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Abstract We present a vision-based approach to ancient
coins’ identification. The approach is a two-stage procedure.
In the first stage an invariant shape description of the coin
edge is computed and matching based on shape is performed.
The second stage uses preselection by the first stage in order
to refine the matching using local descriptors. Results for dif-
ferent descriptors and coin sides are combined using naive
Bayesian fusion. Identification rates on a comprehensive data
set of 2400 images of ancient coins are on the order of mag-
nitude of 99%.
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1 Introduction

Illegal trade and theft of coins is a major part of the illegal
antiques market. There is an annual estimate of half a mil-
lion to a million coins sold in the North American market.
Those coins were primarily excavated in Eastern Europe and
80% of all coins are undocumented [5]. In order to facili-
tate prevention and repression of illicit trade of stolen coins,
technologies aimed at allowing permanent identification and
traceability of coins are a matter of interest. Every individual
coin has signs, caused by minting techniques for pre-indus-
trial ones or by use-wear for more recent ones, that make it
unique and recognizable to an expert’s eye. This enables the
traceability of pre-industrial coins based on visual inspec-
tion. Once passive security systems have been defeated and
coins have been stolen, fighting against their illicit trade must
allow for the identification of stolen items among the incred-
ibly vast number of those being offered for sale by antiquity
traders, at auctions or on the Internet.

Methods for computer-aided identification of ancient
coins become significant for the protection of cultural her-
itage and associated conservation. In [16] the potentials of
image analysis for a systematic study of coinage and the
scope of image comparison for die studies are highlighted.
Traditionally, coin identification is performed by manual
search in coin publications and auctions catalogues. The pur-
pose of existing digital coin collections mainly focuses on
internet services and inventory. Nowadays, there are large
digital coin collections available, e.g., the collection of coins
and medals at the Fitzwilliam Museum, Cambridge, UK, con-
tains more than 40,000 digital coin descriptions. Details on
numismatic photography using digital cameras were recently
published by Goodman [12], detailed treatment of coin col-
lections is given in [14]. For coin classification, the textual
description, if present, already provides relevant information.
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984 R. Huber-Mörk et al.

For the identification of a given coin, its image is even more
informative, as the appearance of an ancient coin is often
unique, e.g., due to variations in the hammering process, die,
mint signs, shape, scratches, wearing, etc. The uniqueness in
the appearance of coins results from variations in the coin
blank material and application of the tools in minting, as
well as from wear of the coin. Therefore, for numismatists
the shape of the coin edge is regarded to be an important
feature to characterize a coin.

In this paper we propose a two-stage procedure for the
identification of ancient coins in images. The first stage per-
forms a shape matching of the coin edge and serves as a pre-
selection step for the second stage. In the second stage local
features are matched between the query image and images
contained in the preselection set. The outputs of both stages
are finally fused in order to obtain a more reliable decision.
A similar procedure was suggested in an earlier paper [20]
where the determination of preselection size was done ad-
hoc. A more systematic way to adjust the preselection size is
presented here. Furthermore, this work focuses on a system-
atic treatment of fusion of different sources of information
i.e., features derived from shape and local descriptors, and
extension to fusion of images of reverse and obverse sides of
a coin.

The paper is organized as follows. Section 2 presents
recent work on coin recognition, especially modern coins,
and recent object recognition methods, especially methods
based on shape and local descriptors. The discussion of
ancient coin identification is contained in Sect. 3 and our
approach is detailed in Sect. 4. The investigated data sets
are introduced in Sect. 5 and achieved results are presented
and discussed in Sect. 6. Finally, in Sect. 7 conclusions and
outlook for further research are drawn.

2 Related work

For modern coins, i.e., machine struck coins, judging sys-
tems using electromechanical devices are commonly based
on measuring weight, diameter, thickness, permeability and
conductivity [4], oscillating electromagnetic field charac-
teristics [34], and photo- and piezoelectric properties [41].

