Machine Vision and Applications (2008) 19:411-425
DOI 10.1007/s00138-007-0116-9

SPECIAL ISSUE PAPER

Intentional motion on-line learning and prediction

Dizan Vasquez - Thierry Fraichard - Olivier Aycard -
Christian Laugier

Received: 16 April 2006 / Revised: 2 May 2007 / Accepted: 28 September 2007 / Published online: 10 January 2008

© Springer-Verlag 2008

Abstract Predicting motion of humans, animals and other
objects which move according to internal plans is a chal-
lenging problem. Most existing approaches operate in two
stages: (a) learning typical motion patterns by observing an
environment and (b) predicting future motion on the basis
of the learned patterns. In existing techniques, learning is
performed off-line, hence, it is impossible to refine the exist-
ing knowledge on the basis of the new observations obtained
during the prediction phase. We propose an approach which
uses hidden Markov models (HMMs) to represent motion
patterns. It is different from similar approaches because it is
able to learn and predict in a concurrent fashion thanks to a
novel approximate learning approach, based on the growing
neural gas algorithm, which estimates both HMM parame-
ters and structure. The found structure has the property of
being a planar graph, thus enabling exact inference in linear
time with respect to the number of states in the model. Our
experiments demonstrate that the technique works in real-
time, and is able to produce sound long-term predictions of
people motion.

Keywords Trajectory prediction - Motion models -
Hidden Markov models - Growing neural gas algorithm

1 Introduction

Motion planning for dynamic environments is a very active

research domain. Because the problem is NP-Hard [34], most
of the research effort has been directed towards finding

D. Vasquez (<) - T. Fraichard - O. Aycard - C. Laugier
INRIA Rhone-Alpes & Gravir-CNRS,

655 av. de I’Europe, Montbonnot,

38334 St Ismier Cedex, France

e-mail: vasquezg @inrialpes.fr

algorithms that are able to cope with this complexity. There
is, however, another aspect of motion planning that is often
overlooked despite its importance: motion planning algo-
rithms need to know in advance the motion of the objects
which populate the environment.

The problem is that, in most real applications, the future
motion of the moving objects is a priori unknown, making
it necessary to predict it on the basis of observations of the
objects’ past and present states. These observations are gath-
ered using various sensors (e.g. radars, vision systems, etc.)
which have limited precision and accuracy.

Until recently, most motion prediction techniques have
been based on kinematic or dynamic models that describe
how the state (e.g. position and velocity) of an object evolves
over time when it is subject to a given control (e.g. accelera-
tion) (cf. [42]). These approaches proceed by estimating the
state, using techniques such as the Kalman filter [23], and
then applying the estimate to its motion equations in order to
get state predictions.

Although these techniques are able to produce very good
short-term predictions, their performance degrades quickly
as they try to see further away in the future. This is espe-
cially true for humans, vehicles, robots, animals and the like,
which are able to modify their trajectory according to factors
(e.g. perception, internal state, intentions, etc.) which are not
described by their kinematic or dynamic properties.

To address this issue, a different family of approaches has
emerged recently. It is based on the idea that, for a given
area, moving objects tend to follow typical motion patterns
that depend on the objects’ nature and the structure of the
environment. Such approaches operate in two stages:

1. Learning stage: observe the moving objects in the

workspace in order to determine the typical motion pat-
terns.

@ Springer

412

D. Vasquez et al.

2. Prediction stage: use the learnt typical motion patterns
to predict the future motion of a given object.

Thus, learning consists in observing a given environment
in order to construct a representation of every possible motion
pattern. But, how long should we observe the environment in
order to construct such a “pattern library”? Given the enor-
mous number of possible patterns for all but the simplest
environments, there is not a simple answer. This raises an
important problem of existing learning techniques [3,32,38]:
they use a “learn then predict” (Fig. 1) approach, meaning
that the system goes through a learning stage where it is pre-
sented with a set of observations (an example dataset) from
which it builds its pattern models. Then, the models are “fro-
zen” and the system goes into the prediction stage.

The problem with this approach is that it makes the implicit
assumption that all possible motion patterns are included in
the example dataset, which, as we have shown, is a diffi-
cult condition to meet. In this paper we present an approach
which, in contrast to the approaches mentioned above and
discussed in detail in Sect. 2, works in a “learn and predict”
fashion (Fig. 2). That is, learning is an incremental process,
which continuously refines knowledge on the basis of new
observations which are also used for prediction. To the extent

Pattern Models

Example
Dataset

Model
Parameters

Observations

a) learn

Observations

Model
Parameters

Predictions

Pattern Models

b) predict

Fig. 1 Learn then predict

Predict

Predictions

Model
Parameters

=

Pattern Models

- Observations

old
Parameters

New
Parameters

Fig. 2 Learn and predict

@ Springer

of our knowledge, this is the first learning based motion pre-
diction technique in the literature to have this property.

Our work is based on hidden Markov models [33], a prob-
abilistic framework used to describe dynamic systems which
has been successfully applied to “learn then predict”
approaches [3,32]. A hidden Markov model (HMM) may be
viewed as a graph, where nodes represent states (eg places in
the environment) and edges represent the transition probabil-
ity of moving from one node to another in a single time step,
the number of nodes and the existence of nodes determines
the model’s structure. The model also assumes that states are
not directly observable but produce observations with a given
probability.

Our approach is founded on the hypothesis that objects
move in order to reach specific places of the environment
called goals. Hence, motion patterns are represented using a
different HMM for every goal. Each such HMM describes
how objects move to reach the corresponding goal. It is this
set of HMMs that are used for prediction purposes.

Our learning approach, which is also the main contribu-
tion of this paper, is anovel approximate HMM learning tech-
nique based on the growing neural gas algorithm [18]. It is
able to process observations incrementally (i.e. one by one),
in order to find the HMM’s structure as well as to estimate
the model’s transition probabilities. Moreover, the algorithm
is adaptive, meaning that it is able to insert or delete states or
transitions in order to respond to changes in the underlying
phenomenon. The same incrementality and adaptivity prop-
erties apply to goal identification, hence, it is able to create
models for motion patterns that have just been discovered or
to delete old ones when the corresponding patterns are no
longer observed. The cost of learning for each iteration is
linear with respect to the number of states, as is the inference
(i.e. prediction). This enables real-time processing, which is
indispensable for a “learn and predict” approach.

The paper is organised as follows: an overview of the
related works is presented in Sect. 2. Section 3 is an intro-
duction to HMMs and the Growing Neural Gas algorithm.
Our approach is presented in Sect. 4. In Sect. 5, the the-
oretical aspects of our approach are discussed. Section 6
details our implementation of the algorithm. In Sect. 7 we
present the experiments we have carried out as well as the
obtained results. Section 8 contains a discussion of future
work. Finally, Sect. 9 presents our conclusions.

