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Abstract This paper proposes a free parking space detec-
tion system by using motion stereo-based 3D reconstruc-
tion. An image sequence is acquired with a single rearview
fisheye camera and the view behind the automobile is three-
dimensionally reconstructed by using point correspondences.
Metric information is recovered from the camera height ratio
and free parking spaces are detected by estimating the posi-
tions of adjacent vehicles. Since adjacent vehicles are usually
located near the epipole, their structures are seriously degra-
ded. To solve this problem, we select point correspondences
by using a de-rotation-based method and mosaic 3D struc-
tures by estimating a similarity transformation. Unlike in pre-
vious work, our system proposes an efficient way of locating
free parking spaces in 3D point clouds. Odometry is not used
because its accuracy depends largely on road conditions. In
the experiments, the system was tested in 154 different par-
king situations and its success rate was 90% (139 successes
in 154 cases). The detection accuracy was evaluated by using
ground truth data that was acquired with a laser scanner.
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1 Introduction

An automatic parking system provides convenience for dri-
vers by automatically finding free parking spaces and steering
automobiles toward them. Recently, there has been increased
interest in automatic parking systems [3]. For instance, the
2003 Toyota Prius adopted the “Intelligent Parking Assist”
feature as an option and about 80% of buyers have selected
this option [20]. Due to customer interest and the Prius’s suc-
cess, many car manufacturers and component manufacturers
are preparing to release self-parking products [25].

Automatic parking systems consist of three components:
path planning including free parking space detection, an auto-
matic steering and braking system used to implement the
planned trajectory, and the HMI (human machine interface),
which can be used to receive driver input and provide visual
information of the ongoing parking process [15].

Free parking space detection has been implemented by
using various methods: the ultrasonic sensor-based method
[7,30],thelaser scanner-based method[17,31],the shortrange
radar network-based method [6,12], and the vision-based
method [9,15,16,18,19,41,42]. Among these, the vision-
based method is attractive to drivers because it visualizes
parking procedures, which make drivers feel safer. The vision-
based method can be categorized into four approaches: the
parking space marking-based approach, the binocular stereo-
based approach, the light stripe projection-based approach,
and the motion stereo and odometry-based approach.

The first approach recognizes parking space markings.
Xu et al. [42] developed color vision-based localization of
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parking spaces. This method uses color segmentation based
on neural networks, contour extraction based on the least
square method, and inverse perspective transformation. Jung
et al. [16] proposed the semi-automatic parking assist sys-
tem which recognized marking lines by using the Hough
transform in a bird’s eye view edge image captured with a
wide-angle camera. In this way, target spaces can be detec-
ted with a single image at a relatively low computational
cost. Also, a general configuration of a rearview camera
(a single fisheye camera) can be used. However, it cannot be
used when parking space markings are not available. Also,
performance can be degraded by poor visual conditions such
as stains, shadows or occlusion.

The second approach recognizes adjacent vehicles by
using a binocular stereo-based 3D reconstruction. Kaemp-
chen et al. [19] developed the parking space estimation sys-
tem which uses a feature-based stereo algorithm, a template
matching on a depth map, and a 3D fitting to the planar sur-
face model of the vehicle. This approach can easily recover
metric information from the fixed length of the baseline and
the camera extrinsic parameters need not be estimated every
time. However, this requires extra costs and space for the
equipment. Also, sub-pixel accuracy is required in case of
short baseline, and point correspondences are difficult to find
in case of long baseline.

Jung et al. [15] developed a method which combines the
parking space marking-based approach and the binocular
stereo-based approach. They used obstacle depth maps for
establishing the search range and simple template matching
for finding the exact location of free parking spaces. This
method is robust to noise factors such as stains, trash and
shadows when compared to the parking space marking-based
method, but it can be only used when both obstacle depth and
parking space markings are available.

The third approach recognizes adjacent vehicles by using
a light plane projector and a single rearview camera. Jung
et al. [18] developed a method which identified free parking
spaces by analyzing the light stripe on objects to the rear
of the vehicle produced by the light plane projector. This
approach can be applied to dark underground parking lots
and the algorithm for acquiring the 3D information is rela-
tively simple. Also, a general configuration of a rearview
camera can be used. However, this approach cannot be used
during the day due to the presence of sunlight and the confi-
guration of the camera and the light plane projector must be
unchanged.

