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Abstract This paper presents a novel approach for matching
2-D points between a video projector and a digital camera.
Our method is motivated by camera–projector applications
for which the projected image needs to be warped to pre-
vent geometric distortion. Since the warping process often
needs geometric information on the 3-D scene obtained from
a triangulation, we propose a technique for matching points
in the projector to points in the camera based on arbitrary
video sequences. The novelty of our method lies in the fact
that it does not require the use of pre-designed structured
light patterns as is usually the case. The backbone of our
application lies in a function that matches activity patterns
instead of colors. This makes our method robust to pose,
severe photometric and geometric distortions. It also does
not require calibration of the color response curve of the
camera–projector system. We present quantitative and quali-
tative results with synthetic and real-life examples, and com-
pare the proposed method with the scale invariant feature
transform (SIFT) method and with a state-of-the-art struc-
tured light technique. We show that our method performs
almost as well as structured light methods and significantly
outperforms SIFT when the contrast of the video captured
by the camera is degraded.
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1 Introduction

In the past decade, digital cameras and LCD/DLP video pro-
jectors have become almost ubiquitous as their price kept
decreasing. This opens the door to numerous applications
involving a projector and a camera, such as multimedia appli-
cations, shows, digital arts, and plays to name a few.

There are two fundamental issues that most projector
applications have to deal with : photogrammetric and geo-
metric distortion correction. This paper focuses on the sec-
ond issue. As far as the observer is concerned, geometric
distortions appear when the projector is located far from
the observer and/or when the 3-D surface is badly oriented.
As mentioned by Raskar et al. [27], whenever the projec-
tor and the 3-D surface cannot move, the only solution is
to prewarp the projected image. Given the 3-D geometry of
the scene, one can easily implement such warping function to
prevent distortion from the observer’s stand point [26,27,31]
(if the warping is to be done for the camera’s stand point, only
the pixel mapping between the camera and the projector is
needed [31]). Unfortunately, the geometry of the scene is
often unknown a priori and thus needs to be estimated at
runtime. One usual way of doing so is through the use of a
camera and a two-step procedure. First, the camera and the
projector are calibrated so that their intrinsic and extrinsic
parameters are known [36]. Then, pre-designed patterns of
light (the so-called structured light patterns) are projected on
the surface so that pixels from the projector can be matched
with those of the camera. Depending on the complexity of
the scene, one can project simple dots of light (in the case of
a planar surface, for instance) or more complex patterns [28]
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(in the case of a compound surface). Once a sufficiently large
number of matches has been found, a 3-D surface is recov-
ered by triangulation. Given that both the scene and the pro-
jector stay fixed, the estimated 3-D surface is used to warp
the projected image for any viewpoint in the room. In other
words, our goal is to prewarp the projected video so that it
does not look distorted from a given point of view. Typical
applications that could benefit from our method are plays
and music shows in which the scene on which the video is
projected changes in time. It is the case when the walls pivot
on an axis or the floor goes up and down. Our method can
also be used in a home application to automatically readjust
projected videos.

One obvious problem arises when the camera/projector
system and/or the scene is moved after the calibration is over.
One typical example is in plays involving artistic staging. In
this case, the use of structured light patterns to recover the
3-D geometry becomes inadequate as the system would need
to stop projecting the video to readjust. Such an application
thus requires the matching to be done directly from the pro-
jected to the captured video. Unfortunately, we empirically
noticed that pure color-based matching strategies between
two such images are doomed to fail since images captured
by the camera are heavily degraded by non-linear color dis-
tortion (see Fig. 1b vs. c). This is especially true when the

Fig. 1 a Our setup contains an LCD/DLP projector, a camera, and a
piecewise planar 3-D surface. The projected (b) and captured videos
(c) are time-synchronized

white balance and exposure time of the camera automat-
ically readjust and/or when the projection surface is tex-
tured. In fact, it has already been shown that SIFT [20],
although one of the most robust matching method, fails in
such conditions [7].

In this paper, we propose to find camera–projector
matches based on unstructured light patterns, i.e., based on
the projected video itself. In this way, each time the sys-
tem needs to recover the 3-D scene, our approach analy-
ses activity patterns recorded in both videos and use it to
find matches. These activity patterns are obtained following
a motion detection method applied simultaneously on the
video emitted by the projector and the video captured by
the camera. They are then bundled with grayscale quanta
and embedded into a cost function used to find matches.
Once matches have been found, the 3-D structure of the
scene is recovered and the projected video warped. In this
paper, we focus on piecewise planar surfaces and quadrics
such as spheres and cylinders. Interestingly, our system needs
between 15 and 30 frames (i.e., at most 1 s of video) to effi-
ciently recover the 3-D scene, This allows an artistic director
to perform a quick readjustment of the system unbeknownst
to the audience. We tested our method on different videos
including music clips, animated movies, and home-made
videos.

2 Contribution

The main contribution of this paper lies in the camera–
projector matching procedure which combines the following
key elements:

1. It is non-intrusive. The matching is performed without
alterations to the scene nor the projected video and does
not require the use of structured light patterns or featured
tracking;

2. Since our method is not color-based, our camera–
projector matching procedure does not need a colori-
metric calibration.

3. Our method allows for a quick recalibration (after a
change in the relative position of the scene and the
camera–projector) without interrupting the projection.

3 Previous work

Matching pixels in two images (here camera–projector
matches) is the first step of most applications involving a
triangulation procedure. There has been a significant effort
to develop simple and efficient matching strategies that we
summarize in four categories.

123



Camera–projector matching using unstructured video 889

3.1 Structured light

Certainly, one of the most implemented strategy, structured
light methods use pre-designed patterns of light to encode
pixels’ position. All kinds of patterns have been proposed
including color, binary and grayscale patterns, patterns with
spatial coding, others with time-multiplexing coding, some
being dense, others being sparse, etc. [28]. As far as our
system is concerned, structured light is hardly a solution
since the pose between the system and the scene may vary
in time. Being incapable of readjusting in real time, the sys-
tem would need to stop the user-selected video to recali-
brate. This, of course, is unacceptable for obvious marketing
reasons.