2 Related works

This section provides an overview of existing motion predic-
tion approaches, which we have roughly classified in three
categories: (a) kinematic and dynamic approaches; (b) dis-
crete state probabilistic techniques; and (c) clustering based
techniques.

Intentional motion on-line learning and prediction

413

Finally, we also provide a short review of the literature on
parameter and structure learning algorithms for HMMs.

2.1 Kinematic and dynamic approaches

Approaches based on the kinematic or dynamic properties
of moving objects are often based on the Kalman filter and
extended Kalman filter’s prediction step [9,21,24]. There are,
however other approaches that also use dynamics for pre-
diction: Chien and Koivo [11] proposed the use of a recur-
sive autoregressive time series model whose parameters are
estimated using the least mean squared error method. The
approach proposed by [43] models motion using HMMs to
predict motion on the basis of a state space which is relative
to the object. A random walk is applied to predict motion in
[30]. In [27], a clustering algorithm is used to predict motion
on the basis of a fixed number of previous observations.

In general motion prediction approaches based only on the
kinematic and dynamic properties of the objects are accurate
in the short term, but fail to produce sound long-term pre-
diction of human motion, mostly due to the fact that human
motion depends on other factors than kinematic or dynamic
constraints (e.g. plans, goals, perception, etc.).

2.2 Discrete state probabilistic techniques

This techniques perform some kind of state partition on the
environment and then model motion as transition probabil-
ities between states. One of the first examples of this kind
of techniques was proposed by Tadokoro et al. [37], the
approach partitioned the environment into a 2D grid, tran-
sition probabilities between neighbor cells were assigned by
ahuman expert. Kruse et al. [26] advanced further by propos-
ing a grid based approach which was able to automatically
learn transition probabilities.

More recently abstract HMMs [8] have been proposed,
this is a hierarchic framework that allows to reason about
motion at different abstraction levels or resolutions. In [32],
the expectation-maximization algorithm has been used to
automatically learn its parameters.

2.3 Clustering based techniques

This approaches represent behaviors using trajectory proto-
types which have been obtained through clustering of
observed trajectories. An application of this kind of
approaches to human motion was proposed in [25], where
an ad-hoc clustering procedure was applied to find trajectory
segments which were common between observed trajecto-
ries. Gaffney and Smith [20] proposed the use of mixture
models to cluster trajectories, but did not apply them to
human motion. A more standard clustering approach
was proposed in [3,4] this approach uses the Expectation-

Maximization algorithm to find trajectory models. An inter-
esting feature of this approach is that the found clusters are
then converted into HMMs in order to perform inference.
A similar approach based on pairwise clustering has been
presented in [38].

In general, discrete-state and clustering based techniques
have different strengths and weaknesses, the former trend
to give less precise trajectory predictions than cluster based
techniques and are, in general, more expensive in computa-
tion time, in the other hand, they are better suited to predict
the state distribution probability at any given moment,and
they are better able to represent certain unseen situations,
like an object switching between behaviors.

2.4 Learning HMMs

Since our approach is based on HMMs, we will review exis-
tent work on HMM learning techniques. These techniques
may be divided in two categories: parameter and structure
learning.

The de facto standard technique for parameter learning
is the Baum—Welch algorithm [2] which is a batch learning
technique derived from the expectation-maximization (EM)
algorithm [13]. An incremental approximation of expecta-
tion-maximization has been proposed in [31], although it
does not guarantee convergence it often gives a good approx-
imation [29]. Another approximative incremental approach
which is also more general than EM has been proposed in
[35].

The problem of structure learning is considered to be more
difficult due to the huge search space. The restricted ver-
sion of the problem consists in choosing the best topology
knowing the number of states N, even supposing that the
state is fully observable, this means choosing the best out of
o@N 2InN) possible directed acyclic graphs (DAG’s) which
is clearly unfeasible [29]. If the form of the graphs is restricted
to trees, the Chow—Liu [12] algorithm may be used to find
the optimal maximum-likelihood tree in O (M N 2) where M
is the number of observation sequences in the training set.
The problem is even harder for HMMs, because the state is
not observable. Moreover, in many cases even the number of
states is unknown.

Due to all the problems mentioned above, approaches
found in the literature are mostly heuristic, and is difficult
to guarantee even local convergence. A popular approach
is model merging [36] which starts with creating a state for
every observation in the learning data set, and then, merges
near states together. Other algorithm is stochastic optimiza-
tion [17] which performs hill climbing search by choosing
between stochastically selected structures. In [40], the search
is performed using a genetic algorithm where individuals
represent HMM structures. A different approach has been

@ Springer

414

D. Vasquez et al.

proposed in [7], which combines an entropic prior which
favors low entropy (i.e. highly specific) models with trim-
ming of weakly supported parameters and states.

Finally, it is worth mentioning again [3] in this context. It
uses trajectory clustering to learn the structure of an HMM
where cluster models are represented by disjoint components
in the structure graph.

3 Theoretical framework

This section provides a gentle introduction to the two main
tools which are used by our approach. Readers which are
already familiar with the HMMs or the growing neural gas
algorithm may safely skip the corresponding sections and
proceed directly to Sect. 4.

3.1 Hidden Markov models

This is a concise discussion on HMMs, the interested reader
is referred to [33] for an excellent tutorial on the subject.

HMMs are a type of dynamic Bayesian network [29]
which is often used for the analysis of dynamic models using
noisy sensors. They have applications in many different
domains, such as speech recognition [33], genomics [15] and
robotics [43].

An HMM may be viewed as a stochastic automaton which
describes the temporal evolution of a process through a finite
number of discrete states. The process progresses in discrete
time steps, going from one state into another according to
a given transition probability. It is assumed that the current
state of the system is not directly observable, instead, it pro-
duces an output (i.e. observation) with a certain probability
known as the observation probability.

3.1.1 Representation

An HMM describes the system using three stochastic vari-
ables: (a) the present state s;, (b) the previous state s;_1, and
the current observation oy, the rest of the model is defined by
the following elements:

— The number of discrete states in the model N. A discrete
state is denoted by its numberi : 1 <i < N.

— The transition probability function, expressed by P (s; |
s¢—1). This probability is represented witha N x N tran-
sition matrix A where each element g; ; represents the
probability of reaching the state j in the next time step
given that the system was in state i.

aj.j = P(lss = jl|[s—1 =1i]) (D

@ Springer

— The observation probability function, expressed by P (o; |
s¢). In general, for each state, the observation probability
is represented by a Gaussian distribution. !

