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Abstract The ability of generating and interpreting a three-
dimensional representation of the environment in real-time is
one of the key technologies for autonomous vehicles. While
active sensors like ultrasounds have been commercially used,
their cost and precision is not favorable. On the other hand,
integrating passive sensors, like video cameras, in modern
vehicles is quite appealing especially because of their low
cost. However, image processing requires reliable real-time
algorithms to retrieve depth from visual information. In addi-
tion, the limited processing power in automobiles and other
mobile platforms makes this problem even more challeng-
ing. In this paper we introduce a parking assistance system
which relies on dense motion-stereo to compute depth maps
of the observed environment in real-time. The flexibility and
robustness of our method is showcased with different appli-
cations: automatic parking slot detection, a collision warn-
ing for the pivoting ranges of the doors and an image-based
rendering technique to visualize the environment around the
host vehicle. We evaluate the accuracy and reliability of
our system and provide quantitative and qualitative results.
A comparison to ultrasound and feature-based motion-stereo
solutions shows that our approach is more reliable.
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1 Introduction

In recent years camera-based advanced driver assistance sys-
tems (ADAS) have been established in the automotive indus-
try. Currently, popular applications like a back-up display
with reverse guide lines, lane departure warning (LDW), traf-
fic sign recognition (TSR), pedestrian detection (PD), or high
beam automation (HBA) target the space in front or behind a
car. These comfort functions were designed to ease the driv-
ing task, but still require the driver to be part of the control
loop. Stepping from an assisting vehicle to a fully autono-
mous one, depth information about the car’s lateral space is
also required.

However, applications interpreting the lateral space of a
car are still rare and mostly limited to ultrasonic, radar or
LIDAR sensors. Due to physical limitations, these sensors
strongly reduce details acquired from the world to a small
set of depth measurements. Thus, every depth model derived
from these sensors is very coarse and therefore strongly limits
the number of possible applications. On the other hand their
cost is still higher than the cost of simple passive cameras.
Currently, only lateral ultrasonic sensors have been commer-
cially used for the parking assistance systems. However, due
to their small resolution, they have only been used for parking
slot detection.

Even though cheap, lateral cameras were, so far, used for
a “visual enhancement” for the driver. They enable the driver
to observe areas around a car that are occluded due to geo-
metric restrictions as shown in Fig. 2. Until now, the com-
plexity of image processing algorithms and limited hardware
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resources (i.e. only mobile CPUs in our case) have hid the
potential of lateral cameras from their application to driver
assistance systems, since real-time performance is required
for most of these applications. In this paper we investigate
the usage of these lateral cameras for multiple applications
such as parking slot detection, collision warning for the door
opening and a virtual bird’s eye view for augmented park-
ing. We show that these passive sensors can be turned in
very powerful dense depth measuring devices. This is possi-
ble thanks to the efficient real-time motion-stereo algorithm
we developed, which allows obtaining dense depth maps of
the observed lateral space of the vehicle on mobile CPUs.
Due to the motion of the vehicle pairs of images acquired
at consecutive time instances (i.e. from different viewpoints)
are used to compute disparity maps based on a real-time ste-
reo method we developed [30]. To eliminate outliers and to
improve accuracy of the depth information we fuse the tem-
poral history of disparity maps. From these measurements
we extract the ground plane and obstacles and update a map
of the environment accordingly. Finally, this map is used for
the detection and measurement of parallel and cross parking
slots. Furthermore, we also use the obtained spatial informa-
tion to detect possible collisions with objects in the pivoting
areas of the doors and to compute a virtual bird’s eye view
for augmented parking. The host vehicle, detected parking
slots and surrounding obstacles are displayed over an image
of the ground plane as shown in Fig. 9.

In the following, we review related work and describe
the processing steps of our environment perception in more
details. Since we concentrate on the applications, a brief
description of the motion-stereo method will be given (i.e. the
stereo matching and temporal fusion) and detailed discussion
about the customer functions, which rely on the recovered
depth maps, will be provided. In the end we present a quan-
titative evaluation of the described functionalities and also
compare them to feature-based motion-stereo [35,36] and a
solution based on an ultrasonic sensor [20]. A number of
qualitative results and illustrations are also provided.

2 Related work

There are several different ways to perceive spatial informa-
tion about the lateral space of the vehicle’s environment. In
the following we review some works in the context of parking
assistance. Most popular are current commercial solutions
based on ultrasonic sensors [26], but these are only passive
systems with the purpose to inform the driver about distances
to nearby objects. Recent products additionally utilize a later-
ally mounted ultrasonic sensor to detect parallel parking slots
into which the vehicle may be navigated semi-automatically
[18–20]. However, depending on the required measurement
range, these systems may not be able to detect cross parking

slots and complex geometry makes correct interpretation of
sensor signals difficult. Similar is a system developed by
Schanz [22]: it uses a laterally mounted laser-scanner and,
due to the relatively good measurement accuracy, the system
is able to detect both parallel and cross parking slots. How-
ever, in practice laser-scanners are currently too expensive
for mass production. Compared to these types of sensors,
another benefit of our camera-based approach is that very
rich depth information is acquired at low costs.

Systems that use cameras have also been investigated.
Kämpchen et al. [11] detect parking lots using a forward
looking stereo vision system: a point cloud generated from
sparse stereo correspondences is analyzed to detect vehi-
cles. Generic vehicle models are used to estimate their poses
and parking slots are detected by analyzing the free space
between two vehicles. However, due to the orientation and
the limited field of view (FOV) of the stereo system, the
detection of parallel and especially cross parking slots may
be difficult.

The use of PMD cameras was evaluated by Scheunert
et al. [24]: from the 3D data they build a local 2D grid where
every cell is in one of four modes (unknown, ground, obstacle
low and obstacle high), depending on the height of a point.
From this grid, the curb is determined and a distance pro-
file is computed. This information is then used to detect free
spaces. However, they do not determine the envelope of the
ground plane dynamically and since they assume the pres-
ence of the curb, they did not demonstrate the detection of
cross parking slots. Furthermore, the PMD technology is still
very expensive and thus not suitable for serial production.

It is also possible to detect parking slots using a cam-
era and a projection of structured light [10]. However, legal
restrictions in many countries render a worldwide commer-
cialization of such solutions impossible. Other systems detect
parking slots by extracting and interpreting ground markings
[9,39]. But the applicability and thus customer value is very
limited, because the markings have to fulfill specific require-
ments on color, visibility and geometric properties.

There is also a wide range of recent methods that use
the principle of motion-stereo [6,25,27,28,33,35,36]. How-
ever, these works address only a feature-based strategy and
no one utilized dense disparity maps. The basic idea is to
calculate characteristic features in subsequent images. Over
time, this relatively small number of points is tracked and
then a 3D reconstruction is analyzed to find parking slots.
These approaches perform well in friendly conditions, i.e. as
long as enough strong and distinctive features can be derived
from the images. However, challenging are both lowly tex-
tured objects, which lead to very sparse point clouds, or also
complex textures like foliage, where high ambiguity during
feature matching introduces wrong distance measurements.
Moreover, features are not necessarily located at the bound-
aries of objects. Thus the size of objects and free space might

123



Parking assistance using dense motion-stereo 563

be wrongly calculated. In these situations, the accuracy and
reliability of the determination of free parking areas varied
in an unacceptable way.