Some structured light methods use a binary code and its
inverse following inter-frame differences [28]. Up to a cer-
tain point, our method can be viewed as an extension of such
approaches. This being said, these methods use only pre-
designed patterns of light, while we use purely unstructured
video. Moreover, the inter-frame difference in our case is
used to extract motion features, not the inverse of a pattern
of light.

Other methods use dynamic programming to reduce the
ambiguity of their structured light patterns [34,35]. In our
case, dynamic programming is used to enforce an ordering
constraint.

Some other techniques embed imperceptible patterns of
light into the projected images [5,38]. One way of doing so is
by reducing the dynamic interval of the DLP projector. How-
ever, this solution is only conceivable for high-end (and very
costly) projectors with a large dynamic interval and for which
we know how input color are transformed by the mirror-flip-
ping commands.

Our solution does not suffer from these limitations as it
uses unstructured light based on the ongoing video.

3.2 Feature-based matching

A second approach consists in matching feature points
extracted from the projected and the captured images
[18,32,37]. One such approach that has drawn a lot of atten-
tion lately is the scale invariant feature transform (SIFT)
[20]. SIFT is one of the very few methods which provide a
solution for both extracting feature points and finding point-
to-point matches. The main advantage with SIFT lies in its
robustness to geometric transformations and non-linear illu-
mination distortion. This being said, we empirically observed
that the number of SIFT matches decreases rapidly in the
presence of severe perspective transformations and/or illu-
mination distortions. This is a major limitation as far as our
application is concerned. Empirical results will be shown in
Sect. 6.

3.3 Stereovision

Stereovision methods are typically used on images taken by
two cameras mounted side-by-side [29]. Unfortunately, it has
long been documented that simple (but realtime) greedy opti-
mization strategies such as winner-take-all underperform in
textureless areas and that only global (and slow) optimiz-
ers such as graph cut or belief propagation provide decent
matches [29]. This makes the stereovision strategy ill-suited
for our camera–projector setup which calls for fast solutions.
Also, since there is a significant color distortion between
the projected and the captured videos, stereovision methods
based on a color–constancy hypothesis are doomed to fail
[29]. Note that cost functions based on mutual information
have been designed to deal with color inconsistency problems
[17]. Nevertheless, these cost functions are computationally
expensive and not adapted to systems such as ours.

Let us, however, mention that stereovision could be
a sound solution for a two-camera/one-projector system
[19,25]. This would be true for highly textured videos allow-
ing simple greedy methods to work. Such methods are known
as spatio-temporal stereovision [6,35].

3.4 Cooperative scenes

Markers made of vivid colors and easy-to-locate designs can
be physically stitched to the scene. One example of such
makers is ArTags [11] which show great robustness. How-
ever, we empirically observed that visual tags are not easy to
detect when color patterns are projected on them. Also, for
obvious aesthetic reasons, some applications involving live
shows or home products forbid the use of markers. Let us
mention that infrared LEDs with infrared cameras can also
be utilized [33]. However, such a method is costly, requires
extra hardware, and is not robust in areas where the ambient
temperature fluctuates in time.

4 Overview of our method

Let us now give an overview of our method to allow for a
high-level understanding of its structure. Our method is based
on five steps that will be described in more details in Sect. 5.

1. Calibrate the camera and the projector to estimate their
intrinsic and extrinsic parameters.

2. Start projecting and capturing the video at each time t ,
detect motion and assign a grayscale quantum to each
pixel in both videos.

3. Find camera/projector matches based on the grayscale
quanta. To simplify this procedure, both image frames
are rectified so their epipolar lines are horizontal.
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4. Out of these matches, estimate the 3-D surface. Depending
on the nature of the 3-D surface, fit planes or quadrics
on the 3-D points.

5. Given the recovered 3-D geometry, warp the projected
video.

5 Details of our method

5.1 Camera–projector calibration

As opposed to what the schematic representation of Fig. 1a
suggests, the camera and the projector are screwed to a com-
mon plate so their relative position and orientation stay fixed
during the entire projection. The system thus needs to be cal-
ibrated only once at the beginning of the process. To do so,
we use Zhang’s calibration method [36], which calibrates the
projector like a camera. To avoid user intervention, structured
light patterns are first projected on a flat checkerboard to get a
one-to-one correspondence between the pixels of the camera
and those of the projector. The checkerboard corners are then
detected to calibrate the camera and recover the 3-D plane.
The projector is then calibrated using the correspondences
and the known 3-D position of the checkerboard’s corners.
At the end of this stage, the intrinsic and extrinsic parame-
ters of the camera and the projector are known and stored in
memory (a similar calibration method can be found in [2]).
These parameters are used to rectify the videos (Sect. 5.3),
recover the 3-D geometry of the scene (Sect. 5.4), and warp
the projected video (Sect. 5.5). Let us stress the fact that cal-
ibration has to be performed only once, the parameters being
valid as long as the position and orientation of the camera
and the projector do not change.

5.2 Motion detection and quantization

Once calibration is over, the system starts projecting the video
on the 3-D scene. At the same time, the camera films the scene
on which the video is projected (the camera is synchronized
with the projector). As mentioned earlier, the goal is to find
matches between the projector and the camera so the geom-
etry of the scene can be recovered. This is done based on
motion labels that we estimate with a simple background
subtraction method.

Let f p
t and f c

t be the projected and captured video frames
at time t , both containing RGB values. At each time t , a
reference image r p

t and rc
t is subtracted (and then threshol-

ded) from the input frames so that binary motion fields X p
t

and X c
t are obtained:

r i
t+1 = α f i

t + (1− α)r i
t , and r i

0 = f i
0

Ui
t (x, y) = ||f i

t (x, y)− ri
t (x, y)||

X i
t (x, y) =

{
1 if Ui

t (x, y) > τ

0 otherwise

where i = c or p, α ∈ [0, 1] , τ is a threshold, and ||.||
stands for the Euclidean norm.