P(o; | [s; = i) = G(os; pi, 0y) (2)

The set of all the Gaussians’ parameters is denoted by
B ={(u1,01), ..., (un,on)}

— The initial state distribution, expressed by P(sg). This
represents our knowledge about the state of the system
before receiving any observation and is denoted by I71.
It is often represented by a uniform distribution P ([sg =
i) = % or by a N x 1 matrix where P([so = i]) = I1;.

The three probability functions defined above form a joint
probability distribution (JPD) which encodes two conditional
independence assumptions: (a) knowing the state, observa-
tions do not depend on each other, and (b) knowing the pres-
ent state, the past and future states are mutually independent

(Eq. 3).
P(si—1,51,00) = P(s—1)P(s; | si—1) P (0 | 8¢) 3)

The parameters of these three probabilities are often
denoted using the compact notation A = {A, B, [T}, they
are known together as the model’s parameters, as opposed to
the model’s structure, which we will now discuss.

The structure of a model, =, is the specification of its
number of states N and the valid transitions between states.
It may be visualized using the model’s connectivity graph,
where each vertex represents one state, vertices are joined by
directed edges such that every strictly positive element of A
(a;,j > 0) will be represented by a directed edge from vertex
i to vertex j. Hence, a matrix having only strictly positive ele-
ments corresponds to a fully connected, or ergodic, structure
graph, while a sparse matrix corresponds to a graph having
fewer edges. This is illustrated in Fig. 3.

Structure is important because it affects the complexity of
inference in the model, for example, filtering (state estima-
tion) has complexity O (N?) for a fully connected structure
graph, however, if the graph is sparse and each state has at
most P predecessors, the complexity is O (N P) [29]. More-
over, structure also influences the quality of inference [5,6].

3.1.2 Inference

HMMs are used to perform Bayesian inference: compute
the probability distributions of unknown variables given the
known ones. Like in other dynamic Bayesian networks, infer-
ence is often used in HMMs to perform filtering P (s; | 01),

! It is also common to represent it by a mixture of Gaussian, or, for
discrete observations, by a table.

Intentional motion on-line learning and prediction

415

(a) O(N2) edges

(b) O(N) edges

Fig. 3 Two examples of an order 4 structure graph

smoothing P(s; | 01.7) and prediction P (s;+x | 01.¢). Other
two probabilistic questions which are more specific to HMMs
are: (a) evaluating the probability of a sequence of observa-
tions, and (b) finding the sequence of states that is more likely
to correspond to a sequence of observations. This last ques-
tion is answered using a dynamic programming technique
known as the Viterbi algorithm [39].

3.1.3 Learning

In order to perform inference with an HMM, it is necessary
to define its structure = as well as its parameters A. But,
how to choose these values for a particular application? The
solution is to estimate (i.e. learn) these values from data.

Most approaches in the literature assume that the structure
is known and only try to learn the model’s parameters A. The
most widely used of these parameter learning approaches is
the Baum-Welch algorithm which is an application of expec-
tation-maximization [13].

Despite being an active research subject, structure learn-
ing, no structure learning algorithm has become standard, a
review of existing techniques is presented in Sect. 2.

3.2 Growing neural gas

We will briefly introduce the growing neural gas (GNG) algo-
rithm, which is explained in detail in [18]. The GNG is an
unsupervised competitive learning algorithm which may be
applied to a variety of problems (e.g. vector quantization,
topology learning, pattern classification and clustering). It
processes input vectors and constructs a network of N ele-
ments called units, each of these units has an associated
D-dimensional vector called its weight (w;) and is linked
to other units called its neighbors N;. The algorithm starts
with two units linked together, then, as new input vectors are
processed, units and links may be added or deleted to the
network.

The algorithm implicitly partitions the whole space into
N Voronoi regions V; which are defined by:

Vi={x eR?:lx —uill < llx —uj|,Vj #i))

Unit weights |

Input Vectors— |

Voronoi Region—|

Fig. 4 Implicit partition: there are some 2-dimensional input vectors
(crosses). The units’ weights are represented by points and Voronoi
regions are separated by boundary lines

We illustrate this in 2-dimensional space (Fig. 4). Each
unit occupies its own Voronoi region, given an input vector,
the winning unit is the one having its weight vector in the
same Voronoi region.

During learning, the units’ weights are modified in order to
minimize the distortion which is the mean distance between
the winners and their corresponding input vectors. The algo-
rithms also builds incrementally a topology of links which
is a subset of the Delaunay triangulation of the units’ weight
vectors. This means that, in order to be linked together, two
units must have a common border in the Voronoi region (see
Fig. 5).

Recapitulating, the GNG algorithm has the following
properties:

1. No previous knowledge about the number of units N is
required.

2. It is incremental: the model is updated by processing
input in a one by one basis.

3. [Itis adaptive: units and / or links may be added or deleted
to reflect changes in the underlying phenomenon.

4. Tt minimizes the distortion or quantization error: units’
weights are placed in order to minimize their distance to
input vectors.

Delaunay Links

Fig. 5 The Delaunay triangulation for the previous example. Delaunay
links are represented by dashed lines. Notice how the number of links
corresponds to the number of borders for a given area

@ Springer

416

D. Vasquez et al.

5. Links are a subset of the Delaunay triangulation: they
connect neighbor Voronoi cells.

But the main interest of GNGs lies in how this features
interact, in other words, its ability to determine the number
of discrete elements in which the space is partitioned as well
as their respective weights and, at the same time, learning the
related topology, all of it in an incremental fashion. Moreover,
the memory footprint of the structure and the complexity the
update algorithm are both linear with respect to the number
of states.

On the other hand, these advantages come at a cost of using
an approximate algorithm which does not have strict theori-
cal convergence properties due to its use of constant learning
rates. Nevertheless, as shown by Heinke and Hamker [22],
the algorithm performs at least as well as other clustering and
vector quantization approaches.

4 Proposed approach

The approach we propose consists of an algorithm which
is able to continuously predict future motion based on a
model which is constantly improved on the basis of observed
motion. This learn and predict capability constitutes an
advantage over existing techniques, making it unnecessary
to have a learning dataset containing at least one example of
every observable motion pattern.

The input of our algorithm consists of position observa-
tions o; = (x¢, y;) and a trajectory termination flag n; which
is set to one when the observation corresponds to the end of a
trajectory (i.e. when the object has stopped moving for a long
time or exited the environment) and is set to zero otherwise.
At every time step, this input is used to compute a probabi-
listic estimate of the state with a lookahead of K timesteps
(P (st+% | 07)) as well as to update the model (Fig. 2).

