1

2
pT Qp,
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where

Qab =
{∑

s:s �=a r2
sa if a = b

−rbarab i f a �= b

This is a linear-equality-constrained convex quadratic pro-
gramming problem that can be solved by finding the scalar
b such that:
[

Q i
iT 0

] [
p
0

]
=

[
0
1

]
,

where b is the Lagrangian multiplier of the equality con-
straint

∑k
a=1 pa = 1, i is the vector of dimension k × 1 of

all ones, and 0 a vector of the same dimension but with all
zeros. In that way, we can obtain the probability of each class
based on the votes received. This information is employed
in our method to achieve a higher accuracy when recovering
the head pose as explained below.

3 Problem formulation

Our goal is to estimate the pan (horizontal) and tilt (verti-
cal) angles of the head pose from a set of cameras. We make
two assumptions in this work: first, the pan and tilt angles
are independent, therefore we apply our estimation technique
separately for each angle; second, all the cameras are equally
reliable. The latter assumption can easily be relaxed.

We consider a set V of cameras such that all of them
share the same global coordinate system, established by cal-
ibration, and all cameras see the person’s head. We assume
that the 3D location of each camera is known, and that the
3D location of the person’s head is also known. The former
can be obtained by camera calibration, while the latter can
be computed from the projection of the head in the cameras.

More precisely, let us denote by

x = {xv | v = 1, . . . , V } (3)

the set of patterns (images of the head) extracted by the cam-
eras, and by

θ(x) = {θ(xv) ∈ [ll , lu] | v = 1, . . . , V } (4)

their corresponding angles relative to the cameras. The
parameters ll and lu represent the upper and lower limit of
the angular space, respectively. Two things are worth noting
here. First, all the patterns in x correspond to the same head
seen from different points of view in the same time instant.
Second, θ(xv) is the angle relative to the v-th camera. What
this means in practice is that one unique classifier can be
trained with the patterns of all cameras, and that this classi-
fier is not camera specific.

Finally, let us denote by

θ g ∈ [ll , lu] (5)

the true head pose of the person in the global coordinate
system.

The angles θ(xv) and θ g represent continuous values. To
use MSVMs that rely on discrete labels, we must then dis-
cretise the angular space into k equally distributed intervals.
We shall represent by

C = {c j | j = 1, . . . , k}, (6)

the centres of these intervals, which are calculated by:

c j = ll + (lu − ll)

2k
+ (lu − ll)( j − 1)

k

= ll + (lu − ll)(2 j − 1)

2k
. (7)

The interval centres in C define the set of classes of our prob-
lem. Then, patterns are assigned to the nearest class c j defin-
ing the labels

y = {yv ∈ C | v = 1, . . . , V }, (8)

where

yv = argmin
j

d(c j , θ(xv)), (9)

represents the element of C minimising the angular distance
d to the angle of the pattern θ(xv). Intuitively, what we have
done is to turn a regression problem into a classification prob-
lem by discretisation of the target angle. Our final aim, how-
ever, is to estimate the continuous value of a global angle
θ g . In the next section, we shall show how we can achieve
this by fusing, in an adequate way, the classification results
obtained from each camera.

4 Proposed solution

Our approach to estimate θ g is based on a two-step process.
In the first step, the individual classification result of each
camera is transformed into a probability distribution over
angles, with reference to the global coordinate system. In
the second step, the results from all individual cameras are
fused into a combined probability distribution. The angle
with maximum combined probability is then delivered as the
final estimate generated by this process.

The first step consists in providing an angle estimate for
each individual camera. Instead of using the most voted class
as the best angle estimate, we propose deriving a finer esti-
mation by employing the vpd of the classes (obtained as
explained in Sect. 2.2). For that purpose, let us denote by

pv = {pv(ci ) | i = 1, . . . , k}, (10)

the probability distribution of the pattern xv over the clas-
ses in C. The probability distribution in Eq. 10 is given with
reference to the camera coordinate system. In order to fuse
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Fig. 1 Example of probability distributions of the angles (right graphs of the boxes) obtained from voting probability estimates (left graphs)

information from different cameras, it is preferable to trans-
late the angles to the global coordinate system. Let us denote
by

θ g(ci , v), (11)

the angle, in the global coordinate system, corresponding to
the class ci when observed by camera v. Please note that ci

refers to different global angles depending on cameras (since
cameras are placed at different locations), i.e.