In this work, we present a powerful approach that is based
on dense motion-stereo, where at every frame a dense dispar-
ity map is computed. This results in important advantages,
namely a very high detection rate of obstacles, a high mea-
surement accuracy, a nearly drift free environment model
and the ability to display a multitude of different customer
functions.

3 Environment modeling

Our goal is to support the driver and eventually other occu-
pants of the car at parking related tasks. In the first place, this
includes assistance for finding a parking slot (i.e. automatic
detection and measurement of free space). This also includes
an adequate interface to the driver, which provides a visual-
ization of the found parking place. In practice, we generate
a bird’s eye view of the ground plane with the host vehicle,
parking space and obstacles overlaid. Finally, we want to
inform the driver and occupants if obstacles are located in the
pivoting ranges of doors in order to prevent minor damage.
Another important requirement is that all calculations can be
performed in real-time on standard CPUs (without any GPU)
at 30 frames/s. In this paper, we demonstrate that all these
goals can be achieved using one generic processing pipeline.

In our work we focus on acquiring 3D information using
monocular camera systems attached to the side of the vehicle
as shown in Figs. 2 and 3. The basic principle of every camera
is the projection of a three-dimensional world to a flat two-
dimensional image plane. The estimation of depth informa-
tion is either based on complex and often wrong assumptions
about the world, or by accounting on the movement during
the data acquisition process. Since it is more generic, we
chose to follow the second principle, also known as motion-
stereo: depth information is calculated using corresponding
image points from consecutive images acquired at different
known positions [14].

3.1 Method overview

Following Fig. 1, our approach is composed of several pro-
cessing steps. Based on the principle of dense motion-stereo,
we determine a depth for every pixel in every camera image
using classical stereo methods [8,14,23,30] or optical flow
[1]. In our case, a rectified pair of camera images is used
for the stereo matching (for example, the last two images
acquired from the camera). Since these calculations are rela-
tively expensive in terms of processing power, only efficient
methods can be applied [8,16,30]. After that, the history of
disparity maps is fused probabilistically in order to obtain

Image Acquisition

Rectification

Dense Stereo Matching

Temporal Disparity Fusion

Segmentation of Ground Plane and Obstacles

Silhouette

Map Creation

Parking Slot Detection

Map Creation

Collision Warning

Image Based Rendering

Augmented Parking

Fig. 1 The processing pipeline of our approach: we rectify images
acquired at different positions from a monocular camera and use them
to compute a dense disparity map using stereo [30]. To eliminate outliers
and to improve accuracy of the depth information we fuse the temporal
history of disparity maps. From these measurements we segment the
ground plane and obstacles. This information is the foundation for the
different applications: the parking slot detection computes silhouettes
of the observed area from the segmented disparity maps, creates a map
out of them and detects and measures free spaces. The collision warning
uses obstacle points to examine the pivoting ranges of the doors, and
augmented parking takes advantage of segmented disparity data to ren-
der an image of the ground plane with the host vehicle, parking space
and obstacles overlaid

for every camera image the most probable disparity map that
exposes a minimum amount of outliers. In every fused dis-
parity map we detect the ground plane, obstacles and from
that a silhouette which limits the free space. Then, we com-
bine all these partial silhouettes so that over time a global
model of the environment is created incrementally. Within
this model, we detect parallel and cross parking slots. If a
free space region provides enough space for the vehicle and
is bounded by obstacles, then it is a candidate for a parking
slot and the exact metric size is computed.

Further, we use the disparity maps to obtain a local 3D
reconstruction of specific regions of interest (for example, the
pivoting range of a door). Using such a local 3D reconstruc-
tion, we perform a collision analysis and, if necessary, issue
a warning to occupants to prevent minor damages. Another
application is Augmented Parking and uses image-based ren-
dering to compute a virtual bird’s eye view to visualize the
positions of the host vehicle, obstacles and the parking slot
to the driver. In the following we will discuss all necessary
elements of the system.

3.2 Camera sensors

The position and orientation of a camera with respect to the
vehicle are important parameters. Two categories of cameras
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(a) Side-View camera mounted at the front
bumper of the vehicle.

(b) Schematic overview: The vehicle is lo-
cated at a position where the driver is not
able to observe crossing traffic.

(c) User interface: the left- and right-looking camera images are displayed so that the driver is
able to observe traffic.

Fig. 2 Side-view cameras: a the mounting position, b schematic overview of the use case and c the user interface

are relevant for dense motion-stereo with respect to their ori-
entation and applied functions.

The first class is the family of side-view cameras (see
Fig. 2), which is located in the front part of a vehicle. The
optical axis of these cameras is parallel to the ground and
orthogonal to the orientation of the vehicle so that they are
well suited for “first views” in situations when the driver has
an obstructed line of sight such as at the exit of car parks.
Accordingly, side-view cameras are mostly equipped with
standard lenses.

Another class of lateral cameras is the family of top-view
cameras (see Fig. 3). Here the goal is to provide the driver
with a virtual surround view containing the close environ-
ment around his car to give visual support during low speed
or parking maneuvers. Respectively, these cameras are posi-
tioned in central parts of the body shell, where a wide angle
lens allows displaying the right and left areas.

In our experiments we used both types of cameras: they
operate at VGA-resolution (640×480 pixels) at 30 frames/s.
The diagonal FOV of the side-view and top-view camera is

68◦ and 170◦, respectively. For stereo matching, we downs-
ample the images to a resolution of 213 × 160.

3.3 Calibration and rectification

For stereo, a correct camera calibration and rectification is of
eminent importance. In particular, a correction of the radial
lens distortion is indispensable [3,42]. Further, the poses of a
camera at two different points in time has to be determined,
in order to rectify pairs of images. In our case, odometry
information was sufficient for that. However, if no odom-
etry is available or if it is too inaccurate, then this rectifi-
cation may be estimated from image correspondences [29].
The yaw-angle and movement in x- and y-direction can be
determined relatively well from odometry information, if the
position of the camera relative to the vehicle-origin is known.
In practice, the recovery of pitch and roll angles as well as
the movement in z-direction is relatively imprecise with cur-
rent vehicle sensors. Due to this reason, we ignore these val-
ues in the first place. We rather use a simplified, approxi-
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(a) Top-View camera mounted at the mirror
of the vehicle.

(b) Schematic overview: Top-View cameras
observe the close environment around the
car.

(c) User interface: the images of the top-view and backward-looking cameras are undistorted
and displayed together.

Fig. 3 Top-view cameras: a the mounting position, b schematic overview of the use case and c the user interface

mated rectification (using only the yaw-angle and movement
in x- and y-direction) and propose an extension [31] to our
real-time stereo method [30] which makes it robust against an
inaccurate estimation of the epipolar geometry. Another ben-
efit of the simplified rectification is that the warping of images
can be implemented in an optimized way. To summarize,
we only approximate the rectification of images acquired at
different points in time using the odometry information by
resorting to a simplified model, and more complex scenar-
ios (e.g. uneven ground) are handled by an improved stereo
matching.

3.4 Stereo matching

For the real-time computation of disparity maps, only highly
efficient methods with very low computational requirements
can be used. By using the enormous processing power of
today’s graphics cards, many complex stereo-methods could
be implemented near real-time or even real-time [2,4,21,38].
However, such hardware platforms are, especially against the
background of dissipation of energy, not available in vehi-

cles and it is absolutely necessary that all calculations can
be performed on a standard mobile CPU at a frame rate of
30 Hz.