4.1 Representation

Our approach is based on the hypothesis that objects move in
order to reach specific places in the environment (i.e. goals).
The idea is to identify all the possible goals. Then, for each
of these goals, we construct a HMM (i.e. motion model) rep-
resenting how an object should move in order to reach it.

It is assumed that transition probabilities depend on the
goal to be reached (denoted by y hereafter) and that structure
and observation probabilities are independent of the goals,
hence, they are the same for all motion models.

These assumptions lead to the following JPD:

P(si—1, 81,00, 7) = P(si—1)P(y)P (st | s1-1,) P(0; | 8¢)
(5)

@ Springer

So our model is defined by the following:

— The number of goals in the model G.

— The number of states in the model N.

— The transition probability function P(s; | y, s;—1). This
probability is represented with an unnormalized G x N x
N transition matrix”> A where every element a ¢.i,j TEpre-
sents the number of times that a transition from state i to
state j has been observed, given that the object is going
to goal g.

agij = P(s; = jI1ly = gllsi—1 =1i]) (6)

— The observation probability function P(o; | s;). Is rep-
resented by Gaussian distributions. The set of all the
Gaussians’ parameters is denoted by B = {(u1, 01), . . .,
(N, on)}

— The initial goal distribution P (yy). Is considered to be a
uniform distribution P([yp = g]) = é Vg €[1, G].

— The initial state distribution P (sg). Is considered to be a
uniform distribution P([so = i]) = %, Vi € [1, N].

The set of pattern models shown in Fig. 2 consists of struc-
ture and parameters. The structure is defined by the number
of goals G, the number of states N, and the structure graph
E which is the same for all the A, matrices.

The parameters consist of the transition table A, and the
observation parameters B. Given that both P(sg) and P(y)
are considered to be uniform, they do not require any extra
parameter.

4.2 Learning

Learning is composed of several subprocesses, an overview
is presented in Fig. 6.

4.2.1 Updating state structure

The input observation o; is passed as an input vector to a
GNG network G, Nodes of this network represent states,
and links represent allowed transitions (i.e. each link rep-
resents two transitions, corresponding to the two possible
directions). This network is used to update A as follows:

1. If a new unit has been inserted or deleted in By, a
corresponding row and column are inserted to or deleted
from all A, matrices.

2. If a new link has been added or deleted from By, tWo
corresponding transitions are added to or deleted from
all A,.

2 This is considered equivalent to having G N x N matrices A ¢ 1=
g<G.

Intentional motion on-line learning and prediction

417

Fig. 6 Learning overview

Receive Observation
o=(x,y)
and termination Flag

Update State
Structure

Update Observation

i ?
Probability End of trajectory?

n

4.2.2 Updating observation probabilities

The observation probabilities are directly computed from
Btate- Unit weights are used as mean values for the Gaussi-
ans’ centers:

wi =w;, Yw; € Gypuee @)
And o; is estimated from the average distance to unit’s
neighbors:

C
0i = — E lwi —wjll 3)
R17 et
JjeNy

where C is a weighting constant, in our experiments, we have
set it to 0.5.

4.2.3 Updating goal structure

Goals are discovered by clustering together observations that
correspond to trajectories endpoints, which is indicated by
n = 1. Given that the number of goals is ignored, we will use
another GNG structure o, to perform the clustering. The
number of clusters G corresponds to the number of units in
Bgoal. This means that, when a new unit is inserted or deleted
in Ggoa a corresponding slice (i.e. matrix) is inserted to or
deleted from A.

4.2.4 Updating transition probabilities

In this step, the entire observation sequence {01, ..., or} for
a trajectory is used, this means that it is necessary to store all
past observations in an internal data structure.

In order to choose the transition probability table to update,
the attained goal y should be identified, this is done by choos-
ing the goal which is closest to the last observation.

y =argmin oy — w;|, Yw; € Ggoal 9
i

Transition probabilities are then updated by applying max-
imum likelihood: we use the Viterbi algorithm to find the
most likely sequence of states {si,...,sr} and then, we
increment the corresponding counters in A. This is just an

Update Goal
Structure

Update Transition
Probability

approximation of the Baum—Welch estimation — which per-
forms weighted counting according to the likelihood of every
possible state sequence — nevertheless, it has been shown
[36] that the results obtained with this approximation are
comparable to those obtained Baum—Welch.
Ays, i, =0ys_1,5, F1, VE:1<t<T—1 (10)
A problem with this approach is that the transition coun-
ters of new links in the topology will have a much smaller
value than those that correspond to older links, hence, old
links will dominate. This is solved by multiplying transition

weights by a fading factor f. In general this is similar to
having a bounded counter with a maximum value of ﬁ

Ay i =0ys,i ¥ f, V,i:1<t<T~—1,1ieMN, (11)

Instead of normalizing A, normalization is performed
when computing the transition probability.

LY (12)

P =7 == 1= =
(s = My = gllsir = iD= == =

Finally, the data structure that was used to store the obser-
vation sequence may be cleared.

4.3 Prediction

Prediction is performed in two steps. First, the belief state
(i.e. the joint probability of the present state and goal) is
updated using the input observation o;:

P(y.si|01)
1
= PO 1s) 2 PGt |y)P st o) (13)
Si—1

where P(y, s;—1 | 0;—1) is the belief state calculated in the
previous time step and Z is a normalization constant which
ensures that all the probabilities sum up to one.

Then, motion state is predicted with a look-ahead of K
time steps using:

Py, si+kx | or)
= D Pk | Vosirk-DP.sisk—1 o) (14)

St+K—1

@ Springer

418

D. Vasquez et al.

Finally, the state is obtained by marginalizing over the
goal:

P(siyk | 00) =D P(y.sik | 01) (15)
14

An alternative to state prediction is to predict the goal by
marginalizing the state from the belief state:

P(ylo) =D Py s o) (16)

St

5 Analysis

This section we analyse the aspects of our approach which
are different from conventional HMM techniques, explain-
ing the rationale behind them as well as discussing their com-
plexity. The subsection on structure learning with GNG is of
particular interest, because it is central to our approach and
constitutes our main contribution.

5.1 Learning HMM structure with GNG

As explained in Sect. 3.2, state learning uses a growing neu-
ral gas network to learn both the total number of states N
and the a priori state transition structure. The use of the
algorithm is straightforward: Each observation received from
the sensor system is processed as an input vector by the
network. Network units correspond to states in the HMM
and links between units correspond to allowed transitions
between states.

The use of the GNG algorithm to discretize the space and
find the network structure is justified by two rationale:

— Due to the fact that GNG minimizes the distortion, the
weights of the network units are good representations of
observations in the same cell.

— Inorder to move from one cell to another, an object should
cross one of the cell’s borders, which is equivalent to fol-
lowing a Delaunay link.