We noticed that noise, illumination changes and local
brightness variations make the use of a global and fixed
threshold τ error prone. To avoid errors, τ is computed adap-
tively and locally. In this perspective, images U c

t and U p
t are

split into p×q blocks. Then, for each block, we compute the
threshold following Otsu’s segmentation technique [23]. The
value of τ for each pixel (x, y) is then linearly interpolated
from the threshold of the four nearest blocks. Quantitative
and qualitative comparison between an adaptive and a fixed
threshold will be provided in Sect. 6.

To further improve robustness, active pixels (those for
which X i

t (x, y) = 1) are assigned a grayscale quantum
(Qc

t (x, y) and Q p
t (x, y)) following a quantization proce-

dure. Quanta are estimated with the median-cut algo-
rithm [16]. Median-cut divides the histogram of f p

t and f c
t

(grayscale versions of videos frames) into bins of various
sizes, each containing the same number of pixels. Once the
algorithm has converged, each active pixel is assigned the
bin index (read quantum) its grayscale falls into. In this way,
Qi

t (x, y) ∈ {1, 2, . . . , N } for active pixels and Qi
t (x, y) = 0

for inactive pixels.

5.3 Camera–projector matching

Now that every active pixel has been assigned a grayscale
quantum, the goal is to find for every pixel (xc, yc) in the cap-
tured image its corresponding point (x p, yp) in the projected
image. But before to do so, since the viewing axis of the cam-
era and the projector are not parallel, the video frames are
first rectified so their epipolar lines are horizontally aligned
[12]. This is done with the intrinsic and extrinsic parameters
estimated in Sect. 5.1.

5.3.1 Rectification

Our rectification procedure is based on that of Fusiello et al.
[12] which we modified the final step. In their final step,
Fusiello et al. average the intrinsic parameters of both views,
which is not suited for a camera–projector system (camera’s
and projector’s intrinsic parameters are too different).

In our case, we rectify the camera and projector frames
with an homographic transformation based on the 3 × 3
matrices Hc and Hp. As explained in [12], such homography
matrices are computed as follows:

Hc = Kc′R R−1
c K−1

c

Hp = K p′R R−1
p K−1

p
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where Rc and Rp are extrinsic rotation matrices, and matrix R
is the camera and projector’s pose (that we compute following
Fusiello et al’s method [12]). Kc and K p are the camera’s and
projector’s intrinsic matrices, while Kc′ and K p′ are the 3×3
intrinsic matrices of the rectified camera and the rectified pro-
jector, i.e.

Kc′ =
⎛
⎝ f c

x 0 cc
x

0 fy cc
y

0 0 1

⎞
⎠ , K p′ =

⎛
⎝ f p

x 0 cp
x

0 fy cp
y

0 0 1

⎞
⎠ .

Parameters cc
x , cc

y, cp
x and cp

y stand for the image center,
while f c

x and f p
x are the X component of the focal length.

Since the epipolar lines are horizontal in the rectified views,
the Y component of the focal length fy is the same for the
camera and the projector. However, f c

x and f p
x are deter-

mined independently for each view. This allows to preserve
the X-axis resolution of both the projector and camera recti-
fied video frames and thereby ensure precision of the recov-
ered 3-D points.

The values of f c
x , f p

x and fy are obtained by minimizing
the horizontal scale factor between the pixels in the original
image and the ones in the rectified image. This is very similar
to Gluckman and Nayar’s method [13], but with a 1-D pixel
stretching criteria instead of their 2-D criteria.

5.3.2 Cost function

At this point of the process, the camera and the projector
image frames have been rectified. From now on, the matching
procedure will look for the best match (x p, yc) (in the rec-
tified projected image) given pixel (xc, yc) (in the rectified
captured image). We denote “X p” the correspondence map
such that X p(xc, yc) = x p.

The best correspondence map X p is the one which min-
imizes a given criteria whose definition is pivotal for our
method. Given that each pixel (xc, yc) in the camera is
assigned a set of quanta �c = {Qc

t−W (xc, yc), . . . , Qc
t

(xc, yc)} over a period of time W , the goal is to find the
pixel in the projector with a similar set of quanta � p =
{Q p

t−W (x p, yc), . . . , Q p
t (x p, yc)}. This leads to the follow-

ing formulation

X p = arg min
X̂ p

∑
xc,yc

C
(
�c, � p, xc, yc, X̂ p

)
(1)

where C(.) is a cost function measuring how similar two sets
of quanta �c and � p are. Since �c and � p are two vectors
of equal length, C(.) could be a simple Euclidean distance.
Unfortunately, this function is error prone and needs to be
replaced by a more robust function. Our cost function con-
siders that two sets of quanta �c and � p are similar when their
activity occurs at the same time and when their spatial and
temporal gradients are similar. Mathematically, this leads to

C
(
�c, � p, xc, yc, X̂ p

)
=

t∑
τ=t−W

g(Qc
s , Q p

s ,X c
s ,X p

s )

where Qc
s = Qc

τ (xc, yc), Q p
s = Q p

τ (x p, yc), X c
s =

X c
τ (xc, yc) and X p

s = X p
τ (x p, yc). As for g(Qc

s , Q p
s ,X c

s ,

X p
s ), it is equal to 1 when X c

s �= X c
s , to 0 when X c

s = X c
s = 0

and otherwise it is equal to
∑

r ω(Qc
s−Qc

r , Q p
s −Q p

r ) where
r is a first-order spatio-temporal neighbor of (xc, yc, τ )

in Qc and (x p, yc, τ ) in Q p and ω(a, b) returns 0 when
sign(a)× sign(b) ≥ 0 and 2 otherwise.