For the stereo-processing we use our local method [30]
that runs significantly faster than traditional real-time imple-
mentations [8,16]. In particular, [30] is suited very well for
motion-stereo setups, as it does not require a-priori knowl-
edge about the maximum disparity, which depends on the
motion model, the camera intrinsic parameters and on the
depths of the observed scene. In our implementation, the use
of SIMD-instructions allows us to compute a disparity-map
for a 320 × 240 image in less than 30 ms.

Method summary In [30] the disparity map is computed
iteratively, by performing two operations at every pixel: a
minimization followed by a propagation-step. The minimi-
zation follows a line search strategy and usually finds the
“next” (depending on the iteration of the disparity map) local
minimum of the matching cost function. Since matching
costs have many local minima a propagation-step is intro-
duced in order to find further, better minima by investigating
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disparity values of adjacent pixels. Moreover, these steps
are embedded into a hierarchical setup. Compared to other
traditional methods or dynamic programming, works very
well, especially on sequences from the vehicle. Further, [30]
converges very quickly (after 2–3 iterations) even at large
baselines.

Frame decimation Since the vehicle moves with different
velocities, the baseline of adjacent frames is not constant.
Especially for low velocities, the baseline becomes too small
for accurate depth computations. In practice, we use a simple
frame decimation [17] technique to improve stereo matching:
for every reference frame, we select the matching frame in a
way such that the baseline is always greater than 10 cm. We
obtain the baseline from odometry information.

Histogram equalization To some extent, the high efficiency
results from using the sum of absolute differences (SAD) as a
matching cost. However, when the camera moves through its
environment, lighting conditions will change constantly and
sometimes very abruptly. Because of the characteristics of
the camera, we decided not to work with a constant exposure
time, so to always allow optimal exposure. But this results
in stereo pairs with different exposures, which has adverse
effects on the matching using SAD. To reduce these problems
we chose to use histogram equalization.

3.5 Improving matching for motion-stereo

In real-world situations, the ground is not perfectly flat and
will cause the vehicle to pitch and roll (e.g. due to road holes).
In such scenarios the rectification would be more complex
than the simplified one described in Sect. 3.3. However, in
practice the simplified rectification is sufficient, if the search
area of stereo matching is slightly increased, so that a set of
neighboring scanlines is taken into account too. Our proposed
extension is a simplified method of the generic approach that
we presented in [31]. It integrates very smoothly into [30]
and leads to a method that lies somewhere between optical
flow and stereo. We do not only determine the horizontal
displacement (disparity) but also a vertical displacement for
every pixel. In practice, we assume that the vertical displace-
ment is small, i.e. a few pixels at most.

In the following, we give a short overview to an effi-
cient implementation, and we refer to a much more pow-
erful method and elaborate description to [31]. We use a
similar notation as in [30] and replace the map of scalar
disparities D(p) by a map of two-dimensional flow-vec-
tors F (p). [30] is an iterative approach, where the dis-
parity of every pixel is computed using a steepest descent
minimization. The minimization is alternated with a prop-
agation step which propagates disparities to neighboring
pixels. In the default formulation of the minimization, the

Fig. 4 Example for the temporal fusion: a the camera frame, b a single
baseline disparity map computed using [30] and c a fused disparity map
using [32]

dissimilarity of the incremented disparity Etest = E(p, d+1)

is compared against the dissimilarity of the current dispar-
ity Ecur = E(p, d). If Etest < Ecur, then the disparity of p
is updated to d + 1. At this step we introduce the vertical
displacement. For Etest we use the minimum of these three
values:

E(p, (d + 1, f ′
y)) with f ′

y ∈ { fy − 1, fy, fy + 1} (1)

with (d, fy) = F (p) being the current disparity and vertical
displacement. If Etest < Ecur, we update the disparity of p to
d + 1 and set the vertical displacement to f ′

y . Accordingly,
the vertical displacement must be updated in the propagation
step together with the disparity (so, we propagate both the
horizontal and vertical displacement at the same time):

F (p) �→ arg minf∈N (p)E(p, f) (2)

with the neighboring displacement vectors N (p).
In practice, this extension degrades the performance by

only roughly 50% (which is a factor of 2), so that real-time
processing is still possible at a resolution of 213 × 160. In
contrast, if the search range is increased in traditional real-
time stereo methods like [8], the execution time is multiplied
by the number of scanlines that have to be taken into account.

Please note that the vertical displacements may be used to
update the rectification. In practice however, we discard the
vertical displacements.

3.6 Temporal fusion of disparity maps

In practice, real-time stereo matching is error prone and is
known to have weaknesses in regions near discontinuities
[8,23]. Therefore, we use the redundancy in the temporal
history of disparity maps in order to obtain a fused dispar-
ity map that exposes a minimum amount of outliers. We use
the method proposed in [32] since it allows real-time oper-
ation on standard CPUs and provides a very good accuracy,
especially in occluded parts and in regions near disconti-
nuities (see Fig. 4 for an example). Popular alternatives are
[15,40,41], but [15,40] require a GPU for real-time operation
and [41] is far from being real-time.
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Method summary Reference [32] fuses available disparity
maps probabilistically in order to produce an accurate dis-
parity map for the current camera frame: previously com-
puted single-baseline disparity maps are reprojected to the
current reference motion-stereo pair (for example, the last
two frames). Provided that all camera centers are aligned on
a straight line, the reprojection can be implemented very effi-
ciently. In practice, we dynamically determine the frames for
which this requirement is approximately fulfilled and fuse at
most 16 disparity maps. After reprojection, visibility con-
straints are maintained and a probability density function
over all valid disparities in the reference view is computed
using uncertainties of these reprojections and their photo-
consistencies. Finally, the most probable disparity map is
selected from this distribution.

3.7 Ground plane segmentation

One goal of our system is to retrieve information about areas
that are free for parking and parts of the environment that
are occupied by obstacles. To accomplish this, our strategy
is to analyze individual disparity maps to identify points that
belong to the ground plane and points that belong to the obsta-
cles. We perform this classification solely in disparity maps
and therefore, we look at the plane plus parallax homography
induced by the ground plane:

HG = I + s e1vT (3)

where s is proportional to the traveled distance, e1 =
(1, 0, 0)T is the baseline and v = (v1, v2, v3)

T is the normal
vector of the ground plane. In our case, the camera is mounted
on a ground vehicle, so the baseline is parallel to the ground
plane and therefore we can assume that v1 = 0. The other two
unknown components v2 and v3 depend on the slope of the
ground. These we want to recover from the disparity map (we
could also use odometry information for that, but our exper-
iments showed that it is less reliable). With p = (x, y, 1)T,
we obtain the following linear relationship for the disparities
of points belonging to the ground plane:

D(p) = eT
1 (Hp − p) = eT

1 (s e1vT)p

= s(eT
1 e1)(vTp) = (s v2)

︸ ︷︷ ︸

=:A
y + (s v3)

︸ ︷︷ ︸

=:B
(4)

This implies that the disparity of ground plane pixels is con-
stant within a scanline and motivates us to determine the
parameters A and B by analyzing the histograms of dispari-
ties created for each scanline.