It should be noted, however, that this arguments only hold
in cases where the HMM is being used as a discrete approxi-
mation of a phenomenon having a continuous state space, and
whose evolution is also continuous, as is the case of motion.
At the same time, when this property is true, a topologi-
cal representation of the space is able to represent arbitrary
motion because the process, by definition, will progress from
one discrete region of the space into another by crossing the
regions’ borders, which correspond to the Delaunay links.

The primary advantage of defining the structure this way
is the reduction of the number of elements in the transition

@ Springer

matrix. For a two-dimensional space, t he Delaunay trian-
gulation of the points represented by the unit’s weights is a
planar graph. This means that the number of links in it is
O(N) [14], also, as demonstrated by [16], in most cases,
this property still holds for higher dimensional spaces. As
we have mentioned in Sect. 3.2, GNG links are a subset of
edges in the Delaunay triangulation, hence, they also define
a planar graph. So we have effectively reduced the number
of allowed transitions in the HMM structure from O (N?2),
for an ergodic model to O(N). This is reflected in the cost
of inference, since now only O (N) operations are necessary
to update the belief state and to perform one prediction step.

There is, however, a condition under which the use of GNG
links may be too restrictive: if an object is moving too fast,
it will pass through more than one cell in a single time step.
In order to deal with this situation, the minimum length of a
link /pnin should be restricted with respect to the maximum
speed Vimax of observed objects and the sampling period of
the sensor T':

lmin = VmaxT (17)

A more important limitation of the proposed approach
appears in the case where motion includes cycles. Since
our current technique uses only spatial information to learn
the structure, two different situations which occur at the
same point will be represented using the same discrete state.
A possible solution would be to incorporate temporal infor-
mation in the input vectors used for learning.

5.2 Using GNG to estimate observation probabilities

A major difference between our algorithm and Baum-Welch
lies in the procedure used to compute the variance of observa-
tion probabilities. The procedure we propose is an heuristic
method and does not find the best approximation to the vari-
ance, however, it allows to capture, at least qualitatively, the
related uncertainties. Further work will focus on finding a
more precise estimate of the variance.

Finally, it is important to mention that, since our algorithm
is based on the GNG algorithm which uses constant learning
rates, it does not converge asymptotically, instead, its likeli-
hood increases quickly, and then it tends to oscillate around a
local maxima. On the other hand, it is precisely this behavior
which is at the heart of the algorithm’s adaptivity, and that
permits it to estimate the number of discrete states in an incre-
mental manner. Indeed, it is difficult to device an algorithm
which converges and at the same time is able to learn newly
observed motion patterns because both goals are somewhat
contradictory. Since the latter ability is the main motivation
behind our work, we have chosen to privilege adaptivity over
convergence.

Intentional motion on-line learning and prediction

419

5.3 Prediction

Equations (13) and (14) are obtained by applying Bayes’ rule
and the conditional independence hypotheses that were used
to define the JPD of the model (5).

Equation (13) is derived as follows:

1
Py.silot) = —= > P(y.se.si-1, 010) (18a)
0 si—1
1
== 2 P@ilot iy, s 5P
0 si—1
X (% S[ssl—lsolll—l) (ISb)

1
=z Pl s) D P, st si-1,014-1)

si—1
(18¢)
1
=P 1) 2 Plor-)P
0 si—1
X (¥ Si—1 | 01— P(s¢ | v, 8i—1) (18d)
=—Ploi|s) D P
si—1
X (Y St—1 | 01:0— 1) P (st | v, 8t—1) (18e)

In this derivation, passing from (18d) to (18e) is possible
because P(01:,—1) is a constant, hence, it may be integrated
into the denominator. As shown, the complexity of belief state
update is O (G N?), but it is possible to reduce the complexity
to O(GN) by exploiting HMM structure and summing only

over valid transitions:3
1 .
P(y.si | o1)=7-Plor]s) > Py.Isic1=illo1i-1)
its €My
xP(s; |y, [si—1=1]) (19)

State prediction (15) is derived in an analogous way:

P(y.sipk 1 01:) = D P sirk.Sivk—1 | o) (20a)
si—1
=D P(.sipk-1 | o) P
si—1
X (4 | Vs S4Kk-1) (20b)

Here the HMM structure may be again exploited to reduce
complexity from O(GN?K) to O(GNK):

> P lsiex—1=illo1)

iS4k €M
XP(st+k | Vs [Se4x-1 = i]) (21)

P(y,si+k | 014) =

3 In reality, the complexity is O(GN D), where D is the degree of the
structure graph, but in planar graphs D is constant.

6 Implementation

We have implemented our approach using the C** language
on a Linux platform, this section explains our implementation
decisions as well as the operational features of the algorithm.

6.1 GNG parameters and initialization

The GNG algorithm has six parameters, instead of calibrat-
ing them, we have used the same values that Fritzke has used
in [19] for the state GNG.* In the case of the goal GNG, we
have kept the same parameters, excepting for A which has
been set to 100 in order to accelerate goal learning.

Both GNGs have been initialized with two units having
random weights constrained to lie within the environment’s
limits.

6.2 Data structures

In order to exploit the sparse structure of both the GNG net-
work and the transition matrices A ¢» We have represented
them using a list of neighbors for every state/unit. This allows
to effectively perform sums as well as insert/delete opera-
tions.

6.3 Dealing with multiple objects

It is worth noting that, in all our experiments, we have
assumed that there was only one object moving at the same
time. On the other hand, our approach may be easily extended
to handle more than one simultaneously moving object as
long as interactions between objects are not modelled.

7 Experimental results
7.1 Test environment

The environment we have chosen to validate our approach
is the main lobby of our research institute, which is a rect-
angular open area measuring approximately 25 by 40 m. It
features the main entrance to the building, a self-information
directory post, the front-desk, a cafeteria area and a num-
ber of doors leading to various halls, rooms and auditoriums
(Fig. 7). This environment is the heart of the institute, all the
personnel passes through it at some point during the day for
a reason or another (going in or out, coffee break, attending
a lecture, etc.). This environment is interesting because the
motion patterns of the people is rich and the flow of people

4 The parameters were: A = 300, €, = 0.05, ¢, = 0.0006, @ = 0.5,
B = 0.0005 and amax = 88.

@ Springer

420

D. Vasquez et al.

Fig. 7 Inria’s main lobby:
video view (left) and 2D map
(right)

"\f ahy

Coffee
Aread

 —

-

% r |

Fig. 8 Overview of the
learning process (simulated
data)

(c¢) Voronoi Diagram

sufficient to ensure that it will be possible to gather a signif-
icant number of observations.