The fourth approach recognizes adjacent vehicles by using
a motion stereo and odometry-based 3D reconstruction.
Fintzel et al. [9] and Vestri et al. [41] proposed a system
which provides a rendered image from a virtual viewpoint
for better understanding of parking situations and procedures.
This system obtains camera external parameters and metric
information from odometry and reconstructs the 3D structure
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of the parking space by using point correspondences. This
approach can easily reconstruct the Euclidean 3D structure
by using odometry and a general configuration of rearview
camera can be used. However, odometry information can be
erroneous when road conditions are slippery due to rain or
snow [21], and a free parking space detection method was
not presented.

The proposed system is similar to the fourth approach. We
three-dimensionally reconstruct the rearview structures by
using a single rearview fisheye camera and find free parking
spaces in the 3D point clouds. This system consists of six
stages: image sequence acquisition, feature point tracking,
3D reconstruction, 3D structure mosaicing, metric recovery,
and free parking space detection.

Compared to previous works [9,41], the proposed sys-
tem makes three contributions. First, the degradation of the
3D structure near the epipole is solved by using de-rotation-
based feature selection and 3D structure mosaicing. This is a
serious problem when reconstructing 3D structures with an
automobile rearview camera because the epipole is usually
located on the image of an adjacent vehicle which must be
precisely reconstructed. Although this problem was mentio-
ned in [29,41], a solution was not presented. Second, an effi-
cient method for detecting free parking spaces in 3D point
clouds is proposed. For this task, the structure dimensions are
reduced from 3D to 2D and the positions of adjacent vehicles
are estimated. Third, odometry is not used because its accu-
racy largely depends on road conditions. The camera external
parameters are estimated by using point correspondences and
the metric information is recovered from the camera height
ratio.

There has been some research into reconstructing 3D
structures with similar configurations in the field of SLAM
[26,27,29]. These studies used a single forward-looking wide
angle camera for building maps and locating vehicles. Odo-
metry was not used in these studies but the 3D structures
were reconstructed only up to an unknown scale factor. The
degradation near the epipole was mentioned but it was not
considered.

In our experiments, the system was applied to 154 real
parking situations. It succeeded in 139 cases and failed in 15
cases, producing a success rate of 90.3%. Detection accu-
racy was evaluated with 47 image sequences taken with a
laser scanner data. This evaluation showed that the proposed
system yielded acceptable accuracy levels.

The rest of this paper is organized as follows. In Sect. 2,
we discuss the point correspondences and 3D reconstruc-
tion. In Sect. 3, we explain the problem of the epipole and
offer a solution. In Sect. 4, we describe metric recovery and
the free parking space detection. In Sect. 5, we present the
experimental results including a comparison with the laser
scanner data. Finally, in Sect. 6, we conclude the paper with
a summary and some suggestions for future work.
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2 Motion stereo-based 3D reconstruction
2.1 Point correspondences

Point correspondences in two different images have to be
found in order to estimate the motion parameters and 3D
structures. For this task, we considered three approaches. The
first approach finds a small number of reliable point corres-
pondences to estimate the fundamental matrix and matches
many feature points by using the epipolar constraints. This
is called guided matching [13], which requires the fisheye
images to be undistorted and rectified but both are very time-
consuming processes.

The second approach finds many point correspondences
by using a naive algorithm, and rejects false matches by using
an outlier rejection method designed for cameras on intelli-
gent vehicles [33]. Even though this approach is fast and
produces few mismatches, it is difficult to find point corres-
pondences on automobile surfaces due to the lack of features.

The third approach detects feature points and tracks them
through image sequences [22,34,35]. Since this method
tracks the feature points between consecutive images, it can
find many point correspondences on automobile surfaces.
However, computational costs are high because the algorithm
has to be applied to many images.

The first and second approaches require two images. The
memory size for saving the images is small but it is diffi-
cult to select key frames without saving the whole sequence.
Key frames determine the 3D reconstruction interval. The
third approach also requires two images every moment if it
is implemented in real-time. Since point correspondences for
each frame are saved, it is convenient to select key frames by
using the tracking results. By summarizing this comparison,
the tracking approach was selected in our application.