Machine-minted coin classification using image processing
is described by Fukumi et al. [8] uses a neural network
approach to discriminate between 500 Won and 500 Yen
coins. Nölle et al. [35] and Fürst et al. [9] described the Dago-
bert coin recognition and sorting system for high volumes of
coins and a large number of currencies. The approach by
Huber et al. [17] used the same mechanical setup including a
coin-reversing unit as described in [9] and the classification
method is based on matching features derived from multi-
ple edge-based eigenspaces. A special acquisition device for
coins employing colored illumination from various angles
was suggested by Hossfeld et al. [15]. Recently, methods
based on matching gradient directions [37] and color, shape
and wavelet features [49] were suggested.

A number of coin authentication methods for modern
coins employing optical means are to be found in patents.
Hibari and Arikawa [13] describe a system by which both
sides of a coin are first acquired by cameras, then features
are derived from binarized images, and finally results of each
side are combined with a magnetic sensor measurement.
Another approach, also based on binarization followed by
area measurement and comparison of coin center and center
of gravity, is suggested by Onodera and Sugata [36]. Tsuji
and Takahashi [45] analyze one side of a coin by transfor-
mation of its image into polar coordinates and matching of
profiles taken along angle direction.

For hand struck coins, some approaches for classification
appeared recently [48,51]. However, in contrast to object
classification, object identification relies on those unique
features which distinguish a given object from all other mem-
bers of the same class. First results on identification of ancient
coins were reported in [18] where the combination of shape
and local descriptors to capture the unique characteristics of
the coin shape and die information was suggested. Figure 1
demonstrates the challenges of the identification process. At
the first glance, all three different coins bear the same charac-
teristics (e.g., nose, mouth, hair or helmet pattern). However,
all three coins are produced by different dies which is clearly
visible on the respective helmet part of the coin.

For ancient coin recognition recently SIFT [28] features
were used [51]. The authors presented evaluation on a small
set of 350 coin images of three different coin types and
achieved 84.24% classification and 76.41% identification

Fig. 1 Example for ancient
coins produced from different
dies
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rate. In contrast to existing approaches, we aim at an extended
evaluation of the identification efficiency of top performing
local features on a data set of 2400 images of the same coin
type. The application of local features in computer vision
is manifold ranging from object [7] and texture recogni-
tion [25] to robot localization [33], symmetry detection [29],
wide baseline stereo matching [46], and object class recog-
nition [31]. In spite of their success and generality, these
approaches are limited by the distinctiveness of the features
and the difficulty of appropriate matching [7]. For a compre-
hensive survey and evaluation on the performance of local
features in the context of their repeatability in the presence
of rotation, scale, illumination, blur and viewpoint changes
please refer to [32].

Recently, two algorithms have been applied to shape
matching of ancient coins: a shape context description and a
robust correlation algorithm [51]. Ancient coins are in gen-
eral not of a perfect circular shape. From a numismatic point
of view, the shape of a coin is a very specific feature. Thus,
the shape serves as a first clue in the process of coin iden-
tification and discrimination. We are especially interested in
the shape described by the edge of a coin given by the set of
pixel positions sampled along it. The comparison of objects
characterized by their shape representations is termed shape
matching [50].

A comparison of shape descriptors based on curvature-
scale space, wavelets, visual parts, Zernike moments, multi-
layer eigenvectors and directed acyclic graphs is given in [24].
In this study, curvature-scale space and visual parts out-
performed the other approaches. Recently, further improve-
ments were reported using a hierarchical likelihood cut-off
scheme [30], using the shape context approach [2] to compare
shapes based on the earth movers distance [27], and using
hierarchical deformable shapes, the so-called shape tree [6].
We will present a method called deviation from circular shape
matching (DCSM), i.e., the description of the shape border
as the deviation from a circular shape, and compare it to the
state-of-the-art shape context method. As DCSM makes use
of background knowledge on coin shapes, e.g., coin shapes
are close to circles, it is less suited for matching of general
shapes but it performs significantly better on ancient coins.

3 Image-based ancient coin identification

The suggested coin identification method involves the steps
of segmentation, shape and local descriptor extraction,
matching of features and fusion of results.