5.3.3 Limiting the search interval

It is well known that a matching procedure does not need to
consider every possible match (x p, yc) given a pixel (xc, yc)

[29]. The reason for this is that some matches lead to 3-D
points located behind the camera/projector system and oth-
ers to 3-D points located too far away in front of the system.
Limiting the search interval is thus an easy way to increase
the matching accuracy while reducing the processing cost.
Although some authors define the search interval in an ad
hoc manner, one can explicitly compute it based on the mini-
mum (Zmin) and maximum (Zmax) distances allowed. Since
these distances are related to the minimum and maximum
disparity (see Eq. (4) in Appendix A), we recover the search
interval for a pixel (xc, yc) as follows:

[
xmin

p
xmax

p

]
=

⎡
⎣ b f p

x
Zmin
−

(
cc

x f p
x −cp

x f c
x− f p

x xc
)

f c
x

b f p
x

Zmax
−

(
cc

x f p
x −cp

x f c
x− f p

x xc
)

f c
x

⎤
⎦ . (2)

5.3.4 Optimization method

The goal of the optimization method is to solve Eq. (1). To do
so, one could use a simple greedy optimizer such as winner-
take-all (WTA) [29]. Unfortunately, we empirically observed
that WTA generates a large number of outliers (read “bad
matches”) which propagates errors to the upcoming steps of
the method. In order to reduce the number of outliers, we
enforce an ordering constraint (OC). The OC states that if
a point A lies to the left of a point B in one image, then A
must also lie to the left of B in the other image. Although the
OC can be violated in scenes containing thin objects and/or
large occlusions [9], our system works only on 3-D scenes
use as visualization surfaces. The OC is thus fulfilled in all
scenes that we deal with. The OC can be enforced without a
significant increase in CPU effort, thanks to a dynamic pro-
gramming (DP) implementation [3,22] (see Appendix C for
details on our DP implementation).

As can be seen in Fig. 2, DP significantly reduces the
number of outliers as compared with WTA.
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Fig. 2 Proportion of outliers returned by winner-take-all and dynamic
programming at different time instants of a video

5.4 Fitting m planes on 3-D points

At this stage, a match has been found for every pixel at which
activity had been recorded. This gives a sparse correspon-
dence map X p in which each camera pixel (xc, yc) is assigned
a horizontal position (x p, yc) (see Fig. 3). Since projection
surfaces are frequently piecewise planar, m planes can be fit-
ted onto these points to recover the entire 3-D surface. Let us
first explain how one plane can be fitted on X p. We will then
show how m planes can be fitted and how outliers are handled.

5.4.1 Fitting one plane

Let Pt = {p1, p2, . . . , pN } be a set of points p j =
(x j

c , y j
c , x j

p) in the projective space estimated at time t and
stored in a correspondence map X p (see Fig. 3). Given that
the p j are all inliers and distributed (more or less some noise)
on a plane, a typical way of calculating the best-fitting plane is
by minimizing the square of the offsets. The offset of a point
is usually its perpendicular distance to the plane. However,
since our points lie on a rectangular lattice (the correspon-
dence map X p), we consider instead the offset along the third

dimension of p j since we expect errors to be on the x j
p coor-

dinate only.
Let axc + byc + cx p + d = 0 be the equation of a

plane. Since a projection surface cannot be parallel to the

viewing axis, one can set c = 1 to reduce by 1 the number of
unknowns. Given a point (x j

c , y j
c , x j

p), its depth according to

the plane is x p = −(ax j
c + by j

c + d) and its squared depth

offset is (x j
p − x p)

2. Thus, the best plane given Pt is the one
which minimizes the depth offset for every point, namely

E(P, A) =
∑

j

(
p̂ j A + x j

p

)2
(3)

where p̂ j = (x j
c , y j

c , 1) and A = (a, b, d)T. By forcing
d E/d A = 0, one can show that A = −M−1 B where

M =
⎛
⎜⎝

∑
j (x j

c )2 ∑
j x j

c y j
c

∑
j x j

c∑
j x j

c y j
c

∑
j (y j

c )2 ∑
j y j

c∑
j x j

c
∑

j y j
c

∑
j 1

⎞
⎟⎠ B =

⎛
⎜⎝

∑
j x j

c x j
p∑

j y j
c x j

p∑
j x j

p

⎞
⎟⎠.

Let us mention that the estimated plane [a, b, 1, d] can
be transposed in the 3-D Euclidean space as follows:
T (a, b, 1, d)T, where T is the 4 × 4 matrix defined in
Appendix A. The reason why planes are fitted in the projec-
tive space (i.e., on the correspondence map X p) and not on
3-D points in the Euclidean space is described in Appendix B.

5.4.2 Fitting m planes and dealing with outliers

Assuming that the projection surface is piecewise planar, we
use a modified version of RANSAC to find m different planes
with their respective set of inliers [25]. Since RANSAC can
only fit one plane, we retained the following generalization:

. minsize← s*size(Pt ), i ← 1, exit← false
DO
. (inl[i],A[i])← RANSAC(Pt )
. if (size(inl[i]) < minsize)
. m ← i − 1, exit← true
. else
. Pt ← remove the inliers inl[i] from Pt .
. i ← i + 1
WHILE exit == false

Fig. 3 Left Correspondence map X p obtained at time t with our
method. A correspondence has been assigned to each pixel at which
activity has been recorded. (middle and right) two views of a plane

estimated with RANSAC. Inliers are sitting on the plane while outliers
are distributed in front and behind the plane. Outliers correspond to
17% of the population
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Fig. 4 3-D points recovered by our version of RANSAC as seen from the camera and the projector. The dotted line corresponds to the intersection
between the two planes

where s is a fraction between 0 and 1. At the end, this proce-
dure returns m plane equations (here A), their related inliers
(here inl) and the outliers stored in Pt . Note that this algorithm
does not need the number of planes m to be predefined. Sim-
ilar plane fitting strategies can be found in [4,30]. For more
details concerning RANSAC, please refer to [15].

5.5 Warping the projected video

Now that the m plane equations have been recovered, the pro-
jected video can be warped. For m = 1 plane, the procedure
goes as follows:

1. Select a viewpoint for which the geometric correction
must be performed. At this position, put a virtual camera
and compute its extrinsic parameters with respect to the
camera frame.

2. Assign intrinsic parameters to the virtual camera.
3. Using the plane equation and the extrinsic and intrin-

sic parameters, compute two homography matrices: one
relating the projector and the camera and one relating
the camera and the virtual camera (see [15] for more
details).

