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Abstract Mosaicing is connecting two or more images and
making a new wide area image with no visible seam-lines.
Several algorithms have been proposed to construct mosaics
from image sequence where the camera motion is more or
less complex. Most of these methods are based either on the
interest points matching or on theoretical corner models. This
paper describes a fully automated image-mosaicing method
based on the regions and the Harris points primitives. Indeed,
in order to limit the search window of potential homolo-
gous points, for each point of interest, regions segmentation
and matching steps are being performed. This enables us to
improve the reliability and the robustness of the Harris points
matching process by estimating the camera motion. The main
originality of the proposed system resides in the preliminary
manipulation of regions matching, thus making it possible
to estimate the rotation, the translation and the scale fac-
tor between two successive images of the input sequence.
This estimation allows an initial alignment of the images
along with the framing of the interest points search window,
and therefore reducing considerably the complexity of the
interest points matching algorithm. Then, the resolution of
a minimization problem, altogether considering the couples
of matched-points, permits us to perform the homography.
In order to improve the mosaic continuity around junctions,
radiometric corrections are applied. The validity of the here-
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with described method is illustrated by being tested on seve-
ral sequences of complex and challenging images captured
from real-world indoor and outdoor scenes. These simula-
tions proved the validity of the proposed method against
camera motions, illumination variations, acquirement condi-
tions, moving objects and image noise. To determine the
importance of the regions matching stage in motion estima-
tion, as well as for the framing of the search window associa-
ted to a point of interest, we compared the matching points
results of this described method with those produced using
the zero-mean normalized cross correlation score (without
regions matching). We made this comparison in the case of
a simple motion (without the presence of a rotation around
optical axis and/or a scale factor), in the case of a rotation and
in the general case of an homothety. For justifying the effecti-
veness of this method, we proposed an objective assessment
by defining a reconstruction error.

Keywords Regions matching · Harris points · Correlation
scores · Mosaic · Reconstruction error

1 Introduction

Humans are able to synthesize the structure of the surroun-
ding world by making the necessary displacement succes-
sion. In reality, this structure is the simple result of image
collections that complete each another according to the order
defined by the displacement. This allows the production of
one image with a large vision field. In order to construct com-
plete panoramic views, the simplest method is based on the
alignment of some regular photographs or video sequence
that cover all the vision field. Currently, several methods
allow the construction of a mosaic from a video sequence.
Many special acquirement systems have been used for a
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clean improvement of the constructed mosaic quality. A case
in point is the manipulation of an embedded-filter camera
allowing the acquirement of the scene with different optic
regulating [56] and the integration of the global positio-
ning system (GPS) to deduce a preliminary estimation of
the motion [21]. These methods are very limited since they
impose the manipulation of a sophisticated acquirement
material (digital video camera, calibrated stereoscopic bench,
etc.) Therefore, given a sequence of images acquired with
hand-held camera, the research community is more interes-
ted in the development of validated mosaicing techniques
which are independent of the acquirement modalities (none
a priori knowledge on the camera intrinsic and extrinsic para-
meters).

A wide screen, usually the case in aerial photographs, can
only be proportionally obtained through a set of images. The
mosaic is hence commonly used to increase the view field
with pasting successively overlapped images onto the same
plan [44], onto a cylinder [36,41,51] or onto a sphere for more
complicated motions [64]. The mosaicing process allows to
synthesize the semantic content of an image sequence on
a single image which is easier to understand. In practice,
several mosaicing applications are introduced. For example:

– video compression by alignment of different images of one
sequence: the two described mosaic types are the static
mosaics and the dynamic ones. In both cases, the mosaic is
built by using a global transformation. In the second case,
the motions which were not taken into account for this
transformation were analyzed and coded apart [26,28];

– virtual-environment creation: many beautiful landscapes
are sometimes hidden by obstacles and cannot therefore
be captured entirely from a particular view angle. A
mosaic often solves the issue into a construction of com-
pletely navigatable “virtualized” [29] environments by
creating arbitrary views from a certain number of nodes
[16,67,68,78];

– assimilation of the eye retina mosaic by encoding it as
a quadratic surface in order to simplify the eye surgery
[8,9,72];

– construction of a high resolution panoramic view [80]. In
fact, most mosaicing applications include the construc-
tion of high resolution images covering an endless field
of view by using inexpensive equipments, and the crea-
tion of immersive environments for effective information
exchange through the Internet [12,22,30,49].

Thus, image mosaicing seems to be a real challenging
research field and there are yet various open problems to
be solved. To be qualified as efficient, a mosaicing method
should be robust against light change, moving objects and
image noise [24]. Moreover, invariance to image rotation and
camera zoom are very appreciated properties. The method

suggested in this paper tries to address all the issues men-
tioned above. In the setting of this work we studied the case
where the motion model between each two successive images
of the studied sequence is a random transformation with
unknown parameters. We noted that no a priori knowledge
is necessary regarding manipulated images characteristics
such as camera calibration parameters, approximation of the
acquirement motion, etc.