θ g(ci , v1) �= θ g(ci , v2) ∀v1 �= v2.

Let us define a finer discretisation of the angular space:

θ ′ =
{
θ ′

i = ll + (lu − ll)(2 j − 1)

2k′ | i = 1, . . . , k′
}

, (12)

such that k′ 
 k. Our approach consists in mapping the
probability distribution of Eq. 10 onto this new distribution
by interpolation using Gaussian functions as:

pv(θ ′) = 1

k

∑

k

e−d(θg(ci ,v),θ ′)2/2σ 2
pv(ci ). (13)

The function d represents angular distance, and the param-
eter σ is the variance of the Gaussian function. The basic idea
of Eq. 13 is that angles near class c j are considered to have a
probability proportional to pv(ci ). Finally, the most probable
angle pv(θ ′) is obtained by:

θ̂ v = argmax
θ

pv(θ ′). (14)

A clearer idea of this first step can be obtained from Fig. 1.
The figure shows the results of Eq. 13 (right graphs of the
boxes) for four different vpd (left graphs). A blue line indi-
cates the best estimate θ̂ v . The proposed method can be
employed to obtain a finer estimation of the angle by consid-
ering the vpd, as long as this is a faithful representation of
the real probability.

Note that one could use a simpler approach to estimate the
angle, by calculating the mean of the θ g(ci , v) weighted by

their respective probabilities. This would implicitly assume
that the underlying probability distribution is Gaussian,
which may not be true. Equation 13 allows us to have arbitrary
distributions, including multi-modal ones, which is espe-
cially interesting in the next step when the information from
multiple cameras are fused.

The resulting angle θ̂ v provides the best estimate of the
angle for a single camera. Our next step, then, is to fuse the
information obtained from all the available cameras to obtain
a more robust and precise angle estimation. To do so, we fuse
the cameras vpds so as to create a new one:

pg(θ ′) = 1

V

∑

v

pv(θ ′). (15)

The new distribution pg(θ ′) fuses the information from all
cameras considering all of them equally reliable. Finally, we
determine

θ̂ g = argmax
θ

p(θ ′)g. (16)

as the angle that best explains the observations from all the
cameras.

The assumption of equal reliability can be relaxed by actu-
ating on the σ parameter of Eq. 13. For cameras with low
confidence, the σ value can be increased so as to smooth the
output function, thus reducing the final contribution of the
camera to the estimated fused distribution.

Figure 2 summarises the whole pose estimation process.
The three-dimensional head location must be first
determined. While this problem is out of the scope of this
paper, state of the art tracking approaches exist to solve it:
in our experiments, we used the approach proposed Muñoz
et al. [26,27] for head localisation. Knowing the head loca-
tion, a three-dimensional cylinder of dimensions 0.5×0.5 m
is placed around the head, and it is projected on the cam-
era images. The cylinder projects in rectangular regions that
might be of different sizes in each camera. This is due to
the different distances of the cameras to the person, or to the
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Fig. 2 General scheme of the proposed solution. Head images are extracted and then preprocessed. The n first principal components are the input
for an SVM classifier. A probability distribution of the head angles is obtained for each camera and then fused to obtain the best estimation

different optical properties of the cameras employed. Hence,
we resize the image head patches to be all of the same size
(40 × 40 pix in our work). Next, the images are grey-scaled
and de-noised using a Gaussian kernel. Afterwards, the his-
tograms of the images are equalised so as to compensate for
irregular lightning.

As usual in view-based approaches, it is preferable to
employ gradient information than grey-scale information.
Therefore, we compute the gradient magnitude using the
Sobel operator, and we then submit the resulting image to a
PCA [12] reduction. The input vectors xv to the classifier are
obtained by selecting the n first principal components and the
output used in Eq. 13 to obtain the corresponding pose proba-
bility distributions. Finally, these distributions are fused into
a single one from which the best estimate is obtained.

5 Experimental results

We now explain the experiments carried out to test and vali-
date the proposed approach. To perform validation, we have
created a data set of head images in different poses using six
cameras simultaneously. This data set has been obtained in
the PEIS-Home [30], a testbed apartment used for research
in robotic technology for elderly care.