4. From the two homography matrices, compute a third
homography matrix relating the projector and the vir-
tual camera.

5. Warp the projected image according to the third homog-
raphy matrix.

Whenever m > 1 and the planes are connected (as in Fig. 4),
the warping procedure must be applied for each plane:

– Find the intersection between each pair of planes so every
pixel in the projector is associated to a plane (see Fig. 4b).

– Apply step 1 to 4.
– For each plane, apply step 5 to its corresponding area in

the projected image.

6 Experimental protocol and results

In order to gauge performances, we tested our system on
scenes made of one, two and four planes as well as scenes
made of quadrics. We tested different videos containing dif-
ferent types of activity (see Fig. 5a, c, e). The first video
is called corridor (CRD) and contains 167 frames. It is a
surveillance video captured by a fixed camera and shows a
pedestrian walking from the left to the right. The reason for
this video is to evaluate how our method behaves on vid-
eos containing little activity. The second video, called live
band (LB), contains 240 frames and shows a live music band
filmed by a hand-held cellphone. This video suffers from
severe compression artifacts and contains a lot of activity.
The third video, called traffic circle (TC), contains 1,036
frames and was captured by a mid-end video camera. This is
a typical home-made video showing a left-to-right pan of the
scene with jitters due to the hand-held nature of the device.

For every test, we used the following parameters:α= 0.85,

N = 6 and s = 0.1. Results labeled as “ours” refer to our
method using motion detection with an adaptive threshold
and 3-D primitives fitted in the projective space. We also
tested two projectors. The first one is a 1,576 × 1,080 pro-
jector that we used for the corridor sequence. The second
one is a 225 lumen LED-based 1,024 × 768 projector that
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Fig. 5 The corridor, live band
and traffic circle videos used for
testing. On the left, the projected
video and on the right, the
captured video. Note that the
lack of contrast in image (b) and
(d) is caused by the shutter
delay of the camera that we
fixed to 1/30 s (image (f) has
been acquired in a synthetic
environment). Such delay makes
sure the captured and projected
videos are temporally aligned

we used for the live band sequence. We used a 3,024×4,334
camera whose images are reduced to fit the resolution of the
projected videos.

6.1 RANSAC validation

As mentioned earlier, RANSAC is a robust solution to
recover planes from 3-D scatter plots [25,21]. However, to
our knowledge, no previous work in the field of plane fitting
thoroughly tested RANSAC’s robustness to noise and out-
liers. Our goal in this section is to show that RANSAC can
successfully recover many planes even under harsh condi-
tions. We first tested RANSAC on the ground truth disparity
map of the Venus stereovision setup [29]. As shown in Fig. 6,
this setup contains four planes which we heavily corrupted
to see how RANSAC would behave. Surprisingly, RANSAC

was still capable of recovering the four plane equations with
<3◦ of error.

To further test the robustness of RANSAC, we gener-
ated scenes made of eight planes randomly positioned in a
100× 100× 100 space. Each of these planes were assigned
5,000 points for a total of 40,000 points (read inliers). As
shown in Table 1, for each scene, a certain number of out-
liers was added (between 0 and 50,000) and the resulting
3-D scatter plot was corrupted by white Gaussian noise with
σ ∈ {0, 5, 10}. After running RANSAC on 270 different
scenes, we came to realize that even in the worst case sce-
narios (σ = 10 and 50,000 outliers) RANSAC works on the
average more than 75% of the time. That is to say, RANSAC
recovers most of the time six planes out of eight. When the
noise level and/or the number of outliers decreases, RAN-
SAC recovers all eight planes almost every time.
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Fig. 6 a Ground truth disparity map for the Venus stereovision
sequence [29], b with 25% of corrupted pixels. In c 3-D plot show-
ing with four grids the planes recovered by RANSAC. Inliers are on the

planes while outliers are distributed around it (most outliers lie outside
the field of view of the camera)

Table 1 Percentage of true positives on scenes made of 40,000 points
distributed on eight random planes

Noise level Number of outliers

0 25,000 50,000

0 100 100 99.1

5 95.0 93.3 88.8

10 85.4 85.1 75.4

These scenes are corrupted by outliers (between 0 and 50,000) and white
Gaussian noise. The standard deviation of noise σ is 0, 5 and 10

6.2 Single-plane setup

Here, videos were projected on a plane to see how our method
behaves on a flat surface such as a screen or a wall. The tar-
get contains fiducial markers at known positions so the plane
equation can be computed using a photogrammetric method
(and thus be used as a ground truth). Since these markers are
visible in the captured video (see Fig. 5b), it also allows to
see how the system behaves when the video is projected on
a textured surface.

We first tested the corridor sequence which is by far the
most difficult sequence, due to the small amount of activity
it contains. Given a temporal window W of 30 frames, we
recovered the plane equation at each time t . As shown in
Fig. 8, our method produces an average error of 2.8◦ between
the ground truth plane and the estimated plane.1 Figure 8
also shows that fitting a plane in the projective space is more
robust than in the Euclidean space.

Figure 7 shows a camera frame at t = 120 and its
related motion label field. This frame is where SIFT and
the Euclidean plane fitting both failed (see Fig. 8). Interest-
ingly, although the active pixels are within a small region of

1 Our method normally estimates the 3-D surface only once. Here, we
estimated a plane at each time t in Figs. 8 and 11 to show how our
method behaves at different time instants of the video.

<3.8% of the image, our approach still accurately recovers
the plane’s position and orientation.

Also, as shown in Fig. 9, an error of 2.8◦ corresponds to a
reprojection error of <4 pixels, which is barely noticeable by
the human eye. This is obvious when considering Fig. 12a
and b, in which a warped checkerboard has been projected
on a planar surface.

We also tested the live band video sequence on a 3-D plane
with W = 30. As shown in Fig. 3, an average of 13,545
inliers has been recovered and the estimated 3-D plane has
an angular error of <3◦.

6.3 Comparison with SIFT

Here, we implemented the processing pipeline described in
Sect. 4, except for the matching procedure (Sect. 5.3), which
we replaced by SIFT. Note that to make the comparison fair,
every match found by SIFT at time t was propagated to the
upcoming frames to allow for more matches.