The rough idea is to obtain initial guesses of A and B
and then use a greedy algorithm to refine them by looking at
more and more scanlines. We start this estimation at the bot-
tom of the image and successively use scanlines above. We
do it this way, because in practice in most cases the ground

Fig. 5 Superimposed ground plane segmentation: ground plane pixels
appear tinted, the estimated horizon line is indicated using a line and
the two ticks show the theoretical position of the horizon line. Please
note that the segmentation also finds points under the car

plane is visible in the bottom part of the image. To reject
scanlines containing a high amount of outliers, we use the
confidence measure which is provided by the temporal fusion
for every disparity. By assuming that disparities with a small
confidence are wrong, we estimate the number of outliers for
every scanline. Then, during the whole estimation-process of
A and B, we use only those reliable scanlines whose outlier-
count is below a threshold (in practice, a scanline should not
contain more than 50% outliers).

Initial estimation We start with an initial estimation of A
and B, and iteratively refine these values. For the initial esti-
mation, we use the bottommost four reliable scanlines and
compute the parameters by L2-regression: for each scanline,
we compute a separate histogram of disparities and take the
predominant value. Then these four values are used for the
regression using (4). The initial estimates are then filtered
using a Kalman-filter, together with values of the ground
plane estimation of the previous camera frame.

Iterative refinement Once we obtained a first guess of the
ground plane model, we add more scanlines to refine the
model: we visit each scanline from bottom to top and look at
the peaks of the histogram of each scanline. If the predom-
inant value of the histogram fits to the ground plane model
we use the value to refine the parameters A and B by adding
the value to the regression: we do this by comparing the pre-
dominant value to the value predicted by the current ground
plane model, and if the absolute difference is below a cer-
tain threshold, we update the ground plane model. During
this process only those scanlines have to be considered for
which the predicted disparity is positive, i.e. for y > −B

A
(D(p) = 0 is the horizon line). Finally, we are able to seg-
ment the ground plane by checking the disparity of every
individual pixel against the ground plane model—indepen-
dent from whether their scanline was used for the estimation
of A and B. Figure 5 is an example for such a segmentation:
ground plane pixels appear tinted and the estimated horizon
line is visualized using a line. The ticks on the left and right
sides of the image indicate the theoretical position of the
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horizon line (computed using the camera extrinsic parame-
ters and a canonical, perfectly flat ground).

Maximum likelihood estimation After the iterative refine-
ment we identified a set of disparities that fulfill a simple
linear model and the corresponding matrix HG has 2 degrees
of freedom. To further improve accuracy, we randomly select
1,000 points of the ground plane segmentation and compute
the parameters of HG using the QR-decomposition.

Challenges In situations, when the road is not flat (i.e. when
it is curved or bumpy) then the algorithm, in some sense,
approximates the true surface by a flat plane that fits best to
the closest parts of the ground. Small bumps in the ground
are not critical from a practical point of view because in most
parking spaces there are no bumps within parking slots. Fur-
ther, small holes can be filled by performing a closing opera-
tion on the ground plane segmentations in regions where no
obstacle was detected.

More challenging are roads that exhibit a high curvature
or rough terrain. In difficult cases, during the iterative estima-
tion process the parameters A and B will “diverge” slowly to
some values that fit best to the visited scanlines. After that, the
final segmentation (after checking every disparity value) will
often exhibit a lot of holes and the set of scanlines spanned
by the segmentation is different to the set of scanlines used
for estimation. To this end, the detection of these challenging
cases is quite difficult and still not very reliable. One possi-
ble way is by allowing more parameters for the ground plane,
but in our experiments we observed less robustness in sim-
ple situations. A temporal filtering of the parameters helps to
some extent, but depends on a good initialization. However,
in many parking situations the ground is relatively flat and
our algorithm performs quite well on average.

3.8 Computation of silhouettes

Once we obtained information about obstacles and the
ground plane, our goal is to compute a silhouette that limits
the free space. The free space is bounded by obstacles and by
the region borders of the ground plane. For example, in the
majority of cases, the curb is not detected as an obstacle, but
the ground plane segmentation stops there. We define that
the silhouette is represented in image coordinates.

Obstacle silhouette In practice the obstacles in our scenes
can mainly be approximated by large fronto-parallel pla-
nar patches (at least for side-view cameras—with top-view
cameras such a requirement can be enforced by rotating
the camera virtually). Our practical tests confirmed that this
assumption still holds for plants like bushes, motorcycles and
curved parts of other vehicles. To some extent, this can be
explained by the quantization of disparity values.

Disparities Segmentation

Fig. 6 Superimposed ground plane and obstacle segmentation. Left
column: fused disparity maps. Right column: corresponding rectified
camera frame superimposed with the segmentation result. Black pixels
are not considered relevant by the obstacle segmentation. All other pix-
els belong are either to the ground plane (blue pixels in color print) or
to the closest estimated obstacle (red pixels in color print). The line in
the middle indicates the estimated horizon line

Due to these properties, we first compute the histograms of
disparities within single image columns, but only from those
disparities which are not part of the ground plane. Building
such histograms increases robustness against outliers (in dif-
ficult scenes, more stability can be attained by computing the
histograms over multiple columns). From these histograms
we collect the first NOBS predominant entries, but only if their
count is greater than a specific threshold θOBS (to exclude dis-
parities caused by noise).1 From these disparities we take the
largest one (minimal obstacle distance) and project the value
onto the ground plane by solving (4) for y. This results in
a single silhouette-point for an image column. By applying
these steps to every image column we obtain a silhouette of
the obstacles (Fig. 6).

Ground plane silhouette Often, the curb is not detected as
an obstacle but the ground plane segmentation stops at the
curb. Due to this reason, we also compute a silhouette of
the ground plane by analyzing image columns of the ground
plane segmentation. For a specific image column x , the loca-
tion of the silhouette point is defined as the topmost pixel that
belongs to the ground plane. If the ground plane is not visible
in column x we invalidate this silhouette point, because then
there is no information available about the ground plane.

3.9 Cumulative map creation

We will use this map later for the parking slot detection
and will propose slight modifications for other customer

1 In our experiments we set NOBS = 3 and θOBS = 10.
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Fig. 7 Parking slot detection: a the car passes by a parking slot and
builds the cumulative map (b). c From this map, a distance profile is
derived and the parking slot detection is performed

functions. We define our map to represent a specific region
of the ground plane around the host vehicle from a bird’s
eye view as shown in Fig. 7b. We build this map of the envi-
ronment incrementally and we divide it into small equi-sized
cells where every cell stores the likelihood that the cell is
occupied. We continuously update this map by “adding” the
silhouettes. Both the obstacle and ground plane silhouettes
are transformed from image coordinates into the bird’s eye
view using a transformation HBEV, which warps the cam-
era image onto the ground plane. This is equivalent to map-
ping points of the horizon line to infinity. This transformation
may be computed using the horizon line computed using the
ground plane segmentation. Every cell of the map has asso-
ciated a likelihood which is increased every time a silhouette
projects there.

Hence, over time more and more silhouettes are added.
It must be noted that the ground plane segmentations may
have different locations of the horizon line. Sudden large
changes of the horizon line should be avoided, or otherwise
the distance measures in the map become inconsistent. There-
fore we assume that the variation of the horizon line is small,
in case a parking slot is in the FOV. While an imprecision

within a specific threshold is normal, large variations of the
ground plane indicate either large changes in the slope of
the ground, or inaccuracies in the ground plane segmenta-
tion. Both situations are easily detected using the variance of
the horizon line and then the parking slot detection should
disregard the corresponding region.