The apartment has been equipped with six usb cameras
placed approximately at 1.4 m height surrounding the sub-
ject being recorded. Cameras are configured to record at a
frame rate of 6 Hz at 640 × 480 pix. We employed such a
low frame rate because of bandwidth limitations of the usb
port. The working space was reduced (16 m2), but, on aver-
age, the distance from the cameras to the person was 2 m.
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Fig. 3 Patterns from the data set recoded by six cameras simultaneously. The images show the range of angles covered by the subjects

While for the farthest cameras, the image resolution of the
head is 60×60 pix, for the nearer cameras it is 120×120 pix.
In any case, all images are resized to 40 × 40 pix.

The top row of Fig. 2 shows images captured by the cam-
eras while creating the data set for one of the subjects. Cal-
ibration was performed using the OpenCv library [5], and
using a Pholemus tracker sensor mounted on the subject’s
heads to obtain the ground truth.

A total of ten different persons participated in the exper-
iments. They were instructed to stand and rotate in place so
as to cover 360◦ in pan in intervals of 30◦. For covering the
tilt angles, the persons were instructed to look up and down
covering 90◦.

The data set consists of a training and a test set of 9,442
and 4,604 patterns, respectively. Each set contains approx-
imately the same number of patterns for each person. The
patterns for each person in the sets are equally distributed
among the covered angles: [−180◦, 180◦] for the pan angle,
and [−45◦, 45◦] for tilt. Figure 3 shows images for one of
the subjects in the data set. Each box contains the images
captured by the six cameras simultaneously.

For evaluating purposes, the data set is publicly available
at http://www.uco.es/grupos/ava/node/25.

The report of the experiments is organised as follows.
First, Sect. 5.1 presents an analysis of the problem in terms of
regression so as to be able to compare it with our approach.
Second, Sect. 5.2 analyses the results of the MSVM with-
out considering probability distributions. Third, Sect. 5.3
shows the results of our head pose estimator using proba-
bility distributions at camera level, i.e. without considering
fusing the results. Fourth, Sect. 5.4 shows the results obtained
when information from multiple cameras are fused. Finally,

Sect. 5.5 compares our approach with the neural network
approach presented in [38].

5.1 Results with RVM

To compare our approach with the regression one, we trained
a pair of RVMs: one for each angle. Training was performed
using five-cross validation to estimate the best parameters for
the classifiers. In this work, we have employed a radial basis
function as kernel [3]. It is defined as

k(xi , x j ) = exp(−γ ||xi − x j ||2),
where γ > 0 is the kernel parameter.

The best results were obtained for a total for n = 100 prin-
cipal components, C = 64 and γ = 0.25. We set the param-
eter ε = 1◦ in all the experiments. The root mean-squared
error (RMSE) obtained for pan is 57, 40◦ and 10, 08◦ for tilt.

While the error obtained for tilt could be considered appro-
priate for certain applications, the error in the estimation of
pan is very high. Below, the results with our method are pre-
sented.

5.2 Results of the MSVM training

For the MSVM classifiers, training was also performed using
five-cross validation and using radial basis functions. The
best results were obtained for a total for n = 100 principal
components with the parameters C = 32 and γ = 0.03125.

With these parameters, we trained several classifiers for
different angular resolutions. For the pan angle, we tested
three possible angle discretisations, namely k = {8, 16, 32},
thus obtaining resolutions of 45◦, 22.5◦ and 11.25◦,
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Table 1 Classification results of the different classifiers trained

Pan Pan Pan Tilt Tilt
k = 8 k = 16 k = 32 k = 5 k = 9

Success (%) 90.11 85.05 73.04 77.86 57.6

respectively. For tilt, we tested k = {5, 9} that provide reso-
lutions of 18◦ and 10◦. In each case, the classifier was trained
using the images from all the cameras so that the resulting
classifiers are not camera specific. The results of the classi-
fiers on the test set are summarised in Table 1.

As it can be seen, the success decreases as the resolution
increases. However, the analysis of the confusion matrices
(see Fig. 4) reveals that, in most of the cases, errors occur
in the neighbour classes. This means that as the resolution
increases, there is a larger number of patterns that lay in the
margins of the classifiers, thus increasing the likelihood of
misclassification in the neighbour classes.

The results of Table 1 show the success in terms of classi-
fication rate. However, our goal is to recover the real valued
angle. For that purpose, we calculate the error between the
ground truth angle (provided by the Pholemus tracker) and
the angle of the class given by the classifier. The RMSE
are shown in Table 2 along with 95% confidence intervals.
The first row shows the RMSE (expressed in degrees) of
all the patterns of the training set. The second row represents
the RMSE only for these patterns that resulted in a

misclassification. Finally, the third row shows the results only
for the correctly classified patterns.