We used the corridor sequence that we projected on a
flat textured surface. As can be seen in Fig. 8, our method
outperforms SIFT, as it produces a much lower angular error
on the average. Due to the texture on the surface and severe
spatial and photometric distortions, SIFT finds a small num-
ber of good matches (<50 as shown in Fig. 10) whose distri-
bution is aligned at some time instant (see Figs. 9, 10). This
leads to an average reprojection error three times larger than
that obtained with our method.

Table 2 shows the number of inliers found by our method
and by SIFT (RANSAC has been used to filter out outliers)
for the live band and corridor sequences projected on a plane
at four different angles. It also contains results obtained with
a fixed and an adaptive threshold for our method’s motion
detection step. Since these tests were performed in a virtual
environment, we added a contrast degradation factor between
1 and 4 to simulate the effect of a real-life camera whose
images are often very dark due to a small shutter delay.
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Fig. 7 Camera frame for the
corridor sequence at t = 120,
containing little activity (active
pixel are in black in the right
image)
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Fig. 8 Angular error between the ground truth plane and the plane
estimated with our method and SIFT. Here, the corridor sequence has
been used

Results clearly show that our method finds more matches
than SIFT. In fact, our method (with an adaptive threshold)
provides approximately 1,800 times more inliers than SIFT.
The greatest variation between the maximum and minimum
number of matches is 28.6% for our method as opposed to
99% for SIFT. This clearly shows that our method is more
stable when dealing with low contrast video frames. This also
shows the importance of adaptive thresholding as the number

of inliers found with a fixed threshold decreases drastically
when the camera image is badly contrasted.

6.4 Two-plane setup

In this test case, we projected the live band video on a two-
plane wedge located 800 mm away from the camera. We first
reconstructed the 3-D wedge with a structured light tech-
nique involving gray code and phase shift [28]. Then, we
recovered the two plane equations with our method given a
temporal window W of 15, 30 (with an adaptive threshold)
and 60 (with a fixed threshold). The angular error for both
plane at each time t is shown at the top of Fig. 11. At the
bottom of Fig. 11, we superimposed the 3-D results obtained
with structured light and our method (W = 30 with A.T.).
As can be seen, the maximum error of our method is of only
4 mm which corresponds to 0.5% of error. The average depth
error for both planes is−1.9 and−1.3 mm while the average
angular error is approximately 1.5◦ with W = 15 and 0.9◦
with W = 30. We can see in Fig. 12c a warped checkerboard
projected on the wedge and (d) its projection as seen from
an arbitrary point of view. In comparison, a fixed threshold
yields a larger variation between the average error of the two
planes and requires more frames to obtain such results.

Fig. 9 Reprojection error of a
flat checkerboard for the
corridor sequence. The dots are
the 3-D points recovered by our
method (on the left) and SIFT
(in the middle). Two time
instants have been selected,
namely t = 43 (first row) and
t = 140 (second row)

Camera View, Our Method CameraView, Sift

Incorect Color
Correct Color

Meanreprojection error
Ours 3.8384
Sift 8.66354

Variance
Ours 9.22679
Sift 288.908

Legend

Camera View, Our Method Camera View, Sift

Incorect Color
Correct Color

Mean reprojection error
Ours 2.39715
Sift 3.8651

Variance
Ours 9.82182
Sift 25.3584

Legend
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Fig. 10 3-D points recovered
by our system (on the left) and
SIFT (on the right) at t = 43
and t = 140 of the corridor
sequence. The 3D points are
plotted on top of the ground
truth plane. As shown in Fig. 8,
due to a small number of 3-D
points found by SIFT at frame
43, the angular error rises above
40◦
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Frame index : 43
Nb inliers : 10422

Angular Error : 2.88235
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Frame index : 43
Nb inliers : 26

Angular Error : 43.5789
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Z

Frame index : 140
Nb inliers : 951

Angular Error : 3.01934

X
Y

Z

Frame index : 140
Nb inliers : 44

Angular Error : 4.11957

Table 2 Number of inliers found by SIFT and our method, using a
fixed and an adaptive threshold (F.T. and A.T.) in the motion detection
step

Sequence\angle Number of inliers found

0◦ 5◦ 25◦ 50◦

Ours (F.T.)-LB-1 66,373 62,873 63,845 43,581

Ours (F.T.)-LB-2 19,897 20,571 18,941 17,102

Ours (F.T.)-LB-4 3,414 3,352 3,192 2,735

Ours (F.T.)-CRD-1 62,186 59,763 57,393 52,375

Ours (F.T.)-CRD-2 6,071 6,309 5,910 5,109

Ours (F.T.)-CRD-4 824 823 670 637

Ours (A.T.)-LB-1 50,232 46,670 35,886 51,035

Ours (A.T.)-LB-2 49,483 41,300 36,457 43,952

Ours (A.T.)-LB-4 46,466 41,900 34,402 44,228

Ours (A.T.)-CRD-1 49,722 45,108 37,291 49,393

Ours (A.T.)-CRD-2 48,342 43,086 38,618 46,358

Ours (A.T.)-CRD-4 45,800 42,322 36,997 46,417

SIFT-LB-1 2,664 2,897 3,198 2,269

SIFT-LB-2 2,117 2,343 2,612 1,872

SIFT-LB-4 1,184 1,358 1,538 1,055

SIFT-CRD-1 276 337 398 331

SIFT-CRD-2 169 213 247 224

SIFT-CRD-4 25 38 49 47

The live band (LB) and corridor (CRD) sequences have been projected
in a synthetic environment. The number next to each sequence’s name
(1, 2, and 4) is the contrast degradation factor that we applied to the
images captured by the camera. Each sequence was projected on a plane
tilted at four different angles with respect to the camera

Table 3 contains results for our method with a fixed and
adaptive threshold (motion detection step) and with a tem-
poral window of between 5 to 60 frames. This table clearly

Fig. 11 Top Angular error at each time t for both planes using a
fixed and an adaptive threshold. Bottom The difference in millimeters
between the 3-D models obtained with structured light (14 patterns) and
our method (W = 30 with AT)

shows that the adaptive thresholding strategy is more precise
and requires a smaller temporal window W . It also under-
scores the fact that a temporal window of 15 (half a second)
is enough to have an error below 1◦.