Position estimation Our goal is to use the plane plus parallax
homography HG obtained from the ground plane segmenta-
tion for the position estimation. The map represents a defined
portion around the host vehicle (the host vehicle has a con-
stant position and orientation). Since the vehicle moves over
time, the map must be updated by a translation and rotation.
These updates have to happen continuously at every cam-
era frame, because of the movement of the vehicle. With the
transformations HBEV and HBEV ·H−1

G , the movement of the
vehicle can be taken into account. However, at this point we
also have to take care of the rectification of the stereo pair.
Since the transformation HG maps points of the current recti-
fied camera frame to the previous rectified camera frame via
the ground plane, we have to include the pair of rectification
matrices HRC and HRP of the current and previous camera
frames. Now, we obtain the plane plus parallax homography
in image coordinates which warps the previous camera frame
to the current one taking into account rectification:

H−1
RC H−1

G HRP (5)

Finally, the transformation with which the map has to be
updated may be written as:

HBEV · (H−1
RC H−1

G HRP) · H−1
BEV (6)

Intuitively, we first warp the map to the previous image using
H−1

BEV and then transform the map using (5) according to the
camera motion. Finally, we warp the transformed map from
image coordinates back to the bird’s eye view using HBEV.

Cumulative map update We need to update the likelihoods
of the occupancies of the map, according to the current obsta-
cle and ground plane silhouettes. For that, we transform the
silhouette-points, given in image coordinates of the current
rectified frame, into the bird’s eye view using

HBEV · H−1
RC (7)

In general, the warped silhouette points in the bird’s eye view
have a specific covariance, which depends on the accuracy
of disparity estimation and the uncertainty of camera loca-
tions. We take this uncertainty into account and for every
silhouette point we update the occupancy of the surrounding
cells according to that uncertainty. The uncertainty is spread
using a Gaussian kernel around each warped silhouette point.
The variance of the Gaussian in x-direction is constant, while
the variance in y-direction depends on the depth uncertainty
(this is, because we defined that the orientation of the vehicle
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always points into the negative x-direction in the bird’s eye
view). Taking the uncertainty into account will help in diffi-
cult situations (for example, when using top-view cameras)
and will make the model independent of quantization.

In practice, we implemented these map updates very effi-
ciently: these assumptions lead to a rectangular region of the
bird’s eye view, in which the map must be updated. We imple-
mented these operations very efficiently by using saturated
additions and by scaling precompiled Gaussian kernels.

4 Applications

In the following, we demonstrate three different customer-
oriented functions. These applications utilize the proposed
processing pipeline but use disparity information in slightly
different ways.

4.1 Automatic parking slot detection

For the detection of parking slots we use the cumulative map
of the environment and compute a global silhouette there.
Since the orientation of the vehicle is defined to be aligned
with the x-axis of the bird’s eye view, we compute one silhou-
ette point for every column of the map as shown in Fig. 7.
For that, we first determine a line which runs through the
position of the camera in the bird’s eye view and is aligned
with the orientation of the vehicle (we assume that parking
slots are either parallel or orthogonal to the orientation of
the vehicle). As indicated in Fig. 7, in every image column
x of the cumulative map, we find the closest occupied cell to
that line (a cell is occupied, if its likelihood is greater than a
specific threshold) and store the distance in a global distance
profile S(x).

Based on this global distance profile S, we define that a
parking slot is an interval [x1, x2] which fulfils

S− < S(x) < S+ ∀x ∈ [x1, x2] (8)

We use the parameters S− and S+ to constrain the size of the
parking slot (as described below). In practice, we use a small
seed interval in which we check (8) and then we grow the
interval to the left and right.

Orientation To detect cross and parallel parking slots, we
perform the check using (8) with different parameters:

– To detect parallel slots we set S− and S+ to 2 and 4 m.
– For cross parking slots we use 4 m and ∞ for S− and S+.

Depth To compute the depth, we pick the camera frame from
the history when the camera was at position x1 (i.e. the near-
est neighbor). Then we select two subsets of the segmented
obstacle disparities:

1. The set of close disparities: all disparities of the obsta-
cle segmentation whose silhouette position x fulfils x <

x1 − 25 cm.
2. The set of far disparities: all disparities of the obsta-

cle segmentation whose silhouette position x fulfils x >

x1 + 25 cm.

We compute the mean values of these disparity values and
compute the depth of the parking slot as the difference of
these two depth values. We perform the same computations
for the position x2 and use the maximal value as the final
depth for the parking slot.

Validation We use several rejection cues for the validation of
a free space. Every free space has associated a specific inter-
val of camera frames in which the free space is (partially)
visible. We reject a free space as a parking slot, if

– the steering angle exceeds defined thresholds, or
– the velocity is greater than a defined speed, or
– the variance of the location of the horizon line (of the

ground plane segmentation) exceeds defined thresholds.

4.2 Collision warning

The sportive exterior design of cabriolets and coupés makes
the pivoting ranges of doors difficult to observe, because
often the door-edge is located behind the driver’s head. Small
objects or unthoughtful opening of a door may lead to expen-
sive minor damage. The goal of this application is to prevent
such damage by checking for possible collisions with static
objects in the pivoting ranges of the doors. If such a collision
is detected, occupants may be warned visually, acoustically
or even haptically. In practice, we keep the history of dispar-
ity maps and segmentations and perform these checks in the
moment when the vehicle stops (Fig. 8).

We realized the collision detection in a slightly differ-
ent way, however with the same algorithmic components.
Instead of using the silhouettes generated from the obstacle
segmentation, we directly use all disparities of the obstacle
segmentation. For every disparity, we compute the position
on the ground plane (by solving [4) for y] and transfer that
point to the bird’s eye view using (7). Then, we update the
corresponding cell of a cumulative map at this position. This
time however, we do not use a Gaussian kernel, so we incre-
ment only one single cell per obstacle disparity. The collision
detection is then performed by analyzing defined regions of
the map (for example, the regions corresponding to the piv-
oting ranges of the doors). If a region contains a cell whose
counter is greater than a specific value, a warning is issued.
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Fig. 8 Collision detection within the pivoting area of the right front
door: a the car passes by a pole and b in the moment when the vehicle
stops, a local reconstruction created from the history of disparity maps
is analyzed for possible collisions (c)

Fig. 9 Augmented parking: the host vehicle, the detected parking slot
and surrounding obstacles are displayed over the image of the ground
plane

4.3 Augmented parking

Once a parking slot has been detected, the question is how
to visualize the actual location to the driver. One idea is to
generate a bird’s eye view displaying the image of the ground
plane with the position of the host vehicle and obstacles over-
laid as shown in Fig. 9.

Also this application can be implemented with the
described components. We use a slightly modified map: at
this time, it represents a specific region of the ground plane,
which we want to visualize. Every cell of the map holds a pair
of values (c, n), with c being an intensity value and n being a
counter. In the beginning, all cells of the map are initialized
to (0, 0). To obtain the optimal quality of this image-based
rendering, we use backward-warping: we iterate over all cells

of the map and compute the location in every relevant camera
frame using the inverse transformation of (7) and by chaining
the history of plane plus parallax homographies (6). In prac-
tice, we keep a history of camera frames and transformations
in memory. For such an image pixel p, we check whether
it is part of the ground plane segmentation and obtain the
intensity value c′ from the camera frame using bilinear inter-
polation. Let the current cell of the map be (c, n), then we
update it according to

(c, n) �→
(

c n + c′

n + 1
, n + 1

)

. (9)

Once all cells have been visited, we render the host vehi-
cle and visualize obstacles using the silhouettes as described
above (see Sect. 3.9).