For tracking, we chose the Lucas—Kanade method [22,
35] because it produces accurate results, offers affordable
computational power [2,24], and there are some existing
examples of real-time hardware implementations [5,8,23].
This method uses the least square solution of optical flows.
If 7 and J are two consecutive images and x and €2 denote
the feature position and the small spatial neighborhood of x,
respectively, then the goal is to find the optical flow vector,v
which minimizes:

mvinZ{I(x) —Jx+W)2 (1)

xe2

The solution of Eq. (1), Vopt is given by:

2 I SIT
G = U e )
L1, 12 SII,

I and I, are the image gradients in the horizontal and vertical
directions, respectively, and §7 is the image pixel difference.
Since the matrix G is required to be non-singular, the image
location where the minimum eigenvalue of G is larger than
the threshold is selected as a feature point and tracked through
the image sequence.

2.2 Three-dimensional reconstruction

Once the point correspondences are obtained, the structure
of the parking space is three-dimensionally reconstructed by
using the following three steps: key frame selection, motion
parameter estimation, and triangulation. First of all, the key
frames which determine the 3D reconstruction interval
should be appropriately selected. If there is not enough
camera motion between the two frames, the motion para-
meters is inaccurately estimated and in the opposite case, the
number of point correspondences is decreased.

Some algorithms have been proposed to select key frames
[28,29,37]. We used a simple but less general method which
uses the average length of optical flow. This method works
well because rotational motion is always induced by trans-
lational motion in our application. Since parking spaces are
reconstructed at the driver’s request, the latest frame is selec-
ted as the first key frame. The second key frame is selected
when the average length of optical flow from the first key
frame exceeds the threshold. The next key frame is selected
in the same way. The threshold value was set to 50 pixels and
this made the baseline length approximately 100—150 cm.

Once the key frames are selected, the fundamental matrix
is estimated to extract the motion parameters. For this task,
we used RANSAC followed by an M-Estimator. Torr et al.
[36] found that fundamental matrix estimation performance
could be improved by using this combination. We also perfor-
med experiments using the various methods in [1] by using
automobile rearview fisheye images and the same combina-
tion was found to be the best.

The RANSAC is based on randomly selecting a set of
points to compute the candidates of the fundamental matrix
by using a linear method. This method calculates the number
of inliers for each fundamental matrix and chooses the one
which maximizes it. Once the fundamental matrix is deter-
mined, it is refined by using all the inliers. The M-Estimator
reduces the effect of the outliers weighting the residual of
each point correspondence. If x; and x; are the coordinates
of the point correspondences in two images and F is the fun-
damental matrix, then the M-Estimator is based on solving
Eq. (3):

mgn Z w; (X;-TFXi)Z 3)
1
w; is a weight function and we used Huber’s [14] function.
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After estimating the fundamental matrix, we follow the
method presented in [13]. The essential matrix is calcula-
ted by using the fundamental matrix and the camera intrin-
sic parameters matrix. The camera intrinsic parameters were
pre-calibrated because they do not change in our applica-
tion. The four combinations of the rotation matrix and the
translation vector are extracted from the essential matrix.
Since only the correct combination allows the 3D points to
be located in front of both cameras, several randomly selected
points are reconstructed to determine the correct combina-
tion. The projection matrices of the two cameras are produced
by combining the camera intrinsic parameters matrices, the
rotation matrix, and the translation vector. After that, the 3D
points are calculated by using a linear triangulation method.
If P and P’ represent the projection matrices of the two came-
ras and X represents the 3D point of the point correspondence
(x and x'), they satisfy Eq. (4).

xx (PX)=0

x' x (P’X) =0. @

By combining the above two equations into the form AX = 0,
the 3D point (X) is simply calculated by finding the unit sin-
gular vector corresponding to the smallest singular value of
A. This is solved by using a SVD. The matrix A is expressed
as:

xp’T — p!T

yp3T _ pZT

x/p/3T _ p/lT &)

y/p/3T _ p/2T
p'T and p”’T represent the ith rows of the projection matrices
of the two cameras, and [x, y]T and [x’, y’ 1T represent the
image coordinates of the point correspondences. For 3D
reconstruction, we did not use a complex optimization algo-
rithm such as a bundle adjustment [38] because its computa-
tional cost is too high for our application.