3.1 Coin image segmentation

The separation of an object of interest from background
is commonly termed segmentation. Due to textured back-

ground, presence of other objects in the image, inhomoge-
neous or poor illumination and low contrast, straightforward
methods based on global image intensity thresholding tend
to fail.

In situations where explicit knowledge on the properties
of objects is available this knowledge can be used to steer
segmentation parameters. For example, the compactness
measure was used to find an intensity threshold in images
showing circular spot welds [38]. Similarly, ancient coins
were localized by thresholding the local intensity range, i.e.,
the difference between maximum and minimum gray-level
in a local window [52].

Typically, the shape of modern coins is circular, whereas
ancient coins deviate from this shape but still stay close to
a circular outline. Therefore, we employ a measure of com-
pactness ct related to a threshold t defined as

ct = 4π At/P2
t , (1)

where At is the area of the region covered by the coin and
Pt is the perimeter of the coin, respectively. At and Pt are
obtained by connected components analysis [44] applied
to the binary image which is derived from thresholding the
intensity range image. Figure 2a shows an intensity image
of a coin, Fig. 2b is the corresponding intensity range image
and Fig. 2c–g shows thresholded images for different selec-
tions of t along with calculated values for compactness ct .
The image thresholded at the optimal level topt with highest
compactness is given in Fig. 2h. Figure 3 shows a typical
plot of the relationship between compactness and gray-level
range threshold, where the sudden decrease of the compact-
ness measure is due to segmentation of the coin into several
small regions, e.g., compare to Fig. 2g. Although Fig. 2c, d
look similar, the low value for segmentation in Fig. 2c is due
to the noisy border which results in a larger perimeter Pt and
much smaller compactness ct in Eq. 1.

3.2 Coin shape description and matching

The approach of shape comparison is based on a descrip-
tion of the difference between the shape of a coin and the
shape of a circle. Therefore, the suggested approach is called
deviation from circular shape matching (DCSM). In order
to represent the coin shape, a border tracing on the binary
image resulting from segmentation is performed. A list of
border pixels is obtained and is resampled to l samples using
equidistantly spaced intervals with respect to the arc length.
Figure 4a–c shows this operation.

A one-dimensional descriptor, i.e., a curve describing the
border, is obtained from fitting the coin edge to a circle and
unrolling the polar distances between sample points and fit-
ted circle into a vector. The center sc = (xc, yc) of the fitted
circle is derived from the center of gravity and the radius r is
the mean distance between the center and all sample points
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Fig. 2 Image of a coin,
intensity range image and
different binary images with
corresponding threshold and
compactness. a Intensity image.
b Intensity range image.
c Binary image:
t = 5, c5 = 0.096. d Binary
image: t = 25, c25 = 0.868.
e Binary image:
t = 45, c45 = 0.879. f Binary
image: t = 65, c65 = 0.859.
g Binary image:
t = 85, c85 = 0.018. h Binary
image: topt = 49, c49 = 0.888

Fig. 3 Compactness versus intensity range threshold for a coin image

si = (xi , yi ) using

xc = 1

l

∑

i=1,...,l

xi , yc = 1

l

∑

i=1,...,l

yi ,

(2)
r = 1

l

∑

i=1,...,l

‖si − sc‖,

where (xi , yi ) are the coordinates of sample point si and
‖ · ‖ denotes the L2-norm. The 1D representation is given by
D = (d1, . . . , dl), where

di = (‖si − sc‖ − r)/r, i = 1, . . . , l. (3)

The division by r makes the representation invariant with
respect to scale. Figure 4d shows the obtained 1D represen-
tation.

Fig. 4 Shape description:
a ancient coin image, b coin
edge image, c fitted circle and
sampling along arc length,
d normalized 1D description of
coin shape

(a) (b) (c)

(d)
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Efficient matching of shapes is performed using the fast
Fourier transform (FFT) [3]. The shape descriptions of two
coins are compared by a linear combination of global and
local shape matching. The local matching is derived from the
difference of Fourier shape descriptors, whereas the correla-
tion coefficient between the curves serves as global measure
of shape similarity.