6.5 Four-plane setup

In this setup, we projected the traffic circle video on a syn-
thetic four-plane setup (Fig. 13a). Results with a temporal
window of 30 are shown in Fig. 13c and d. Figure 13 c shows
the inliers found by RANSAC in the projection space while
Fig. 13d shows the four planes fitted on these inliers. The
reprojection error of every inlier assigned to the correct plane
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Fig. 12 a, c Warped video frames according to the 3-D shape recovered
by our method (1 and 2 planes). b, d show the image of the projected
image on the 3-D surface captured by the camera. As can be seen, the
4 pixel distortion is barely noticeable

Table 3 Different error metrics for the two-plane example using
different temporal window sizes W

Sequence Angular error

Mean Median Var Max

W = 60 (FT ) 1.22 1.18 0.08 1.88

W = 30 (AT ) 0.86 0.77 0.12 1.64

W = 25 (AT ) 0.95 0.83 0.17 1.98

W = 20 (AT ) 1.27 1.14 0.30 3.14

W = 15 (AT ) 1.32 1.23 0.34 2.65

W = 10 (AT ) 1.62 1.63 0.72 3.75

W = 5 (AT ) 2.38 2.09 2.89 11.24

W = 60 (FT ) 1.66 1.47 1.57 6.41

W = 30 (AT ) 0.57 0.50 0.21 2.18

W = 25 (AT ) 0.60 0.50 0.22 2.21

W = 20 (AT ) 0.73 0.61 0.31 2.85

W = 15 (AT ) 1.0 0.84 0.49 3.23

W = 10 (AT ) 2.72 1.88 10.31 23.83

W = 5 (AT ) 37.89 36.15 469.62 80.85

The first seven lines are for plane 1 and the last seven lines for plan 2
AT stands for adaptive threshold, FT stands for fixed threshold

is of at most 1 pixel. The inliers assigned to the wrong plane
(usually near the junction of two planes) have a reprojection
error of at most 4 pixels.

(a)

(c)(b)

Fig. 13 a Schematic view of the four-plane setup and b point plot of
the inliers in the projection space (with W = 30) and c the four planes
obtained with RANSAC

6.6 Quadrics

We projected the live band video on a synthetic scene made
of quadrics (two spheres) to show that the reconstruction
method generalizes to other primitives. We used the same
processing pipeline except for the fitting step which we
adapted to quadrics [1,24]. Figure 14 shows results for five
temporal windows W . The first row shows disparity maps
while the second row show matches in the 3-D space. The
third row shows the depth error in millimeters (from−100 to
100 mm). The spheres are located at 4,600 and 4,400 mm in
front of the camera and have a radius of 1,750 and 1,105 mm.
These results show that a larger temporal window increases
the number of inliers while reducing the depth error, espe-
cially near the silhouette of the spheres.

6.7 Investigating errors

Since our method uses a pixel-to-pixel matching procedure,
the camera-projector matches can only be accurate up to 1/2
pixel, i.e., up to the fundamental quantization error. We thus
measured the imprecision of the 3-D geometry recovered
in the two-plane setup and compared it to the theoretical
quantization error. Table 4 contains the theoretical average
quantization error given the orientation of the two planes
(last column). The table also contains the average reprojec-
tion error of the planes recovered by our method (second
column). As one can see, as the size of the temporal window
W increases, the difference between the expected quantiza-
tion error and the mean reprojection error decreases for both
planes. At W = 30, the difference gets below 0.4 pixels.
This leads us to believe that when W ≥ 30, improvements in
the cost function, the optimization method or the calibration
procedure will not provide a significant improvement in the
results. This underscores the fact that before deploying our
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Fig. 14 Results obtained after projecting the live band video on two
spheres and using five different temporal window W . The first row con-
tains the disparity maps while the second row shows every match in the

3-D space as seen from a top view. The third row shows the depth error
in millimeters for both spheres

Table 4 From left to right: temporal window parameter, average
reprojection error of the two recovered planes, and expected quanti-
zation error obtained using simulation

Sequence Reprojection error for the 2-plane example

Mean Exp. mean

W = 30 0.86 0.55

W = 25 0.95 0.53

W = 20 1.27 0.54

W = 15 1.32 0.53

W = 30 0.57 0.20

W = 25 0.60 0.20

W = 20 0.73 0.20

W = 15 1.00 0.20

The first four lines are associated to plane 1 and the last four lines to
plane 2. All results were obtained with an adaptive thresholding proce-
dure

system, one can measure the expected quantization error for
a given video sequence and use it as a lower error bound.

Another important source of error is the camera-projector
miscalibration. This is often due to a bad calibration algo-
rithm, an inaccurate projector-camera model, a bad calibra-
tion target, or simply a human error. As one might expect, a
calibration error impacts different parts of our system, and
especially the image rectification step. Since the DP opti-
mizer works along epipolar lines (which are horizontal after
rectification), a rectification error induces mismatches where

Fig. 15 a Correspondence map X p with its related b motion label field
at time t . Due to a misalignment of the epipolar lines and horizontally
aligned active pixels, the surrounded area in X p contains few good
matches

the video contains horizontally aligned active pixels. Such
alignment is illustrated on top of Fig. 15b. The impact of
misaligned epipolar lines is illustrated on top of the corre-
spondence map X p in Fig. 15a. As can be seen, the activities
detected in that region produced very few good matches.

7 Conclusion

We presented a camera–projector matching procedure based
on activity features instead of colors. This unstructured light
matching technique performs 3-D reconstruction using an
arbitrary video sequence. To be robust to severe geometric
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and photometric distortions, our method uses binary motion
labels obtained from background subtraction bundled with
grayscale quanta. We presented examples from which sparse
correspondences are used to recover 3-D primitives that are
then used for warping. Numerous experiments have been
conducted on real and synthetic scenes. Out of these results,
we conclude that:

1. Our method finds significantly more matches than SIFT,
especially when the captured video suffers from severe
geometric and photometric distortions, and when the
projection surface is textured.