3 Feature selection and 3D structure mosaicing
3.1 Degradation of 3D structure near the epipole

When reconstructing 3D structures in our application, heavy
degradation appears near the epipole. This is because tri-
angulation has to be performed at a small angle in that area.
With a small angle, the accuracy of the 3D points is degraded
because of the relatively high portions of the point detection
error and the image quantization error. This can be shown as
arank deficiency of the matrix A in Eq. (5). When the feature
point nears the epipole, the rank of matrix A becomes closer
to two. This causes unreliable estimation of the 3D points.
Even though this problem is very serious in 3D recons-
truction as mentioned in [29,41], it has not been dealt with
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Fig. 1 Location of the epipole in a typical parking situation

in previous works because of two reasons. First, the epipole
is not located inside the image in many applications because
of camera configurations. This happens when the 3D struc-
tures are reconstructed by using a stereo camera or a single
moving camera whose translation in the optical axis is not
dominant relative to the translations in the other axes [11,19].
Second, the epipole is located inside the image but it is not
on the target objects. This happens when a single forward (or
backward) looking camera moves along a road or corridor.
In this case, the epipole is located inside the image but it is
usually on objects far from the camera, so the region around
the epipole is not interesting [26,27,29].

In our application, the translation in the optical axis is quite
dominant, so the epipole is always located inside the image.
Also, the epipole is usually located on the image of an adja-
cent vehicle which is our target object used for locating free
parking spaces. Figure 1 shows the epipole location in a typi-
cal parking situation. As shown in this figure, the epipole is
usually located on the image of an adjacent vehicle due to the
motion characteristics of the automobile rearview camera.

For this reason, the 3D structure of the adjacent vehicle is
erroneously reconstructed in our application. Figure 2 shows
the location of the epipole in the last frame of the image
sequence and its reconstructed 3D structure. We depict the
structure as seen from the top after removing the points near
the ground plane. In this figure, the 3D points near the epipole
on the adjacent vehicle appear quite erroneous, so the free par-
king space detection results will be degraded by those points.

3.2 De-rotation-based feature selection and 3D structure
mosaicing

To solve the problem of the epipole and obtain a precise
3D rearview structure, we propose a two-step method. First
the unreliable point correspondences are removed by using a
de-rotation-based method, and then the removed part of the
structure is substituted by mosaicing several 3D structures.
In the first step, we eliminate the rotational effect from the
optical flow. Since the optical flow length is proportional to
the 3D point accuracy in a pure translation [39], we simply



Automatic free parking space detection by using motion stereo-based 3D reconstruction 167

Fig. 2 a A typical location of (@)
the epipole. b Its reconstructed
3D structure as seen from the
top after removing the points
near the ground plane

Fig. 3 a Undistorted optical flows. b De-rotated optical flows

throw away the point correspondences whose optical flow
lengths are shorter than the threshold. This prevents the 3D
structure from including erroneously reconstructed points.
For eliminating the rotational effect, a conjugate rotation is
used [13]. If x and X’ are the images of a 3D point (X) before
and after the pure rotation:

x = K[/]0]X

x' = K[R|0]X = KRK 'x ©)
sothatx’ = Hx with H = KRK~'. K, I, andR represent
a 3 x 3 camera intrinsic parameters matrix, a 3 x 3 identity
matrix, and a 3 x 3 rotation matrix, respectively.

Figure 3 describes the de-rotated-based feature selection
procedure. The optical flows found in the fisheye images are
undistorted as shown in Fig. 3a. After that, the undistorted
optical flows are de-rotated by using a conjugate rotation as
shown in Fig. 3b. All the optical flows in Fig. 3b point toward
the epipole because the rotational effect is totally eliminated.
In this case, the epipole is known as the focus of expansion.
In Fig. 3b, the red lines indicate the unreliable optical flows
classified by the de-rotation-based method. The unreliable
optical flows include the features near the epipole and far
from the camera. The threshold for the optical flow length
was set to ten pixels.