The testing of our approach has been done in two stages.
First, we have used observation data coming from a software
simulating the trajectories of people in the main lobby. Then
we have used live observations coming from a visual tracking
system.

The interest of using simulated data is that it allows to
evaluate our approach in controlled conditions for which it
is possible for instance to predefine the number of motion
patterns.

In both cases, we have gathered a significant number of
observations. We have presented 1,000 trajectories to the
learning algorithms in order to build an initial model, before
starting to measure the results. Then, prediction performed
has been measured using another 300 trajectories. The test
results obtained with simulated data (resp. real data) are pre-
sented in Sect. 7.2 (resp. 7.3).

7.2 Simulated observations
7.2.1 Getting the observations

The simulating system we have developed relies upon a num-
ber of control points representing “places of interest” of the

@ Springer

g

(b) GNG Structure

& iiia
1
I |
an
A
E! ._r'—-' \

(d) Learned Goals

environment such as the doors, the front-desk, etc. Based
upon this set of control points, a set of 32 typical motions
patterns has been defined. Each motion pattern consists in
a sequence of control points to be traversed. An observed
trajectory is computed in the following way: first, a motion
pattern is randomly chosen. This motion pattern provides
a set of control points. Then, goal points corresponding to
each of these control points are randomly generated using
two-dimensional Gaussian distributions whose mean value
are the control points. Finally, the motion between two goal
points in the sequence is simulated using discrete, even-size
steps in a direction drawn from a Gaussian distribution whose
mean value is the direction of the next goal point. Switching
from one goal point to the next is done when the distance to
the current goal point is below a predefined threshold.

‘We have generated the 1,300 trajectories that were required
for our experiments. an image of trajectories in the data set
are presented in Fig. 8.

7.2.2 Learning results

We have run our algorithm against the simulated data set 8a.
The algorithm took about 2 min to process the 1,000 ini-
tial trajectories, which contained a total of 58,262 observa-
tions meaning an average processing frame rate of about 480

Intentional motion on-line learning and prediction

421

Fig. 9 Prediction examples (a)
(simulated data) ¥ v v
I '
1
I & =i n

Mean Prediction Error (Simulated Data)
4 T T T T T

smhnnéoo144><gf,_

w
[6)]
T

n
[
T

1.5

Mean Error (m)
N
T

0.5

ol
10 20 30 40 50 60 70 80 90

% Observed

Fig. 10 Prediction error (simulated data)

observations per second. As a result of the learning process,
a structure having 196 states has been found (Figs. 8b, c).
Also a total of eight goals were identified, as it may be seen
in Fig. 8d the detected goals seem to correspond to many of
the interesting points shown in Fig. 7.

7.2.3 Prediction results

Figure 9 illustrates the prediction process. The figures show
the current position of the object as a small cube and — for
reference — the “real” future trajectory of the object as a
solid line. The estimated goals are marked by cubes whose
size vary with their estimated probability. Finally, the state
probability for ¢ 4+ 3 seconds has been illustrated with par-
ticles, where a higher concentration of particles indicates a
higher probability of being in that area three seconds after
the prediction has been made.

In order to test prediction performance, we measure the
distance between the predicted goal and the real final destina-
tion of the object (Fig. 10). For each of the 300 trajectories
we measure this distance when 10% of the total trajectory
has been seen, then, we do the same for 20% of the total
trajectory and so on until 90%.

We think that the obtained results are quite good. Even
when only 30% of the total trajectory is used to predict, the
mean error is of about 3 m which is relatively low with respect
to the size of the environment and the distance between goals.

(b)
i---1 P B[] i 1
1 . | — 1

7.3 Real observations
7.3.1 Getting the observations

To gather observations about the motions performed in the
test environment, we use the visual tracking system proposed
in [10]. This system detects and tracks objects moving in the
images of a video stream. The information collected (position
and size of the moving object, etc.) is then projected into the
2D map of the environment. The data flow of the overall
tracking system is depicted in Fig. 11. It features the detec-
tor-tracker, a module to correct the distortion of the video
camera, and a final module to project the information in the
2D map of the floor. These modules are detailed in the upcom-
ing paragraphs.

Camera and tracker. A single wide-angle camera mounted
over one of the lobby’s corners is used. The camera is directly
connected to the host computer. The tracker processes raw
data coming from the camera and outputs data consisting of
sets of observations (i.e. frames), that the tracker sends at reg-
ular time steps. Every observation O = (id, x, y, w, h, 0)
consists of an identification number id, the x and y coor-
dinates of the moving object’s gravity center in the image
coordinate system, the width w and height /4 of the object’s
bounding box and the orientation 6 of this bounding box. A
trajectory is a sequence of q regularly sampled observations
consisting of the target’s id, centre of gravity, width, height
and orientation.

Distortion correction and homographic projection. Due to
the use of a wide-angle lens, the image is subject to heavy dis-
tortion, which must be corrected before projecting the image
into the world coordinate system. We have used four coeffi-
cient distortion correction as described in [41].

The corrected target gravity centres are multiplied by a
precalculated homography matrix in order to project them
into the world plane. It is worth noting that the target’s cen-
tre most often corresponds to a point which is located higher
than the floor level, thus an error is introduced by projecting
it into the floor. However, as the error is consistent for targets
of similar height, we have decided that it is acceptable at this
stage of our work.

@ Springer

422

D. Vasquez et al.

Fig. 11 Architecture of the
visual tracking system (top).

Example of a motion observed [[II

in the image (bottom-left), and Camera

Detect-Track |

Distortion |-

Projection

its projection in the 2D map of
the environment (bottom-right)

Fig. 12 Overview of the

learning process (real data)

(a) Trajectory data set

{
N S

(c) Voronoi Diagram

Data association. Due to the fact that we have an environ-
ment where there are multiple objects moving at the same
time, the tracker does not always keep objects ID’s, which is
a requirement for our approach. Hence, in order to improve
ID keeping, we post-process projected data applying the joint
probabilistic data association (JPDA) algorithm [1] the fact
of applying the algorithm on the world coordinate system
helps to calibrate and improve the results of the algorithm.

7.3.2 Learning results

Figure 12a shows the real data set that we have obtained.
It is important to notice that trajectories in the data set do
not cover the entire environment. This happens because of
clipping due to the distortion correction algorithm we have
used.

@ Springer

G —
!._‘_ _"ll .-I l '

(b) GNG Structure
& i "-l
—]
A T “p 5

(4]

F=-=-= LI sl

(d) Learned Goals

The algorithm took about 70 s to process the 36,444
observations of the first 1,000 trajectories in the data set for
an average of about 520 observations per second. The found
structure (Figs. 12b, c) consisted of 123 states. The algorithm
has detected eight goals, shown in Fig. 12d. In this case, some
of the goals do not correspond to interesting points of the
environments. This happens because of two factors: (a) clip-
ping reduced the environment and created some fake entry
and exit points, and (b) the tracking system sometimes losses
the identifier of an object resulting in single trajectories being
broken down in several smaller trajectories.