2. The 3-D results obtained with our method are close to
those obtained with a state-of-the-art structured light
technique (gray code + phase shift).

3. The estimated planes have on the average an error of
<3◦, leading to an average reprojection error between
1 and 4 pixels.

4. A temporal window of between 15 and 30 frames is
required to find good matches. The length of the tem-
poral window depends on the amount of activity in the
video.

5. Our method generalizes well to other primitives such as
quadrics.

Our method is motivated by applications requiring digital
projection and 3-D reconstruction at the same time. One of
the targeted applications is artistic projections for which the
3-D information (initially unknown) is needed to prewarp the
projected video. Let us mention that a non-technically savvy
artist could easily design visually aesthetic unstructured light
patterns that could be used by our matching procedure. Fur-
thermore, patterns for dense correspondences could also be
designed using a few seconds of video. The only constraint
being that every pixel of the projector be active at some point
in time.

In the future, we look forward to extend the pixel matching
procedure to a sub-pixel version. While our method requires
the scene (and the camera/projector system) to remain sta-
tic during the acquisition, we would like to combine our
approach with featured tracking in order to allow for recon-
struction in a dynamic environment.

Appendix A

We showed in Sect. 5.3 how to rectify the camera and
projector frames so their epipolar lines are horizontal.
This procedure is based on the intrinsic matrices Kc′ and
K p′ . Interestingly, once Kc′ and K p′ have been recov-
ered, one can map a matching pair (xc, yc), (x p, yc) in
the rectified frames to its related 3-D point in the Euclid-
ean space. This is done by multiplying a 4 × 4 matrix

T to the 3-D point in the projective space (xc, yc, x p, 1)T

where

T =

⎛
⎜⎜⎝

b f p
x fy 0 0 −b f p

x cc
x fy

0 b f c
x f p

x 0 −b f c
x f p

x cc
y

0 0 0 b f c
x f p

x fy

− f p
x fy 0 f c

x fy (cc
x f p

x − cp
x f c

x ) fy

⎞
⎟⎟⎠ (4)

and b is the baseline between the projector and the cam-
era. Note that the 3-D point is in the coordinate sys-
tem of the rectified pair and not in the reference frame
of the original non-rectified pair (See [12,14] for more
details).

Appendix B

As shown in appendix A, a point (X E , YE , Z E )T in the 3-D
Euclidean space can be obtained as follows:

(X H , YH , Z H , WH )T = T (xc, yc, x p, 1)T

(X E , YE , Z E )T = (X H /WH , YH /WH , Z H /WH )T

where (X H , YH , Z H , WH )T is in homogeneous coordinates.
Considering that noise is distributed along the “X p” dimen-
sion and that the partial derivative of (X E , YE , Z E ) is
⎛
⎜⎝

∂ X E
∂x p
∂YE
∂x p
∂ Z E
∂x p

⎞
⎟⎠=

(
b f c

x f p
x

)
(cc

x f p
x −cp

x f c
x − f p

x xc+ f c
x x p)2

⎛
⎜⎜⎝

cc
x − xc(

f c
x

(
cc

y−yc

))
fy

− f c
x

⎞
⎟⎟⎠.

the covariance of noise in the Euclidean space can be
computed as follows

� = σ 2

⎛
⎜⎝

∂ X E
∂x p
∂YE
∂x p
∂ Z E
∂x p

⎞
⎟⎠ (

∂ X E
∂x p

∂YE
∂x p

∂ Z E
∂x p

)
.

where σ 2 is the variance of noise along the x p dimension. By
combining the last two equations, one can see that noise in the
Euclidean space is anisotropic and varies with the distance
of a point to the camera. Thus, in order to fit a primitive in the
Euclidean space, one has to take into account the anisotropic
nature of noise. That is why fitting planes and quadrics in the
projective space is simpler and more robust (see Sect. 6.2).

Appendix C

In this section, we explain how we implemented the dynamic
programming (DP) optimizer. Since our DP algorithm pro-
cesses horizontal epipolar lines, let us first simplify notation
by representing a camera pixel by xc and a projector pixel
by x p. This leads to a slight redefinition of the cost function’s
signature which becomes C

(
�c, � p, xc, x p

)
.
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What makes our DP implementation different from the
other ones is the fact that pixels with no activity are assigned
a constant cost function of zero. In this way, our method only
considers matches xc → x p with non-zero activity and lying
within the search interval defined previously. For the rest of
this section, each inactive projector pixel will be assign the
“−1” index.

Like most DP methods used in stereovision [3,22,34], our
implementation finds the shortest path within a 2D grid that
we call t (xc, x p).

Since our DP implementation runs from left to right,
t (xc, x p) contains the cost of the optimal path from 0 to xc

with the pixel xc match to x p. For all camera pixels matched
with an inactive projector pixels,

t (0,−1) = 0

t (xc,−1) = min
x̂ p

(
t (xc − 1, x̂ p)

)

while for camera pixels matched with active projector pixels

t (0, x p) = C(�c, � p, 0, x p)

t (xc, x p) = C(�c, � p, xc, x p)+min
x̂ p

(
t (xc − 1, x̂ p)

+s(xc, x p, x̂ p)

)

where s(xc, x p, x̂ p) is a function that becomes∞ whenever
the ordering occlusion constraint is broken for the xc ↔ x p

match. Explicitly,

s(xc, x p, x̂ p) =
{∞ if x p ≤ o(xc − 1, x̂ p)

0 otherwise.

where o(xc − 1, x̂ p) contains the index of the rightmost pro-
jector pixel match with a camera pixel in the interval 0 to
xc − 1 for the shortest path from 0 to xc − 1 with the pixel
xc − 1 match to x̂ p. Note that o can be computed recursively
and this is similar to the recursive occlusion computation pre-
sented in [8]. Also, the entries in table t for inactive camera
pixels do not need to be explicitly computed. Moreover, to
further speed up the process, a fast message passing strategy
can be used [10] to reduce DP’s complexity to that of WTA.
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