The mean absolute or squared distance between the mag-
nitude values of the Fourier coefficients is used as local mea-
sure of dissimilarity, i.e.,

DL =
∑

i=v,...,l−u

‖sdA(i) − sdB(i)‖p

l − u − v + 1
, (4)

where ‖ · ‖p, p ∈ {1, 2} is the L p norm. The lower v ≥ 1
and upper offsets u ≥ 0 for the Fourier descriptors are small
constants and used to limit errors stemming from imprecise
circle fitting and quantization noise.

The global shape matching is obtained from a measure of
dissimilarity or similarity, e.g., from the mean squared error
(MSE) or the normalized cross-correlation (NCC) coefficient
ncc(u) for a shift of u samples

ncc(u) =
∑

i=1,...,l dA(i) · dB(i + u)
√∑

i=1,...,l dA(i)2 · ∑
i=1,...,l dB(i)2

, (5)

where i + u might exceed l and modulo addition is applied.
The maximum DG = (1 − maxi=1...,l ncc(i))/2 is used as a
measure of global shape match. Similarly, the MSE is given
by

mse(u) = 1

l

∑

i=1,...,l

(dA(i) − dB(i + u))2 . (6)

In the case of MSE, the maximum DG = maxi=1...,l mse(i) is
used as a measure of global dissimilarity. The position of the
minimum of DG is related to the rotation angle between the
compared coins. While the MSE requires l shifts of the signal
and l evaluations of Eq. 6, the NCC is computed in a more
efficient way [26]. However, the computation of the MSE
becomes efficient for large databases of shape descriptors
using the lower bound and early abandon criteria suggested
by Keogh et al. [21].

The overall measure of shape dissimilarity becomes

DAB = αDL + (1 − α)DG , (7)

where the weighting factor α ∈ [0, 1] controls the influence
of local and global dissimilarity terms.

In order to be invariant with respect to mirroring, the DG

is replaced by the minimum of global dissimilarity obtained
from matching the signal and the reversed signal. Mirror
invariance enables the matching of coins irrespective of
which side is shown on the image.

3.3 Local coin feature description and matching

Local image features provide a mathematical description of
the image pattern in a window surrounding interest points and
offer thereby a set of distinctive features for an image [47].
By matching corresponding features among coin image pairs,
similarities can be detected and used for identification. An
important advantage of local features is that they may be used
to recognize an object despite significant clutter and occlu-
sion. This is an essential requirement for the comparison of
coin images since the metallic surface and relief structure of
ancient coins make their appearance highly dependent on the
illumination conditions. Although local features suffer from
this high local variability (see Sect. 6.3) they are less vulner-
able than global features due to their capabilities in partial
matching.

As a consequence, we use the Scale Invariant Feature
Transform (SIFT) [28] for the comparison of coin images.
SIFT features are widely used and show an outstanding per-
formance compared to other local features [32]. The SIFT
descriptor is based on gradient distribution in salient regions.
At each feature location, an orientation is selected by deter-
mining the maximum of the histogram of local image
gradient orientations. Subpixel image location, scale and ori-
entation are associated with each SIFT feature vector (4 × 4
location grid × 8 gradient orientations). Interest points are
identified at peaks (local maxima and minima) of the Differ-
ence of Gaussians (DoG) at multiple scales. All key points
with low contrast or key points that are localized at edges are
eliminated using a Laplacian function.

Local features can be matched by identifying the first
two nearest neighbors in Euclidean space as suggested by
Lowe [28]. The idea is to identify the two nearest neighbors
of a descriptor and measure the distance ratio of these two
neighbors. Thus, a matching is only accepted if the distance to
the nearest neighbor is considerably lower than the distance
to the second nearest neighbor, i.e., the matching has a cer-
tain degree of unambiguity. An essential characteristic of this
approach is that a descriptor can have several matches when
different descriptors from the test image are matched against
the same descriptor from the training image. To overcome
this problem, one can either ignore all ambiguous matches
(e.g. [43]) or keep the one with the lowest distance. In spite
of the loss of potentially correct matches, our experiments
show that the matching performance increases significantly
when all ambiguous matches are discarded. Eventually, the
number of correct matches is used to measure the similarity
of two coins by local features.