(b)

¥ 5 “Structure near
.. 4" the epipole

In the second step, we reconstruct several 3D structures
by using the reliable point correspondences and mosaic them
into one structure by estimating the similarity transformation.
This process substitutes the removed part of the rearview
structure. The similarity transformation parameters consist
of R(3 x 3 rotation matrix), t(3 x 1 translation vector), and
¢ (scaling) and we use the least-square fitting method [40]
with the 3D point correspondences known from the tracking
results. Since the reconstructed 3D points may be erroneous
and include outliers, the RANSAC approach [10] is used for
parameter estimation. The least-square fitting method can
be explained as follows. We are given two sets of 3D point
correspondences X; and Y;;7 = 1, 2, ..., n in the 3D space.
X; and Y; are considered as 3 x 1 column vectors, and n
is equal to or larger than three. The relationship between
X; and Y; can be described as:

Y; = cRX; + t. (7

The mean squared error of two sets of points can be written
as:

n
AR 40) =+ DIV, — (©RX; + D). ®)
i
If A and B are the 3 x n matrices of {Xi, Xo,...,X,}
and {Y1, Y2, ..., Y,}, respectively, and UDVT is a SVD of
ABT (UUT = VT = I, D = diag(d;), dy > dy > --- >
0), the transformation parameters which minimize the mean
squared error can be calculated by:

! trace(D) O]

R=UV' t=py —cRuy.c=—
Ox

Uy, By and 0)2( can be defined as:

1 n l n 1 n
Wy = ZZYL Ux = ;in’mz( = ZZ |Xi - ”an'
i=1 i=1 i=1

(10)

Figure 4 shows the key frame images and the reconstructed
3D structures when using and without using the de-rotation-
based feature selection. The 3D structures are shown as seen
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Fig. 4 a Key frame images.

b 3D structures without using
the de-rotation-based feature
selection. ¢ 3D structures when
using the de-rotation-based
feature selection

from the top after removing the points near the ground plane.
Figure 4a shows the key frame images and their epipole loca-
tions. We can see that the epipoles are located on different
positions of the adjacent vehicle. Figure 4b shows the recons-
tructed 3D structures of each key frame without using the
de-rotation-based feature selection. The structures near the
epipoles are badly reconstructed. However, the erroneously
reconstructed part in one structure is correctly reconstruc-
ted in another structure. Figure 4c shows the reconstructed
3D structures of each key frame when using the de-rotation-
based feature selection. Most of the erroneous 3D points in
Fig. 4b are deleted.

Figure 5 shows the reconstructed structures when using and
without using the proposed feature selection and 3D mosai-
cing methods. The red point indicates the camera center. By
using the proposed two-step method, we obtained more pre-
cise structure near the epipole. In the experimental results, the
advantages of this method are presented in detail by compa-
ring the reconstructed structures with the laser scanner data.

4 Free parking space detection

4.1 Metric recovery
For locating free parking spaces in terms of centimeters, the

metric information of the 3D structure has to be recovered.
This is usually achieved by using a known baseline length or
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prior knowledge of the 3D structure. Since the camera height
in the real world is known in our application, we estimate the
camera height in the reconstructed world and use the ratio
for metric recovery. The camera height in the real world is
assumed as fixed in this paper. A height sensor can be used
with camera height variations that may occur due to changing
cargos or passengers.

To calculate the camera height ratio, the ground plane
in the reconstructed world has to be estimated because the
camera location is set to the origin. The estimation proce-
dure consists of three steps: tilting angle compensation, den-
sity estimation-based ground plane detection, and 3D plane
estimation-based ground plane refinement. The tilting angle
is calculated and the 3D structure is rotated according to
the calculated angle. This procedure forces the ground plane
parallel to the X Z-plane. In our camera configuration (shown
in Fig. 6), the tilting angle (0) can be calculated by [4]:

€y — 0
6 = arct - 11
arcan( 7 ) (11)

ey and yg are the y-axis coordinates of the epipole and the
principal point, respectively. f is the focal length of the
camera.