5 Results

In the following section we present practical results of our
system, measured on the application level. We concentrated
mainly on the performance at daylight conditions using the
side-view camera, but we also performed tests with the top-
view camera and at different environmental conditions.

For the parking slot detection, the accuracy and the false
detection rates (false positives and missed slots) are most
important. For assessing the collision warning, we measured
only the detection rates. And finally, for the augmented nav-
igation we present pictures of the image based rendering.

5.1 Methodology

Our goal was to test our method extensively on a large set of
relevant scenarios. In our case, this included quantifying the
performance in terms of measurement accuracy and detection
rates of different algorithms and parameterizations. Espe-
cially for false detection rates, the number of test cases should
be quite large. Thus, practical experimentation is usually very
time-consuming and environmental influences make results
of different test sessions hard or even impossible to compare.
Further, at every test case, ground truth data must be acquired
which requires time consuming labeling. Due to these rea-
sons, we decided to resort to software-in-the-loop techniques
[34,37]: we recorded videos synchronized with data from
the vehicle (e.g. odometry information). This allowed us to
execute different configurations of our method on exactly the
same set of scenarios. After recording the sequences we asso-
ciated ground truth measurements to them. In every video we
mark all frames where a parking slot is, at least, half visible.
To each interval where a parking slot is visible we associate
its ground truth size measured using the laser distanceme-
ter. We compare the results our and those of other methods
against ground truth data and identify false detections.
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(a) Garage (b) Garage (c) Garage

(d) Side-view image
with a dirty lens

(e) Top-view image (f) Rectified top-view
image

Fig. 10 Examples of camera images used: a–c sequences recorded in
the garage have very difficult lighting conditions due to inhomogeneous
illumination (sun and neon light), d an image of the side-view camera
with a dirty lens and e a top-view image before and f after undistortion

The whole database contains over 120 GB of uncom-
pressed video data (approximately 2 h) of the side-view and
top-view cameras and contains sequences of 718 parking
slots. When recording the sequences we varied different
parameters:

– Velocity: from idle speed up to 35 km/h, either with con-
stant or varying speeds (by braking and accelerating).

– Yaw-rate: in most cases we drove on a straight line, but in
some sequences we modified the steering angle (e.g. driv-
ing on a sinuous line).

– Slot length and depth (parallel and cross parking slots):
lengths varied between 1.8 and 13.2 m; depths between 2
and 10 m. We configured the system in a way such that
a parking space should provide at least an area of 5.5 ×
2.5 m.

– Illumination: daylight (sunny, cloudy or rainy) and a sub-
terranean garage (inhomogeneously illuminated by sun
and neon light; see Fig. 10 for example images).

– Dirtiness of the lens: the database also contains a few
recordings where the lens was dirty (see Fig. 10 for exam-
ple images).

We define that the length of a slot is the dimension being
roughly parallel to the direction of the host vehicle and that
the depth is orthogonal to the length. We measured every
parking slot manually using a Leica DISTO classic laser dis-
tancemeter, which is very accurate in practice. When mea-
suring these dimensions by hand, we could only achieve an
accuracy of ±5 cm. The length is the minimal longitudinal
size between two obstacles, but the depth is more difficult to
define: in general, the depth is the distance between a close
and a far boundary, both delimiting the parking space into
which the vehicle must fit. The far boundary is usually given
by some structural installations (the curb, fences, walls or

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

L
ik

el
ih

oo
d

Length Error [m]

Proposed Method No Fusion

Fig. 11 The distribution of measurement errors of our method with
and without temporal fusion [32] at daylight conditions using the side-
view camera. The fusion removes many outliers and therefore, less false
matches are accumulated in the map. Hence, the measurements are more
accurate

other vehicles) but it may even not be present (then it may
be given by ground markings or implicitly by a change in
the asphalt). The close boundary is even more complicated.
In some cases it is given by ground markings or a change
in the asphalt, but in many other situations such indications
are missing and often it is defined by a “thought line” which
is tangential to other parking vehicles or may even depend
on complex scene understanding. Therefore, we followed a
two-fold strategy for the evaluation:

– The accuracy of length-measurements is evaluated using
the whole database and the associated ground truth mea-
surements.

– The accuracy of depth-measurements is evaluated on a
smaller set of parking slots, where the far boundary was
given by a wall or the curb. For the close boundary of a
parking slot we used the maximum depth of the bounding
obstacles to the left and right.

5.2 Analysis of the stereo pipeline

The most important part of our method is the disparity
computation stage which includes the single baseline ste-
reo method and the temporal disparity fusion step. Figure 11
shows that the temporal fusion is very important for accurate
measurements and that the amount of outliers is very critical
for the overall performance (see also Fig. 12). If no temporal
fusion is performed, the disparity maps contain significantly
more outliers and imprecise object boundaries. These char-
acteristics lead to errors in the cumulative map and result in
increased measurement errors. This becomes also obvious in
Fig. 12 by an increase in the false detection rates. The tem-
poral fusion makes the whole system much more reliable.
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Fig. 12 The average measurement error (a) and false detection rates
(b) of our method with different variations of the stereo pipeline at day-
light conditions using the side-view camera: dense stereo [30] with tem-
poral fusion [30,32] without fusion, traditional real-time stereo [8,16]
with fusion [32] and dynamic programming [23] with fusion [32]

In Fig. 12, our real-time stereo method [30] with tem-
poral fusion [32] (proposed solution) is slightly better than
traditional real-time stereo [8,16] with fusion [32] and is at
the same time twice as fast. We also included dynamic pro-
gramming [23] (with temporal fusion enabled) in our evalua-
tion, because it also belongs to the class of efficient methods.
However, the well known problem of streaking effects [23]
limits the practical use. The different configurations of the
stereo pipeline effect also the detection rates (see Fig. 12).
The amount of outliers is a direct indicator for the robustness
and thus a measure for the customer value.

5.3 Performance when using top-view cameras

Our test vehicle was equipped with side- and top-view cam-
eras. When we recorded the sequences, we recorded the video
streams of both cameras simultaneously and thus, we were
able to determine the performances in exactly the same condi-
tions. Figure 13 shows the performance when using side- and
top-view cameras: both systems offer the same potential of
accuracy (in 40% of all measurements the error was between
±10 cm, for both systems) and it is more likely that the esti-
mated size of a parking slot is too small, which is a desirable
property. However, it is more robust to use side-view cam-
eras: the disparity maps computed from rectified images of
top-view cameras contain much more errors than the ones
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Fig. 13 The performance of our proposal with side- and top-view
cameras at daylight conditions. The bars show the distribution of
measurement errors

from side-view cameras. This is due to the wide angle lenses
used (less FOV and lower resolution in the region of interest)
and a worse signal-to-noise ratio (SNR).

5.4 Analysis of environmental influences

We also recorded scenes with different environmental influ-
ences:

– Daylight sequences recorded at daytime (1 h after dawn
and 1 h before dusk) with sunny, cloudy or rainy condi-
tions.

– Dirty lens we also recorded videos where the lens had
(natural) dirt on it (composed of the remains of a dead
insect; see Fig. 10 for example images).