To summarize, basically two steps are performed to mea-
sure the local feature based similarity of two coin images.
First, interest points are detected in both images by finding
peaks in the DoG scale space. Second, the SIFT descriptors
of the interest points are matched between the two images
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using the matching strategy described above. An empirically
determined threshold is used to determine whether a match is
regarded as valid and unique (see also Sect. 6.3). The result-
ing number of valid matches accounts for the measure of
similarity provided by local features.

4 Proposed method

An identification system for coins should be reliable from the
point of recognition quality and efficient from the point of
computing resources. Computational efficiency is especially
important when coin identification is done at border control
or large collections of images, e.g., internet auction sites, are
processed. Depending on the scenario, either the response
time for the comparison of a single coin to a data set of mod-
erate size or the total computation time when comparing large
collections of coins should be kept low. From the point of
reliability, the trade-off between false acceptance rate (FAR)
and false rejection rate (FRR) is an important performance
measure [11]. From the point of efficiency, multi-stage clas-
sifiers, where computational less demanding classifiers are
used in early stages, have been used in various applications,
e.g. [10]. In particular, in a two-stage classification system,
the first-stage classifier limits the overall reliability of the
whole system through inclusion of false positives passed to
the second level classifier and false rejections of true positive
examples. In the design of multi-stage classifiers the risk
should be evaluated with respect to metrics such as false
alarm and rejection rates, and precision and recall [40]. The
trade-off between precision and recall determines the size of
the preselection set, i.e., the data passed from the first stage
to the second stage classifier. Naive Bayesian fusion is used
for combination of individual classifier stages. Related strat-
egies of multi-feature information integration are explored
in [39].

4.1 Preselection

It takes 0.006 seconds to compare two coins based on their
shape description on a Intel Core 2 CPU with 2.5 GHz. There-
fore, shape matching is suited as a preselection step to the
less efficient matching based on local features which typ-
ically takes two orders of magnitude longer [1]. The size
of the preselection set is determined experimentally from
Precision-Recall curves. Recall measures the ratio given by
true positives divided by the sum of true positives and false
negatives, i.e., rec = TP/(TP + FN) and precision is given by
prec = TP/(TP + FP), where FP is the number of false posi-
tives. Figure 5 shows plots of precision versus recall for a test
set of 2400 images of coins. The test set, which is described
in more detail in Sect. 5, contains 240 different coins with 10
images of each coin. Different settings of the shape matching
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Fig. 5 Precision versus recall for shape matching
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Fig. 6 Precision and recall versus preselection set size for shape
matching

weight parameter α show that a relatively large value of α,
which directs the matching dissimilarity towards more local
influence, performs best. In order to obtain a preselection set
of moderate size and high quality, i.e., the coin in question
should likely be contained, a high recall is aspired. This is
obtained by selecting the set size corresponding to the sudden
decrease in Fig. 5. Figure 6 shows that this sudden decrease
in precision versus recall corresponds to a preselection set
size of 9 to 10 images. None to all coins of a specific class
might be present in the preselection set, depending on the
size of the preselection set and the the number of images of
a coin in the data set.

4.2 Fusion of shape and local descriptors

Both classes of descriptors deliver distance measures between
the coin in question and all other images in the database. In
this case, a two-stage rank based strategy is possible, i.e.,
a small subset is preselected based on shape comparison
and further processed using local features based matching.
This strategy was explored in a previous paper [18]. A more
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elaborate strategy combines probabilities which are derived
from distance measures [17] and are combined by a rule of
combination, e.g., the product rule [22]. The product rule
of combination is equivalent to naive Bayes fusion of clas-
sifiers. Naive Bayes fusion of classifiers in turn coincides
with Bayes classification over composite descriptors if the
individual features are conditionally independent [42]. Con-
ditional independence between shape and local features, as
well as between coin sides, can be assumed.