Since there is usually only one plane (the ground plane)
parallel to the X Z-plane after compensating the tilting angle,
the density of the y-axis coordinate of the 3D points has the
maximum peak at the location of the ground plane. Figure 7
shows the density of the y-axis coordinate of the 3D points.
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Fig. 5 Comparison of the 3D (a)

(b)

structures a when using the
proposed two-step method

b without using the proposed
two-step method
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Fig. 6 Configuration of rearview camera
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Fig. 7 Density of the y-axis coordinate of the 3D points

In this figure, the peak location is recognized as the location
of the ground plane and the distance from the peak location
to the origin is recognized as the camera height in the 3D
structure.

After that, the location and the orientation of the ground
plane are refined by 3D plane estimation. The 3D points
near the initially detected ground plane are selected and the
RANSAC approach is used for estimating the 3D plane. The
camera height is refined by calculating the perpendicular dis-
tance between the camera center and the estimated 3D plane.

The 3D structure is scaled in centimeters by using the camera
height ratio between the estimated camera height and the
known camera height. After that, the 3D points far from the
camera center are deleted and the remaining points are rota-
ted according to the 3D plane orientation to make the ground
plane parallel to the X Z-plane. Figure 8a, b shows the final
result of the metric recovery in the camera-view and the top-
view, respectively.

4.2 Free parking space detection

Once the Euclidean 3D structure is reconstructed, the free
parking spaces are detected in the 3D point clouds. For this
task, we estimate the positions of the adjacent vehicles and
locate free parking spaces accordingly. Because position esti-
mation in 3D space can be complicated and time-consuming,
we reduce the dimensions of the structure from 3D to 2D.
The 3D points, whose heights from the ground plane are
between 30—160 cm, are selected and the height information
is removed to reduce the dimensions. After that, we delete
the isolated points by counting the number of neighbors.
Figure 9a shows the dimension reduction result. Since all
points in Fig. 9a do not belong to the outermost surface of
the automobile, we select the outline points by using the rela-
tionship between the incoming angle and the distance from
the camera center. This procedure is performed for better
estimation of the position of the adjacent vehicle. The inco-
ming angle is the angle between the horizontal axis and the
line joining the camera center and a 2D point. Figure 9a is
re-depicted in Fig. 9b by using the incoming angle and the
distance from the camera center. Since the points on the same
vertical line comes from the same incoming angle in Fig. 9b,
the nearest point from the camera center among the points
on the same vertical line is recognized as the outline point.
Figure 9c shows the result of outline point selection.

If the automobile shape is assumed to be a rectangle as
seen from the top, the position of the adjacent vehicle can
be represented by a corner point and orientation. Therefore,
we estimate the corner point and orientation of the adjacent
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Fig. 8 Result of metric
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Fig. 9 a Dimension reduction result. b Re-depicted 2D points with the incoming angle and the distance from the camera center. ¢ Result of outline

point selection. (0, 0) indicates the camera center

vehicle and use these values to locate free parking spaces.
Since the reconstructed structure is noisy and includes not
only adjacent vehicles but also other obstacles, we use a
projection-based method. This method rotates the 2D points
and projects them onto the x and z-axes. It discovers the rota-
tion angle which maximizes the sum of the maximum peak
values of the two projection results. The rotation angle and
the locations of the two maximum peak values are recogni-
zed as the orientation and the corner point, respectively. This
method estimates the corner point and orientation at the same
time, and it is robust to noisy data.

However, when using this method, we cannot know whe-
ther the estimated orientation is longitudinal or lateral. To
determine this, it is assumed that a driver turns right when a
free parking space is located on the left, and vice versa. This
assumption helps us to determine the orientation by using the
turning direction of automobile estimated from the rotation
matrix.

Afterestimating the corner pointand orientation, the points
onthelongitudinal side of the adjacent vehicle are selected and
used forrefining the orientation by using RANSAC-based line
estimation. This procedure is needed because the lateral side
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of automobiles is usually curved so the longitudinal side gives
more precise orientation information. The corner point is also
refined according to the refined orientation.