As can be seen, the RMSE obtained is rather low in gen-
eral. As expected, there is a reduction in the error as k
increases, but only up to a certain limit. For pan, the limit
seems to be in k = 16 since when k = 32, the increment
in the misclassification rate seems to compromise the over-
all RMSE. For tilt, very good results are obtained even for
k = 5.

5.3 Results using vpd

The results reported in the previous section are based exclu-
sively on the most voted classifier. This section shows the
results obtained using the method proposed in Sect. 4 for
obtaining the angle from the vpd (Eqs. 13, 14). As explained
in Sect. 4, the method depends on the parameter σ that rep-
resents the standard deviation of the Gaussian function. For
each classifier reported in the previous section, we have cal-
culated RMSE for the values of σ = {0, 15, 30, . . . , 180}.
The results obtained are summarised in Table 3 for the best
configuration of this parameter, denoted σ ∗ in the Table.

The results obtained show that the proposed approach
based on the vpd is an effective way to reduce the error in
this problem. Although there is general error reduction in all
cases, it is specially relevant in the erroneous patterns. We
believe that this is because, in most of the cases, the misclas-
sified patterns lays in the margin of the classifiers, so that they

Fig. 4 Confusion matrices for the different classifiers trained
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Table 2 RMSE in degrees of
the classifiers for the angles of
the classes

Pan Pan Pan Tilt Tilt
k = 8 k = 16 k = 32 k = 5 k = 9

All 14.11 ± 0.48 9.56 ± 0.51 9.56 ± 0.58 7.64 ± 0.19 6.46 ± 0.19

Error 43.47 ± 3.47 33.05 ± 2.76 23.69 ± 1.94 16.89 ± 0.47 11.48 ± 0.33

Correct 10.89 ± 0.21 5.43 ± 0.11 3.59 ± 0.08 5.06 ± 0.06 2.78 ± 0.06

Table 3 Error in the
determination of the angles
when vpd are employed

Pan Pan Pan Tilt Tilt
k = 8 k = 16 k = 32 k = 5 k = 9

(σ ∗) (45) (45) (45) (30) (15)

All 10.92 ± 0.48 8.49 ± 0.48 8.32 ± 0.54 5.95 ± 0.19 5.52 ± 0.19

Error 29.72 ± 3.27 26.09 ± 2.76 19.62 ± 1.83 10.49 ± 0.51 8.46 ± 0.31

Correct 8.56 ± 0.20 5.15 ± 0.10 3.66 ± 0.09 4.27 ± 0.13 3.48 ± 0.12

Table 4 Errors obtained by our
proposal as the number of fused
cameras increases

Ncams Pan Pan Pan Tilt Tilt
k = 8, σ ∗ = 45 k = 16, σ ∗ = 45 k = 32, σ ∗ = 15 k = 5, σ ∗ = 15 k = 9, σ ∗ = 15

1 10.92 ± 0.48 8.49 ± 0.48 8.32 ± 0.54 5.95 ± 0.54 5.52 ± 0.14

2 8.55 ± 0.22 6.01 ± 0.23 5.70 ± 0.28 4.72 ± 0.48 4.56 ± 0.42

3 7.02 ± 0.14 4.84 ± 0.16 4.57 ± 0.20 4.23 ± 0.29 4.19 ± 0.12

4 6.14 ± 0.14 4.19 ± 0.16 3.93 ± 0.22 4.00 ± 0.21 4.01 ± 0.31

5 5.65 ± 0.19 3.90 ± 0.25 3.57 ± 0.31 3.86 ± 0.86 3.90 ± 0.13

6 5.23 ± 0.35 3.38 ± 0.43 3.24 ± 0.73 3.76 ± 0.35 3.81 ± 0.46

are confused with a neighbour class. Thus, the problem can
be alleviated by considering the probability of the neighbour
by the interpolation method proposed.

5.4 Results fusing multiple views

The two previous sections have shown the results of estimat-
ing the person’s head pose from a single camera. This section
shows the results obtained when information from multiple
cameras are fused using Eqs. 15 and 16.

Table 4 shows the error obtained when the data from the
six cameras are fused using our proposal. The first column
indicates the number of cameras employed for the fusion.
The second row shows the average RMSE obtained by fus-
ing the results of all possible combinations of two cameras
in the test set. The same rationale is applied to the rest of the
columns for an increasing number of cameras. At the top of
each column, the angle resolution employed along with the
σ ∗ that produced the best fusion results is indicated.