From ranking the shape dissimilarity DAB for shapes given
in Eq. 7 for shape B matched to shape A results in a preselec-
tion set P . From an observed shape description A we derive
a conditional probability for a coin side label L assigned to
B. The conditional probability for a Pshape(L|A) is estimated
to be inversely proportional to the dissimilarity given in Eq.
7 between coin A and coin B labelled L:

Pshape(L|A) = 1

DAB
∑

C∈P 1/DAC
, (8)

where the summation term in the denominator accounts for
normalization.

A similar argument is applied to derive a conditional prob-
ability for observed local descriptors X matched to local
descriptors Y labelled L and corresponding to an image con-
tained in the preselection set P:

Plocal(L|X) = MXY∑
Z∈P MX Z

(9)

where MXY denotes the number of matches between the
query image with local descriptors X and the coin side image
with local descriptors Y and the denominator accounts for
normalization.

As local and shape features describe different properties
of a coin, it is reasonable to assume statistical independence
between shape and local feature measurements. Thus, the
combination is performed by the product rule [22]:

P(L|A, X) = P(Lshape = Llocal|A, X)

= Pshape(L|A) · Plocal(L|X), (10)

where Lshape and Llabel are labels derived from shape and
local descriptions.

4.3 Fusion of coin sides

The idea of fusion of different descriptor outputs is extended
to a fusion of more than one image of a coin. Typically, a
coin is presented by images of the obverse and reverse side.
Additionally, for modern coins the designs on reverse and
obverse sides are oriented either into the same direction or
are turned upside down. In modern coin sorting machines
this property is used to increase classification accuracy [17].

The arguments presented in Sect. 4.2 are extended to a
fusion of coin sides in a straightforward fashion. Equation

10 is extended to the following four terms

P(L|Ai , Xi ) = Pshape(L|A1) · Plocal(L|X1)

·Pshape(L|A2) · Plocal(L|X2), (11)

where Ai and Xi corresponds to shape and local feature
descriptions of the i th coin side.

5 Data set and evaluation strategy

In order to evaluate shape matching techniques, the MPEG-7
core experiment CE-Shape-1 database part B [19] containing
images of shapes with single closed contours is frequently
used in the literature. Part B of the MPEG-7 CE-Shape-1
database contains a total number of 1400 binary images with
70 different classes, each of which contains 20 images. Fig-
ure 7 shows some of the images in the database. The rec-
ognition rate of an algorithm in this data set is commonly
measured by the so called bull’s-eye test. For every image
in the database, the occurrences of images belonging to the
same class among the 40 most similar images are counted
for the query image. The final score of the test is the ratio of
the overall number of correct hits divided by the maximum
number of possible hits. In our case, the number of possible
hits is 1400 × 20 = 28,000.

To evaluate our approach on coin data, we use an image
database provided by the Fitzwilliam Museum, Cambridge,
UK, which consists of 2400 images of 240 different ancient
coins of the same class. Figure 8 shows four of the coins
contained in the data set. Each row shows the same coin
acquired by different devices at varying conditions and dif-
ferent orientations. In particular, each side of each individual
coin was acquired at three different angles of rotation using a
scanner device and two acquisitions of each side were made
using a digital camera and varying illumination. At first sight,
all coins bear the same characteristics. However, the coins
shown in the different rows are produced by different dies.
What makes this data set special and ideal to thoroughly test
identification methods, is that all the coins are very similar.
All the images are issued in the time of, or at least in the name
of, Alexander the Great who came to power in Macedonia
in 336 BCE and died as emperor in 323 BCE. Some of the
coins are from much later and were minted in places around
the Black Sea, in Egypt, in modern-day Turkey, Iran, etc. All
coins follow the same basic standard: on the obverse side
there is the head of Heracles in a lion skin. The reverse side
shows the god Zeus, seated left on a throne. Nevertheless,
there is a huge range of detail in the minor variations that
experts use to deduce the mint and date of the coin.

The described data set of ancient coin images is avail-
able on the internet from the download section of the COINS
project web page http://www.coins-project.eu.

123

http://www.coins-project.eu


990 R. Huber-Mörk et al.

Fig. 7 Examples for binary
images contained in MPEG-7
CE-Shape-1 data set

Fig. 8 Examples for ancient
coin images acquired by scanner
and camera
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6 Results

We present a comparison of the DCSM method to a state-of-
the-art shape matching method and results for combination
of DCSM and SIFT features matching as well as the com-
bination of shape matching results for reverse and obverse
sides of coins.