To locate the most appropriate free parking spaces, other
adjacent vehicles located opposite the estimated vehicle are
also searched. The search range is set as Fig. 10a by using
the estimated corner point and orientation. We set a circle
with a radius of 150 cm and its center is located 300 cm away
from the corner point in the lateral direction. If there are point
clouds inside the search range, the other vehicle is considered
to be found and the free parking space is located in the middle
of two vehicles in the lateral direction. The corner points of
two adjacent vehicles are projected in a longitudinal direction
and the outer one is used to locate free parking spaces. This is
described in Fig. 10b. In this figure, corner point 1 is selected
because this is the outer one. If the other vehicle is not found,
the free parking space is located beside the detected adjacent
vehicle with a 50 cm interval in the lateral direction. Figure 11
shows the final result of the detection process. The width and
length of the free parking space were set as 180 and 480 cm,
respectively, since this is the size of the vehicle used for the
experiment.
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Fig. 11 Detected free parking space depicted on the last frame of the
image sequence

5 Experimental results

The proposed system was tested in 154 different parking
situations. From the database, 53 sequences were taken with
the laser scanner data and 101 sequences were taken without
it. The image sequences were acquired with a fisheye camera.
Its horizontal and vertical fields of view were about 154°
and 115°, respectively. The image resolution and frame rate
were 1,024 x 768 pixels and 15 fps, respectively. The proces-
sing time of the overall procedure (except the feature tracking
process) was 5.1s on average when running it in MATLAB
using a 2.4 GHz Intel Core2 Quad CPU. We analyzed the
results in terms of success rate and detection accuracy. For
success rate, a manual check was performed to determine
whether the detected space was located inside the free space.
For detection accuracy, the errors of the estimated corner
point and orientation of the adjacent vehicle were measu-
red by using laser scanner data. The experimental results
consist of three parts. First, we compare the reconstructed
structures when using and without using the proposed fea-
ture selection and 3D mosaicing methods. Second, the suc-
cesses and failures of the system are discussed. Third, the
accuracies of the estimated corner point and orientation are
presented.

Fig. 12 Fisheye camera and laser scanner mounted on the automobile

5.1 Comparison of the reconstructed structures

In this experiment, we reconstructed the 3D rearview struc-
tures when using and without using the proposed feature
selection and 3D mosaicing methods and compared them
to the laser scanner data. The laser scanner was the SICK
LD-OEM1000 [32]. Its angular resolution and depth resolu-
tion are 0.125° and 3.9 mm, respectively and the systematic
error is £25 mm. Figure 12 shows the fisheye camera and the
laser scanner mounted on the automobile. These two sensors
were pre-calibrated.

Two comparison results are shown in Fig. 13. The recons-
tructed structures are depicted as seen from the top after
removing the points near the ground plane. Figure 13a shows
the last frames of two image sequences and the points on the
vehicle indicate the locations of the epipoles. Figure 13b,c
show the reconstructed rearview structures when using and
without using the proposed method, respectively and the blue
and red points indicate the reconstructed points and the laser
scanner data, respectively.

By using this comparison, we can observe three advan-
tages of the proposed feature selection and 3D mosaicing
methods. First, it reduces the number of erroneously
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Fig. 13 a The last frames of two image sequences. b Reconstructed structures when using the proposed method. ¢ Reconstructed structures without

using the proposed method

reconstructed points. The structures in Fig. 13c shows more
erroneous points outside the ground truth data than those in
Fig. 13b because the proposed method removes the point
correspondences near the epipole and far from the camera
center. Second, it increases the amount of information about
adjacent vehicles. The structures in Fig. 13b are more detai-
led than those in Fig. 13c because the density of the points
on the adjacent vehicles is increased by mosaicing several
3D structures. Third, it enhances metric recovery results. In
Fig. 13c, the scales of the reconstructed structures differ from
the ground truth, since the proposed method produces more
points on the ground plane, so it makes the ground plane
estimation more accurate.

5.2 Free parking space detection results

The proposed system was applied to 154 real image sequ-
ences taken in the various situations. The ground planes were
covered with asphalt, soil, snow, standing water, parking mar-
kers, etc. The automobiles varied in color from dark to bright
and they included sedans, SUVs, trucks, vans, buses, etc. The
environment included various types of buildings, vehicles,
trees, etc. Figure 14 shows six successful examples. In this

@ Springer

figure, the detected parking spaces are depicted on the last
frames of the image sequences and corresponding rearview
structures. To decide whether the system succeeded, we dis-
played the detected free parking space on the last frame of the
image sequence. If it was located inside the free space bet-
ween two adjacent vehicles, the result was considered to be a
success. In this way, the system succeeded in 139 situations
and failed in 15 situations, so the success rate was 90.3%.