As can be observed, the proposed method is able to reduce
the error in the angle by fusing information from multiples
cameras. Indeed, the reduction is more pronounced when
using few cameras. As the number of cameras increase, the
improvement becomes smaller.

To better analyse the behaviour of the proposed method,
we have evaluated the error reduction as a function of the
number of cameras in two different experiments. In the first
experiment, we focused only on those situations in which
all the cameras obtained correct classifications. For these
cases, we evaluated the reduction obtained as the number
of fused cameras increased. This experiment aims predicting
the upper bound of the method’s performance for a variable
number of cameras. In the second experiment, we focused
only on those situations in which at least one of the cameras
obtained a misclassification. For these cases, we fused the
result of the erroneous camera with all possible correct com-
binations of the rest of the cameras. This experiment aims to
examine the method’s ability to overcome camera errors.

The results of the first experiment is shown in Table 5.
The table contains in each column the RMSE for each one
of the configurations analysed. Rows represent the number
of cameras employed to obtain the results. Please note that
the results for more than one camera have been obtained by
averaging all the possible combinations of fusion between
the cameras. The results obtained show that the greatest error
reduction takes place when combining information from two
cameras. Above this number, a smaller reduction is observed.

The results of the second experiment are shown in Table 6.
The Ncams parameter indicates the total number of cameras
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Table 5 Error in the
determination of the angles
when data from an increasing
number of correct cameras are
fused

Ncams Pan Pan Pan Tilt Tilt
k = 8 k = 16 k = 32 k = 5 k = 9

1 8.56 ± 0.20 5.15 ± 0.10 3.66 ± 0.09 4.27 ± 0.13 3.48 ± 0.12

2 6.78 ± 0.08 3.57 ± 0.06 3.43 ± 0.07 3.46 ± 0.07 3.13 ± 0.15

3 5.71 ± 0.08 2.98 ± 0.05 2.76 ± 0.06 3.06 ± 0.07 2.90 ± 0.14

4 5.09 ± 0.08 2.62 ± 0.05 2.34 ± 0.06 2.83 ± 0.07 2.75 ± 0.17

5 4.99 ± 0.11 2.41 ± 0.07 2.11 ± 0.09 2.67 ± 0.12 2.70 ± 0.16

6 4.11 ± 0.26 2.29 ± 0.16 1.91 ± 0.09 2.60 ± 0.29 2.61 ± 0.15

Table 6 Error in the
determination of the angles
when data from the six cameras
are fused

Ncams Ncorr Pan Pan Pan Tilt Tilt
k = 8 k = 16 k = 32 k = 5 k = 9

1 0 29.72 ± 3.27 26.09 ± 2.76 19.62 ± 1.83 10.49 ± 0.51 8.46 ± 0.31

2 1 11.93 ± 0.77 8.48 ± 0.51 6.58 ± 0.40 6.51 ± 0.24 5.55 ± 0.13

3 2 7.20 ± 0.15 4.83 ± 0.21 4.05 ± 0.16 5.04 ± 0.10 4.47 ± 0.18

4 3 6.02 ± 0.43 4.00 ± 0.10 3.04 ± 0.13 4.77 ± 0.09 3.96 ± 0.10

5 4 5.21 ± 0.32 3.79 ± 0.35 2.65 ± 0.12 4.54 ± 0.12 3.57 ± 0.18

6 5 4.66 ± 0.30 3.69 ± 0.21 2.62 ± 0.12 4.53 ± 0.13 3.38 ± 0.43

employed in the fusion, while the second column Ncorr indi-
cates how many of these cameras produced correct results.
Therefore, the first row shows the results of these cameras that
produced misclassifications, i.e. these are the same results
presented in the row labelled “Error” of Table 3. The second
row of Table 6 shows the results obtained when a misclassi-
fication is fused with a correct classification. Similarly, the
third row represents the angle estimated when a misclassi-
fied results is fused with all possible combinations of two
correct results of the rest of the cameras. A similar rationale
is applied to the rest of the rows. The results presented are the
average results of combining the misclassified camera with
all possible combinations of the correct cameras.

The results in Table 6 shows a clear improvement in the
angle estimated as soon as a misclassification is fused with
a correct classified pattern. In general, it can be observed
that even when two cameras are employed (second row), the
results are much better than these obtained by the individual
classifiers reported in Table 2. So, it can be considered that
the proposed method is an effective way of fusing the outputs
from the multiple cameras.