6.1 Results of shape matching on MPEG7 shape data

Several publications on shape matching methods applied to
the MPEG7 CE-Shape-1 database appeared recently. The
method suggested in [27] is based on shape context (SC)
description and earth movers distance (EMD) matching is
reported to perform best. The suggested DCSM method is
also compared to the SC description. For baseline compari-
son, we used the L2 distance instead of the EMD. As EMD
becomes especially powerful when it comes to articulated
non-rigid shapes. As coins are rigid objects, we decided not
to use EMD in order to keep our experiments comparable to
the ancient coins data sets. Bull’s-eye test results for SC and
DCSM on the MPEG7 data set are reported in the first line
of Table 1.

We used 100 sample points, 12 angle bins and 5 logarith-
mically scaled distance bins in SC matching. Clearly, DCSM
is not well suited for the given task as it makes too much
assumptions about the object class and, thus, performs worse.
However, even though our method is not designed for such
data, it achieves an accuracy better than some of the meth-
ods reported in [24]. According to the published numbers,
it is slightly better than multilayer eigenvectors and Zernike
moments, and even outperforms methods based on wavelets
and directed acyclic graphs.

6.2 Results of shape matching on coin data

Results on the coins data set are reported using results from
the bull’s eye test as well as leave-N -out accuracy estima-
tors. The best performance of DCSM was obtained using
256 sample points, a weighting parameter α = 0.975, and
lower and upper offsets of v = 3, u = 3. The measure for
global shape dissimilarity calculation was the mean squared
error, see Eq. 6. The shape context parameters are the same as
for the MPEG7 shape data. The second line of Table 1 gives
bull’s eye test results for SC and DCSM applied to coins. In

Table 1 Bull’s-eye test results for shape-matching using SC and DCSM
applied to MPEG7 CE Shape-1 and ancient coins

SC (%) DCSM (%)

MPEG7 CE Shape-1 76.79 71.75

Ancient coins 50.64 93.75

Table 2 Identification accuracy derived from Leave-N -out estimation
applied to DCSM shape-matching of coins

N = 1k N = 5k N = 9k

Accuracy (%) 99.00 98.18 90.29

contrast to the MPEG7 shapes data set, the DCSM method
is clearly superior for coins.

Leave-N -out accuracy estimators for ancient coins are
given in Table 2. The leave-one-out estimator is the average
nearest-neighbor classification score obtained from matching
each of the 2400 images to all other images. The leave-5k-
out, where k is the number of coins, refers to training and
test sets of equal sizes. The leave-9k-out result corresponds
to training sets containing single images per coin. Note, that
it is practically not possible to evaluate all possible combi-
nations of partitions of images into training and test sets.
Therefore, the leave-N -out accuracies are estimated from a
smaller number of different partitions. It was shown, that such
a procedure, also known as n-fold cross-validation, delivers
accurate estimates for real-world data sets [23]. It is clearly
visible, that even in the case of a single example per coin
in the training set, the accuracy stays above 90%. The result
of 99% for leave-1k-out accuracy estimator means that only
24 images are incorrectly classified. A detailed look at the
incorrectly classified images revealed that they are charac-
terized by a rough border. The rough border is caused by the
discretization of the imaging process and disturbs the Fourier
space description.

Another interesting feature of our approach is that, pro-
vided α is kept large, DCSM is largely invariant with respect
to mirroring. Therefore, when using the obverse side of a
coin as reference, the images showing the reverse side of the
same coin are also found to be highly matching.

6.3 Results of local features matching on coin data

In contrast to a previous paper [18], local feature matching is
based on SIFT features only and no further experiments with
SURF [1] were conducted. As a result from the experiments,
SIFT provides a higher matching rate and its drawback com-
pared with SURF, the longer computational time, is of low
impact as preselection from DCSM is performed.