– Garage sequences recorded in a garage with artificial
lighting. In these scenes, lighting conditions were very
difficult (see Fig. 10 for example images). To some
extent, this is due to the fact that sunlight is sometimes
visible and the exposure control of the camera adapts per-
manently and switches between day- and night-mode.

Figure 14 shows that the performance of the system is
different for these use cases. Large mismeasurements are
more likely in difficult situations but one important property
always remains: it is very unlikely that the parking slot is
measured too large. In only 5% of all cases, the length of
the parking slot is over-estimated by more than 20 cm. This
implies that if the system has found a free space, there is a
very high reliability that the vehicle actually fits into it.

5.5 Comparison to other methods

We compare our parking slot detection application to a fea-
ture-based method [35,36] and a solution based on an ultra-
sonic sensor [20]. For the camera-based approaches, we used

123



574 C. Unger et al.

0%
5%

10%
15%
20%
25%
30%
35%
40%

L
ik

el
ih

oo
d

Length Error [m]

Daylight Dirty Lens Garage

Fig. 14 The distribution of measurement errors with different environ-
mental influences: scenes recorded at daylight (sunny, cloudy or rainy),
with a dirty lens and in a garage with very difficult lighting conditions
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Fig. 15 The distribution of measurement errors of different methods
at daylight conditions: we compare our method based on dense motion-
stereo to a feature-based method [35,36] and a solution based on an
ultrasonic sensor [20]

daylight sequences from the side-view camera. The feature-
based method failed completely on the top-view videos. The
measurement errors of the feature-based approach are much
larger than the errors of our dense method. Only a few mea-
surements have an absolute error less than 0.5 m (see Fig. 15).
Figure 16 shows the same error distributions with coarser
intervals and shows that our approach achieves a very high
accuracy. The reason for the large errors of [35,36] lies in
the fact that the feature extractor often fails to detect features
on object boundaries. In many cases, features are mainly
detected at rims and license plates and this easily introduces
an error of roughly 2 m per parking spot. In other cases, fea-
tures are completely missing at textureless objects like walls
and this leads to much larger errors. Further, sometimes fea-
tures are matched incorrectly (for example, at repetitive struc-
tures) and this usually results in measurements that are too
small.

The approach based on the ultrasonic sensor [20] was only
evaluated on parallel parking slots (in total, 114 test cases),
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Fig. 16 The distribution of measurement errors of different methods
at daylight conditions: we compare our method based on dense motion-
stereo to a feature-based method [35,36] and a solution based on an
ultrasonic sensor [20]

because due to a limited depth range, it does not detect cross
parking slots. This method had mainly problems when the
obstacles had a complex 3D structure. For example, bushes
are not detected reliably and curved object boundaries led
to large errors. Also trailer hitches and small objects seem
to negatively impact the measurement accuracy. There were
a few false positives (only 4 cases), but probably due to
measurement errors, the number of false negatives (misses)
was with 28% quite high (in 32 cases). However, the overall
impression is that it is a very reliable system, whose perfor-
mance is invariant to illumination.

5.6 Accuracy of depth measurements

The accuracy of depth measurements is difficult to compare.
The feature-based system of [35,36] does not directly deter-
mine the depth of parking slots, so we cannot compare to
them. The ultrasound-based solution [20] has a limited depth
range (in practice, the maximum depth is between 3 and 4 m)
and so we evaluated it only on parallel parking slots.

Theoretical discussion In our approach, the depth Z is com-
puted from a disparity d. The relative depth-error is therefore
given by

Zerr = derr · Z

f · B + derr · Z
(10)

with the focal length f , the baseline B and the error of dispar-
ity estimation derr. In practice, the quantity f B is much larger
than derr Z , and therefore the error Zerr is approximately a
linear function of Z . This means that for our system, range
measurements using large values for Z are most challenging.
Thus, to evaluate our proposal, we used large values for Z
(i.e. only cross parking slots), in order to obtain an upper
bound for the error.
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Fig. 17 The relative error of depth measurements of different
approaches: for the ultrasound-based approach, the depth of the park-
ing spots was on average 2 m and for our method we used only cross
parking slots with depths between 5 and 6 m (the distance between the
camera and the far boundary was between 6 and 7 m)

Figure 17 shows the results of the depth accuracy: for the
ultrasound-based approach, the depth of the parking spots
was on average 2 m and for our method we used only cross
parking slots with depths between 5 and 6 m (the distance
between the camera and the far boundary was between 6
and 7 m). Notably, if we assume that derr = 0.125 then

the theoretical error for a depth measurement at 6.5 m is at
3.5% (for our side-view camera). The measurements of [20]
were relatively accurate in practice. For the motion-stereo
approach, the biggest challenge is given by repetitive struc-
tures: in one case the absolute error was 48 cm (10%) which
was due to mismatches at a fence (repetitive structure). Also
the characteristics of the camera play an important role: the
worse SNR of the top-view camera nearly doubles the error.

5.7 Performance of the collision warning

We also evaluated the collision warning application. We
tested it on 123 obstacles (see Fig. 18 for examples) and
checked whether the warning was correct or not: if there is
an object in the pivoting range of a door, a warning should
be issued – if it is save to open all doors, then the warning
should be suppressed. Based on these tests we determined
the detection rates (see Fig. 19). In 100 cases the decision for
the warning was correct (i.e. issuing the warning or not; see
Correct Detection). In 8 cases the location of the obstacle was
estimated too inaccurate (Obstacle Missed) and in 3 cases,

Camera Image Reconstruction Camera Image Reconstruction

Fig. 18 Examples for the Collision Warning: we present one camera
image and the reconstruction obtained from segmented disparity maps.
The objects (linewise from left to right and from top to bottom): a

bicycle (no warning), a motorcycle (no warning), a pole made of stone,
a pole made of steel, trailer 1, trailer 2, a bank and a stone
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Fig. 19 The performance of the collision warning at daylight condi-
tions. We evaluated whether the system warned correctly against the
presence of obstacles in the pivoting ranges of doors. In most cases,
the decision upon the warning was correct (Correct Detection). In other
cases, the position of the obstacle was estimated falsely outside or inside
of pivoting ranges (Obstacle Missed or False Warning), or the collision-
relevant part of the object was outside the FOV of the camera (Obstacle
Missed, but Occluded)

the critical part of the obstacle was out of the FOV (Obstacle
Missed, but Occluded; e.g. an attachable trailer and in one
case the door would have hit a pole at a very high position).
A False Warning happened in 12 cases: there was always
an obstacle present, but the system falsely estimated that a
collision is possible.

The collision detection works well for most objects, even if
they are lowly textured, mainly because of our robust depth
computation. The temporal fusion allows us to retain dis-
parities with low confidence in binocular stereo matching
because the fusion will remove inconsistent matches. In gen-
eral it is of course important that the obstacles are within
the FOV of the camera to be detected. For very thin objects
(for example, fences made of wire mesh) it happens that our
fast stereo processing is not able to recover them, because
the projected size in the image is smaller than the size of the
window used for matching. This is a well known problem
of correlation-based stereo matching and might by improved
by using pixelwise stereo matching [5,7,13]. However, it is
unlikely that such thin objects result in serious damage to the
car.

5.8 Qualitative impressions of augmented parking

We present generated bird’s eye views from different sequen-
ces in Figs. 20 and 21. Challenging were situations in which
the ground was not completely flat: in the bottom example
of Fig. 20 small distortions are visible in the rendered image.
Also reflections lead to artifacts which may be irritating in
the first place. Lastly, since we did not introduce photometric
registration, coloring is often inconsistent within a rendering.