5.5 Comparison with neural networks

In this section, we aim at comparing our approach with the
neural network method presented in [38]. Although their
method also includes a method for head tracking in video
sequences, at the core is an NN as classifier. Our approach
works in a similar way to the one proposed by [38], i.e. both
produces probability distribution about the head pose that
can be fused with multiple views. As a consequence, both

classifiers are easily interchangable. The point is then to
decide which one produces better results.

The work of Voit et al. assumes independence between
pan and tilt angles, thus employing a separate NN for each
angle. The network input consists in a total of 2,048 features.
Half of the inputs are obtained by concatenating the resam-
pled image (at 32 × 32 pixels) after equalising its histogram
(for light correction). The rest of the inputs correspond to the
gradient magnitude of the image applying a Sobel operator.
The middle layer of the NN comprises 100 hidden neurons
and the desired output is the probability distribution of the
measured head orientation, i.e. the target values correspond
to a discretised Gaussian distribution centred at the head ori-
entation. As in our work, the output distributions obtained
across multiple cameras are fused considering the relative
position of the camera and the subject. The result is a fused
distribution from which the most likely angle is obtained as
the best estimation.

In order to achieve a fair comparison between the two
techniques, we have employed the same discretisation for
pan (k = {8, 16, 32}) and tilt (k = {5, 9}). In other words,
for the pan angles, we have trained NNs with three different
outputs, namely 8, 16 and 32 outputs. The same rationale is
applied for tilt angles. Likewise, we have tried the values
σ = {15, 30, 45} for the Gaussian distribution that defines
the output.

The results obtained are shown in Table 7, which pres-
ent the errors as the number of cameras fused increase. All
possible combinations of cameras haven been tested for each
case, and the average values with with 95% confidence inter-
vals are shown in the table. The leftmost column indicates
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Table 7 Errors obtained by the
neural networks as the number
of cameras fused increases

Pan Pan Pan Tilt Tilt
k = 8, σ ∗ = 30 k = 16, σ ∗ = 15 k = 32, σ ∗ = 30 k = 5, σ ∗ = 15 k = 9, σ ∗ = 15

1 12.05 ± 0.67 14.45 ± 0.85 14.21 ± 0.02 6.32 ± 0.34 7.30 ± 0.74

2 8.05 ± 0.14 9.05 ± 0.44 9.32 ± 0.82 5.13 ± 0.38 6.05 ± 0.92

3 6.69 ± 0.74 7.20 ± 0.68 7.43 ± 0.67 4.63 ± 0.99 5.58 ± 0.61

4 5.87 ± 0.02 6.27 ± 0.76 6.39 ± 0.66 4.37 ± 0.84 5.36 ± 0.46

5 5.28 ± 0.56 5.35 ± 0.13 5.67 ± 0.16 4.23 ± 0.74 5.24 ± 0.39

6 4.90 ± 0.23 4.99 ± 0.71 5.22 ± 0.37 4.14 ± 0.65 5.17 ± 0.31

the number of cameras fused and each column presents the
results for a different discretisation of the output. The table
contains only the results for the σ ∗ of the Gaussian distribu-
tion that achieved the best results.

The results obtained by the NN approach can be contrasted
with those of our method presented in Table 4. It can be
observed that the NN approach obtains slightly worse results
than the method proposed in this work.

6 Conclusions

This paper has proposed a novel approach to the problem of
head pose estimation using multiple cameras. The key point
of our approach is to employ the vpd of multi-class sup-
port vector machine classifiers to derive a probability dis-
tribution of the head pose angles. The proposed approach
outperforms the result of both support vector and regression
vector machines. In addition, in our approach information
from multiple views can be fused to produce a more precise
and more robust estimate. The experiments conducted dem-
onstrate that the proposed fusion approach is able to over-
come classification errors from individual cameras by using
the information from the remaining cameras.

There are three important assumptions that underlay our
approach: first, the position of all cameras is known with
respect to a common global frame of reference; second, the
position of the head is known with respect to the same frame;
third, all cameras are equally reliable. While state of the art
techniques exist to cope with the first two assumptions, relax-
ing the last assumption is something which is part of our
future work. We consider that fuzzy logic can be employed
to improve the final voting scheme by adding information
about the cameras’ confidence.
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