Figure 15 shows four types of failures. In Fig. 15a, the sun
was strongly reflected on the surface of the adjacent vehicle
and the ground plane, so feature point tracking failed. In
Fig. 15b, the adjacent vehicle was very dark and it was located
in a shadowy region, so few feature points were detected
and tracked on the automobile surface. In Fig. 15¢, the free
parking space was very far from the camera, so the structure
of the white car was more precisely reconstructed than that
of the silver van. This caused false detection. In Fig. 15d, part
of the ground plane (darker region) on the parking space was
repaved with asphalt, so the ground plane was not flat. This
made the ground plane estimation erroneous. Out of fifteen
failures, three could be depicted by Fig. 15a, nine could be
depicted by Fig. 15b, two could be depicted by Fig. 15¢, and
one could be depicted by Fig. 15d.
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Fig. 14 Six successful detections. a—f The free parking spaces on the last frames of the image sequences and corresponding rearview structures.

(0, 0) indicates the camera center

5.3 Accuracy of adjacent vehicle detection

Since the free parking space detection result depends on the
estimation of the corner point and orientation, we calcula-
ted the errors of these two values for accuracy evaluation.
The ground truth of the corner point and orientation were
manually obtained by using laser scanner data. The error of
the corner point is the Euclidean distance from the estimated
point to the measured point and the error of the orientation
is the absolute difference between the estimated angle and
the measured angle. For this evaluation, 47 image sequences
and the corresponding laser scanner data were used because
6 image pairs among 53 failed to detect free parking spaces

due to the reasons mentioned in Sect. 5.2. The corner point
and the orientation of the adjacent vehicle were estimated ten
times for each image sequence. This is because the recons-
tructed structure can differ slightly every time due to the
parameter estimation results.

In Fig. 16, the corner point error and the orientation error
are depicted as histograms. The average and maximum errors
of the corner point were 14.9 and 42.7 cm, respectively. The
distance between the corner point and the camera center was
between 281.4 and 529.2 cm. Since the lateral distance bet-
ween two adjacent vehicles is approximately between 280
and 300 cm in a usual parking situation, there are about 50 cm
extra room on each side of the vehicle. This means that even
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the maximum error of the corner point is acceptable for the
free parking space localization. The average and maximum
errors of the orientation were 1.4° and 7.7°, respectively. The
average error of the orientation was acceptable but the maxi-
mum error of the orientation was somewhat large. This is
because the side surfaces of automobiles sometimes show
few corresponding points due to featurelessness and this
makes the orientation estimation difficult. This evaluation
shows that the proposed system produces acceptable results
for detecting free parking spaces. For the worse cases, we
are planning to refine the detection results when automobiles
move backward into parking spaces.

6 Conclusions

This paper proposed a free parking space detection system.
This system acquires an image sequence with a rearview
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camera and reconstructs the 3D structure by using point cor-
respondences. The metric information is recovered from the
camera height ratio and free parking spaces are detected by
estimating the positions of adjacent vehicles. Compared to
previous work, this paper makes three contributions. First,
we solved the serious degradation of 3D structures near the
epipole. Second, we presented an efficient method for detec-
ting free parking spaces in 3D point clouds. Third, our system
did not use odometry due to its unreliability. In the experi-
ments, the proposed system showed a 90% success rate (139
successes in 154 cases) and the accuracy evaluation showed
that the proposed system produced acceptable results. In our
opinion, the reason that previous works only visualized par-
king situations without detecting the exact target space is
mostly because of the 3D structure degradation near the epi-
pole and the uncertainty of odometry. Since those problems
have been solved in this paper, we expect that our work may
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increase the possibility for the practical realization of motion
stereo-based automatic free parking space detection systems.
In the future, we plan to improve the feature selection method
by assigning confidence values to the feature points that were
simply rejected in the proposed method. For more accurate
parking space detection, we will update and refine the rear-
view structures while automobiles move backward into ini-
tially detected free parking spaces and use a height sensor to
cope with camera height variations.
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