5.9 Execution times

The execution times of the different processing steps can be
found in Table 1. Dense stereo matching and the temporal
fusion of disparity maps consume most time. We partitioned
the whole system into several threads:

1. Acquisition-thread: acquires video frames from the
camera and performs the undistortion.

2. Stereo-thread: runs the dense stereo matching algorithm.
3. Fusion-thread: performs the temporal fusion of disparity

maps.
4. Interpretation-thread: executes the segmentations and

the applications.
5. Visualization-thread: cares about the user-interface.

The collision warning and the augmented parking are not
real-time, which is tolerable: the collision detection is only
run in the moment when the vehicle stops. The latency of
the augmented parking can be easily reduced to a minimum,
if processing is started as soon as a parking slot is found.
Further, at the augmented parking most time is spent for per-
spective warping and might be accelerated with dedicated
hardware. Usually, we use development settings for the inter-
pretation thread, which includes many debug visualizations.
In this case, the interpretation may consume up to 20 ms, but
by turning off all unnecessary outputs it can be tweaked to
3 ms (including the segmentation). Moreover, we assigned
the highest priority to the fusion- and acquisition-threads, the
stereo- and interpretation-threads ran with lower priority and
the visualization-thread received the lowest priority.

The whole system is implemented in C++ (using Micro-
soft Visual C++ 9.0) and runs on Microsoft Windows. We
achieved the best performance on a quad-core CPU with 2.53
GHz (Intel Core2 Extreme Q9300) and also on a dual-core
CPU with 2.66 GHz (Intel Core2 Duo E8200). However, to
allow real-time operation on the dual-core, we had to dis-
able sub-pixel interpolations in the stereo and fusion algo-
rithms. Further, time-critical parts are implemented using
SIMD2 instructions. We also performed tests with another
mobile dual-core processor (in particular, an Intel T7600 with
2.33 GHz), but this CPU was not sufficient for real-time pro-
cessing.

6 Discussion

Some of the challenges one has to face are shearing effects
when using rolling shutter cameras, smearing with global
shutter, and misalignments whenever interlaced images are
involved. Moreover, the current cameras suffer from weak

2 Single Instruction, Multiple Data: in particular, the SSE2 instruction
set.
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Generated Bird’s Eye View

Frame 289 Frame 265 Frame 249 Frame 233 Frame 221

Frame 201 Frame 178 Frame 150 Frame 124 Frame 087

Generated Bird’s Eye View

Fig. 20 Examples for the bird’s eye views on different sequences: we show selected camera frames and the generated bird’s eye view. In the bottom
example, the ground plane was not flat and caused the vehicle to pitch and movements in z-direction. This leads to distortions in the rendering
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Frame 702 Frame 682 Frame 664 Frame 647 Frame 626

Generated Bird’s Eye View

Frame 209 Frame 194 Frame 166 Frame 141 Frame 116

Generated Bird’s Eye View

Fig. 21 Examples for the bird’s eye views on different sequences: we show selected camera frames and the generated bird’s eye view. The top row
is a good example for difficult lighting conditions
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Table 1 Execution times of the different processing steps on differ-
ent processors: on the E8200 sub-pixel interpolation and many debug
visualizations were disabled

Step Time: Q9300 Time: E8200
2.53 GHz, 4 cores
(ms)

2.66 GHz, 2 cores
(ms)

Undistortion 2 2

Rectification 0.5 0.5

Stereo matching 15 12

Temporal fusion 31 29

Segmentation 2 2

Parking slot detection 4–11 1–9

Collision warning 120 80

Augmented parking ≈10,000 ≈10,000

The collision warning and augmented parking are only run if required
(i.e. event-triggered)

sensitivity in low light conditions. If an application is
expected to work at night, some kind of active illumi-
nation would be required. This would involve additional
costs, installation space, and often leads to legal conflicts
in some countries. However, since parking maneuvers are
performed with relatively low speeds and having upcoming
high dynamic range imagers in mind, weaknesses of cur-
rent technology are to some extent tolerable. Moreover, the
temporal fusion of disparity maps turned out to be highly
effective against these issues.

Furthermore, it must be noted that there are mathemati-
cal limitations for monocular systems in non-rigid scenes: in
certain cases, if the motion-vectors of the host vehicle and
an obstacle are collinear then the motion of the obstacle is
hard or impossible to recover without additional knowledge
or interpretation of data. In the worst case, this leads to wrong
distances. However, our focus lies on comfort functions: the
detection of parking slots and avoidance of minor damage
is not safety critical. Therefore, we assume that the scene is
static and there are also techniques available to detect moving
obstacles by introducing other constraints [12].

Objects that move parallel to the vehicle and in the
same direction happen to be less critical, because their esti-
mated distance is actually larger than the true distance. To
some extent our temporal fusion helps with moving objects,
because parts that move inconsistently over time (for exam-
ple, the feet of pedestrians) are getting replaced by the static
background. Most critical are objects that move parallel to
the vehicle and in opposite direction, because their estimated
distance is closer than in reality. However, in the worst case,
this results in a missing detection of a free space or a false
warning.

Compared to the feature-based approach [35,36], our
approach based on dense motion-stereo has important advan-
tages:

– Redundancy of measurements due to overlap of images:
redundancy can be systematically utilized to detect wrong
measurements and to improve accuracy.

– Higher detection rate of obstacles: while feature-based
approaches are usually specialized for a specific class of
features (e.g. corners and edges), problems arise if such
features are absent (e.g. regions with low texture). In our
experiments the dense approach turned out to be much
more flexible and detects almost all obstacles.

– Higher measurement accuracy of the measured dimen-
sions of parking slots: high accuracy requires a precise
detection of object boundaries. Feature-based approaches
may miss detecting features which lie exactly on object
boundaries. Such behavior introduces large measurement
errors.

7 Conclusion

This paper presents a generic method for environment model-
ing based on dense motion-stereo and demonstrates its flexi-
bility using different applications for parking assistance. Our
processing pipeline exploits the principle of dense motion-
stereo, where for every pixel in every camera image we deter-
mine a depth using real-time stereo. Since the rectification
cannot be computed accurately, we introduce an extension to
our real-time stereo method [30], in order to make matching
robust against distortions of the epipolar geometry. After ste-
reo matching, the history of disparity maps is fused probabi-
listically to obtain for every camera image the most probable
disparity map that exposes a minimum amount of outliers. In
every fused disparity map we detect the ground plane, obsta-
cles and from that a silhouette which limits the free space.
Then, we combine all these partial silhouettes so that over
time a global model of the environment is created incremen-
tally. Within this model, we perform an Automatic Parking
Slot Detection.

Further, we use the disparity maps to obtain a local 3D
reconstruction of specific regions of interest (for example,
the pivoting ranges of doors). Using such a local 3D recon-
struction, we perform a collision analysis and, if necessary,
issue a Collision Warning to occupants to prevent minor dam-
ages. Another application is Augmented Parking and uses
image-based rendering to compute a virtual bird’s eye view
to visualize the positions of the host vehicle, obstacles and
the parking slot to the driver.

The accuracy and reliability of our approach is demon-
strated via exhaustive experimentation and comparison to
solutions based on an ultrasonic sensor and feature-based
matching. The results show clearly that our proposal achieves
high reliability, measures accurately and is very flexible.
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