7.3.3 Prediction results

Figure 13 illustrates prediction based on real data. The exam-
ple in the right is especially interesting because, although

Intentional motion on-line learning and prediction 423
Fig. 13 Prediction examples (a) (b)
(real data) i !F v d I ." n 1
— I —; |
s = -
] B 1 2

4 Mean Prediction Error (Real Data)
T T T T T

Real [1000] —*<— |

Mean Error (m)

10 20 30 40 50 60
% Observed

70 80 90

Fig. 14 Prediction error (real data)

state prediction does not seem to correspond to the real tra-
jectory, the goal has been correctly predicted.

In Fig. 14, we present the results of our prediction per-
formance measure (see Sect. 7.2.3). Here, the results are
even better than for simulated data, which may be surpris-
ing at first. The reason is again clipping, which reduces the
effective size of the environment, thus bringing goals closer
together. In the other hand, the noisy nature of real data and is

Fig. 15 The ParkView
platform: left camera view of
the Cycab experimental car
moving in the parking lot of the
laboratory; right) the Cycab as
detected on the tracking system

reflected by the slower convergence of real data when com-
pared with simulated one.

8 Future work

We have started to work on the application of our approach
to a different setting: the ParkView experimental platform,
which is able to track a car moving in a parking lot (Fig. 15).
In our first experiments we have experienced a problem with
GNG: parking places get underrepresented due to the rela-
tively low likelihood of observing motion in them compared
to observing motion in the parking lanes or corridors. This
has motivated us to try a different algorithm: grow when
required [28] which seems to build better representations of
areas having low observation likelihood.

In the medium term, a number of lines of work are being
considered: (a) including velocity and object size in the space
representation; (b) modeling of semi-dynamic objects such
as doors which may be either open or closed; (c) the exten-
sion of the algorithm to learn hierarchical plan models such
as abstract HMMs [8]. Also, we are exploring the means to
build different HMM strucutures for every single goal, we
think that this can lead to improvements in model compact-
ness and prediction accuracy.

@ Springer

424

D. Vasquez et al.

A longer term research project would be to model inter-
actions between moving objects such as collision avoidance
or pursuit behaviors.

9 Conclusions

In this document, we have presented a method for learning
motion patterns from observations and, at the same time, use
the learned patterns to predict future motion. Our approach
makes the hypothesis that objects move in order to reach
specific places (i.e. goals) in the environment and represents
motion using a HMM for every goal.

The main contribution of this paper is the application of
the GNG algorithm in order to enable goal identification as
well as on-line structure and parameter learning of the hid-
den Markov models’ used to represent patterns. The found
HMM structure is a planar graph, which allows exact infer-
ence with a computation cost which is linear with respect to
the number of states. Thanks to this, we have been able to
implement a “learn and predict” approach, thus allowing the
continuous improvement of existent knowledge on the basis
of new observations. To the best of our knowledge no other
technique in the literature is able to do that.

The technique has been implemented and applied to both
real and simulated data. The experiments show that the
learned model may be used to efficiently predict the intended
goal of an object. Moreover, this is performed in real time.

Acknowledgments This work has been partially supported by a
Conacyt scholarship. We also want to thank the support of the CNRS
Robea ParkNav and the Lafmi NavDyn Projects.

References

1. Bar-Shalom, Y., Fortmann, T.E.: Tracking and data association.
No. 179 in Mathematics in science and engineering. Academic
Press, Boston (1988)

2. Baum, L.E: An inequality and associated maximization technique
in statistical estimation for probabilistic functions of Markov pro-
cesses. In: Shisha, O. (ed.) Inequalities III: Proceedings of the Third
Symposium on Inequalities, pp. 1-8, Academic Press, University
of California, Los Angeles (1972)

3. Bennewitz, M., Burgard, W., Cielniak, G., Thrun, S.: Learning
motion patterns of people for compliant robot motion. Int. J. Robot.
Res. 24(1), 31-48 (2005)

4. Bennewitz, M., Burgard, W., Thrun, S.: Learning motion patterns
of persons for mobile service robots. In: Proceedings of the IEEE
Int. Conf. On Robotics and Automation, pp. 3601-3606. Washing-
ton, USA (2002)

5. Binsztok, H., Artieres, T.: Learning model structure from data: an
application to on-line handwriting. Electron. Lett. Comput. Vis.
Image Anal. 5(2) (2005)

6. Brand, M.: Structure learning in conditional probability models
via an entropic prior and parameter extinction. Tech. rep., MERL
a Mitsubishi Electric Research Laboratory (1998)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Brand, M.: Structure learning in conditional probability mod-
els via an entropic prior and parameter extinction. Neural Com-
put. 11(5), 1155-1182 (1999)

Bui, H., Venkatesh, S., West, G.: Policy recognition in the abstract
hidden markov models. J. Artif. Intell. Res. 17, 451-499 (2002)
Burlina, P., DeMenthon, D., Davis, L.S.: Navigation with uncer-
tainty: reaching a goal in a high collision risk region. In: Proceed-
ings of the 1992 IEEE Int. Conf. on Robotics and Automation,
Nice, France (1992)

Caporossi, A., Hall, D., Reignier, P., Crowley, J.: Robust visual
tracking from dynamic control of processing. In: International
Workshop on Performance Evaluation of Tracking and Surveil-
lance, pp. 23-31. Prague, Czech Republic (2004)

Chien, Y., Koivo, A.: Visual feedback to predict obstacle motion
for on-line collision-free trajectory planning of cylindrical robots.
In: IEEE/RSJ International Workshop on Intellingent Robots and
Systems, pp. 612-618 (1989)

Chow, C., Liu, C.: Approximating discrete probability distributions
with dependence trees. IEEE Trans. Inf. Theory IT-14(3) (1968)
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from
incomplete data via the EM algorithm. J. R. Statist. Soc. Series
B 9(1), 1-38 (1977)

Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathemat-
ics. Springer, Heidelberg (2005)

Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge University Press, Cambridge (1998)

Dwyer, R.A.: Higher-dimensional Voronoi diagrams in linear
expected time. ACM Press, New York (1989)

Freitag, D., McCallum, A.: Information extraction with hmm struc-
tures learned by stochastic optimization. In: Proc. of the Seven-
teenth Nat. Conf. on Artificial Intelligence and Twelfth Conf. on
Innovative Applications of Artificial Intelligence, pp. 584-589.
AAAI Press / The MIT Press, Austin (2000)