When using only local features, coin identification can be
achieved by determining the maximum number of matches
between the query image and the images of the data set. On
our data set matching of local features with the elimination
of all ambiguous matches achieves an identification rate of
71.77%, whereas traditional nearest neighbor distance ratio
matching achieves only 59.71%. Thus, for all further exper-
iments ambiguous matches were eliminated. For the given
coin data set best results are achieved using a distance ratio
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Fig. 9 Example scan images

Table 3 Identification rates derived from leave-one-out accuracy esti-
mation

Descriptor DCSM SIFT DCSM + SIFT

Accuracy (%) 97.04 71.77 98.54

of 0.8, i.e., a matching is valid only if the ratio of the distances
to the first and second nearest neighbor does not exceed 0.8.

A detailed look at misclassified coins demonstrates the
boundaries of local features for the given image data. Fig-
ure 9 shows three scan pictures of the same coin. In spite
of the scan as a high quality acquisition device, the physical
measurements of the coin itself and deep die reliefs contrib-
ute to the significant differences in the acquired images. In
all three images different regions of the coin are highlighted
and produce different local features. Hence, matching across
such images leads to low scores and possible mismatches.

6.4 Results of combined shape and local features matching

In this experiment we combine shape and local descriptors to
increase the identification rate. Preselection based on shape
matching allows for the restriction of required comparisons
for local features matching. As a result we achieve speed up
of the identification process and higher accuracy rate. Since
our shape descriptor is mirroring invariant, preselection can
be performed either on the whole available coin data, i.e., the
preselected set can contain images of the second coin side,
or preselection can be performed on the relevant coin side
directly.

As a conclusion from the experiments reported in Sect. 4.2,
the preselection size was set to 10. Therefore, for the exper-
iments presented here, Pshape(L|A) is computed for the 10
images with lowest dissimilarity and Plocal(L|X) for the same
10 images. The final decision is made according to the prod-
uct rule given in Eq. 10.

Table 3 shows the identification rates for the single descrip-
tors and their combination with a leave-one-out evaluation
scheme. The shape-based preselection of size 10 was per-
formed accordingly to the given side of the test coin image.
The DCSM alone gives an identification rate of 97.04% on
the whole data set of 2400 images. For a preselection size of
10, there are only 13 cases (0.54 %) where the correct coin

Fig. 10 Image of obverse and reverse side of a coin

Table 4 Identification accuracy derived from leave-one-out estimation
applied to DCSM shape matching of reverse and obverse coin side
images and fusion of results

Side Obverse Reverse Fused

Accuracy (%) 98.00 96.08 98.83

is not contained in the preselected set. Consequently, local
feature matching on the preselected set and fusion with the
label probabilities from DCSM lead to an identification rate
of 98.54 %.

6.5 Fusion of matching results for coin sides

In the final experiment we study the fusion of reverse and
obverse side based on shape. Therefore, the data set is
grouped into pairs of images where each pair of images shows
obverse and reverse coin sides as shown in Fig. 10. Note the
low quality of some of the images present in the considered
data set. The results for each side are combined using naive
Bayes fusion. Table 4 lists the identifications results for the
obverse side, the reverse side, and the fusion of both sides.

A further fusion with local features from the obverse and
reverse side as described in Sect. 4.3 was tested as well,
resulting in the same identification rate of 98.83%. Please
note that the identification rate from DCSM corresponds to
only 14 false identifications out of 1200 which strongly limits
the scope of improvement by local features.

7 Conclusion

In this paper we presented an approach for object identifi-
cation based on the combination of shape and local descrip-
tors and applied it to the task of ancient coins identification.
Due to their nature, the shape of ancient coins is a well dis-
tinguishable feature for an automatic identification. DCSM
was used for the matching of coin shapes, whereas the die
of the coin was matched by means of local features. From
the output of each of these two methods individual coin label
probabilities were estimated and finally fused. We presented
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results on a data set of 2400 coin images. The combination
of shape and local features outperformed the accuracy rate
of the single features and achieved an identification rate of
98.83%. Future work will include the evaluation of the pre-
sented approach on an extended data set of coin images of
different coin types. Furthermore, we will extend our work
towards die and mint sign identification based on spatially
constrained local features.
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