Fritzke, B.: A growing neural gas network learns topologies. Adyv.
Neural Inf. Process. Systems (1995) (in press)

Fritzke, B.: Some competitive learning methods (1998). Paper
Draft. URL ftp:/ftp.neuroinformatik.ruhr-uni-bochum.de/pub/
software/NN/DemoGNG/sclm.ps.gz

Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of
regression models. Tech. Rep. 99-15. University of Califor-
na, Irvine (1999)

Han, K., Veloso, M.: Physical model based multi-objects track-
ing and prediction in robosoccer. In: Working Notes of the AAAI
1997 Fall Symposium on Model-directed Autonomous Systems,
MIT, Boston (1997)

Heinke, D., Hamker, F.H.: Comparing neural networks: a bench-
mark on growing neural gas, growing cell structures and fuzzy
artmap. IEEE Trans. Neural Netw. 9(6) (1998)

Kalman, R.: A new approach to linear filtering and prediction prob-
lems. Trans. Am. Soc. Mech. Eng., Series D, J. Basic Eng. 82,
35-45 (1960)

Kawase, T., Tsurunosono, H., Ehara, N., Sasao, I.: Two-stage kal-
man estimator using advanced circular prediction for maneuver-
ing target tracking. In: Proc. of the IEEE Int. Conf. on Acoustics,
Speech and Signal Processing, pp. 2453-2456. Seattle, WA (1998)
Kruse, E., Gusche, R., Wahl, EM.: Acquisition of statistical motion
patterns in dynamic environments and their application to mobile
robot motion planning. In: Proceedings of the IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, pp. 713-717. Grenoble, France
(1997)

Kruse, E., Gutsche, R., Wahl, F.: Estimation of collision probabili-
ties in dynamic environments for path planning with minimum col-
lision probability. In: Proceedings of IROS, pp. 1288-1295 (1996)
Liu, P.X., Meng, M., Hu, C.: Online data-driven fuzzy clustering
with applications to real-time robotic tracking. In: Proceedings of

ftp://ftp.neuroinformatik.ruhr-uni-bochum.de/pub/software/NN/DemoGNG/sclm.ps.gz
ftp://ftp.neuroinformatik.ruhr-uni-bochum.de/pub/software/NN/DemoGNG/sclm.ps.gz

Intentional motion on-line learning and prediction

425

28.

29.

30.

31.

32.

33.

34.

35.

the IEEE Int. Conf. On Robotics and Automation. New Orleans,
LO (2004)

Marsland, S., Shapiro, J., Nehmzow, U.: A self-organizing network
that grows when required. Neural Netw. (2002) (in press)
Murphy, K.P.: Dynamic bayesian networks: Representation, infer-
ence and learning. Ph.D. thesis, University of California, Berkeley
(2002)

Nam, Y.S., Lee, B.H., Kim, M.S.: View-time based moving obsta-
cle avoidance using stochastic prediction of obstacle motion. In:
Proceedings of the 1996 IEEE Int. Conf. on Robotics and Auto-
mation, Minneapolis (1996)

Neal, R.M., Hinton, G.E.: A new view of the EM algorithm that
justifies incremental, sparse and other variants. In: Jordan,
M.L (ed.) Learning in Graphical Models, pp. 355-368, Kluwer,
Dordrecht (1998)

Osentoski, S., Manfredi, V., Mahadevan, S.: Learning hierarchi-
cal models of activity. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sendai (2004)

Rabiner, L.R.: A tutorial on hidden markov models and selected
applications in speech recognition. In: Readings in Speech Recog-
nition, pp. 267-296 (1990)

Reif, J., Sharir, M.: Motion planning in the presence of moving
obstacles. In: Symp. on the Foundations of Computer Science, pp.
144-154, Portland (1985)

Singer, Y., Warmuth, M.K.: Training algorithms for hidden mar-
kov models using entropy based distance functions. In: Advances
in Neural Information Processing Systems, vol. 9, NIPS, pp. 641—
647. MIT Press, Denver (1996)

36.

37.

38.

39.

40.

41.

42.

43.

Stolcke, A.initialsS. Omohundro, A. : Hidden markov model
induction by bayesian model merging. In: Hanson, S.J., Cowan,
J.D., Giles, C.L. (eds.) Advances in Neural Information Process-
ing Systems, vol. 5, pp. 11-18, Morgan Kaufmann, Morgan (1993)
Tadokoro, S., Hayashi, M., Manabe, Y., Nakami, Y., Takamori,
T.: Motion planner of mobile robots which avoid moving human
obstacles on the basis of stochastic prediction. In: IEEE Interna-
tional Conference on Systems, Man and Cybernetics, pp. 3286—
3291 (1995)

Vasquez, D., Fraichard, T.: Motion prediction for moving objects:
a statistical approach. In: Proc. of the IEEE Int. Conf. on Robotics
and Automation, pp. 3931-3936. New Orleans (2004)

Viterbi, A.J.: Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. IEEE Trans. Inf. Theory
IT- 13(2), 260269 (1967)

Won, K.J., Priigel-Bennet, A., Krogh, A.: Training hmm structure
with genetic algorithm for biological sequence analysis. Bioinfor-
matics 20(18), 3613-3619 (2004)

Zhang, Z.: A flexible new technique for camera calibration. IEEE
Trans. Pattern Anal. Mach. Intell. 22(11), 1330-1334 (2000)
Zhu, Q.: A stochastic algorithm for obstacle motion prediction in
visual guidance of robot motion. In: The IEEE International Con-
ference on Systems Engineering, pp. 216-219 (1990)

Zhu, Q.: Hidden markov model for dynamic obstacle avoidance
of mobile robot navigation. IEEE Trans. Robot. Autom. 7, 390—
397 (1991)

@ Springer

	Intentional motion on-line learning and prediction
	Abstract
	1 Introduction
	2 Related works
	2.1 Kinematic and dynamic approaches
	2.2 Discrete state probabilistic techniques
	2.3 Clustering based techniques
	2.4 Learning HMMs

	3 Theoretical framework
	3.1 Hidden Markov models
	3.2 Growing neural gas

	4 Proposed approach
	4.1 Representation
	4.2 Learning
	4.3 Prediction

	5 Analysis
	5.1 Learning HMM structure with GNG
	5.2 Using GNG to estimate observation probabilities
	5.3 Prediction

	6 Implementation
	6.1 GNG parameters and initialization
	6.2 Data structures
	6.3 Dealing with multiple objects

	7 Experimental results
	7.1 Test environment
	7.2 Simulated observations
	7.3 Real observations

	8 Future work
	9 Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