The next part of this paper falls into four sections. Section 2
is devoted to a synthesis of some relevant previous works
on image mosaicing. In Sect. 3, we describe the proposed
method based on the regions and Harris points primitives. We
present this method in terms of three levels: primitives extrac-
tion, primitives matching and mosaic construction. Region
matching stage precedes to the Harris points matching in
order to estimate the angle of rotation, the subsequent scale
factor and thereafter the search window of the potential homo-
logous of each point of interest. This improves the interest
points matching reliability as well as proposing a first align-
ment of the studied images. Section 4 provides an assessment
of the proposed method. In fact, the definition of a recons-
truction error proves the validity of the suggested method. A
summary of the results of this research is presented at the end
with the shortcomings of it and some of the perspectives.

2 Related works

The literature of the field describes a growing number of
introduced mosaicing processing approaches [77]. Each
approach is characterized by the used image set (video
sequence or succession of images) and by the information
associated with the data (presence or absence of intrinsic
and extrinsic parameters of the acquirement system). Mainly,
we distinguish two major categories of approaches. The first
one does not use a process of 2D primitives extraction (also
known as direct methods). It generally treats the case of
video sequences [26,27,51,53,54,60]. The second category
is based on the extraction and the matching of 2D primitives
(also known as feature based methods). It is mainly applied
in the general case of overlapped images sets [3,5,15,16,20,
37,40,78].

2.1 Mosaicing methods without primitives extraction

For this category of approaches, we can subdivide the used
techniques into two classes. For the first class, the mosaic is
constructed by minimization of a quadratic error, particularly
the sum of squared differences (ssd), applied on the intensity
values. This consists of estimating the motion parameters by
quadratic error of intensity difference with the overlapping
area. For the ssd minimization, the most used optimization
technique is the Levenberg-Marquardt technique [27]. The
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major drawback of this technique is its sensitivity for local
minima [28]. In fact, all the mosaic reconstruction steps are
strongly dependent on the results of the motion estimation
which is itself based on the ssd minimization [60]. The main
advantage of these methods is their accurate registration since
the overall data can be fully exploited [24]. Taking into consi-
deration the nature of the error function to be minimized,
which takes into account all of pixels, the methods belon-
ging to this first class are not very stable against light change
and against the presence of moving objects.

For the second class, the mosaic is constructed by map-
ping the considered input images onto a cylinder or a sphere
to obtain a 360◦ panorama. This consists in approaching the
cylinder, or the sphere, and projecting one-dimensional strips
[10,41,51,54,59,64]. In order to project images sequences
onto a curved manifold surface, in accordance with the
motion of the camera, general techniques were developed
[50,79]. In [55], an automatic method of loop closure detec-
tion is proposed, thus making it possible to warp the conic
mosaic into a cylindrical one. Indeed, the loop closure
constraint is generally used to connect the first and the last
matched frames. The advantage of these approaches lies in
the good quality of the resulting mosaics and the redun-
dancy of information on the studied images. However, the
principal disadvantage is depending of the results on the stu-
died sequence and the sophistication level of the acquirement
material [51]. We have concluded that for mosaicing methods
where no primitive extractions are required, the motion bet-
ween two successive images has to be small and an ini-
tial estimation of the motion needs to be provided. Direct
methods proved their efficiency for mosaicing large overlap-
ping regions with small translations and rotations. Because
of this limitation, this category is generally restricted to the
case of video sequences (seen the small motion between
two successive images) and the case of calibrated acquisition
systems [17].

2.2 Mosaicing methods with primitives extraction

The second category of mosaicing approaches proposes that
both processes of primitives extraction and their matching are
possible in the overlapping area. Indeed, instead of using all
the available data, these methods try to match primitives only
in the overlapping area of the two images to be registered.
Most mosaicing approaches based on primitives have usually
the unified architecture depicted in Fig. 1. The presence of the
calibration stage depends on the manipulated data (sequence
of images either calibrated or not). The interaction between
the three stages of primitive extraction, primitive matching
and homography calculation is a main characteristic of these
methods. In the literature, a lot of different features have
been used [69], including region [46,47], line [38,65] and
point features [57,75]. Most of the existing methods use point

Fig. 1 Architecture of standard mosaicing system based on primitives
extraction

features, such as corners, which will be then matched by using
a correlation measure in the local area [52]. The mosaicing
methods based on primitives extraction have many advan-
tages over the ones without primitives extraction. In fact,
they do not require initialization steps, they can handle small
overlapping regions and they are very efficient against light
change. Moreover, feature based methods are more flexible
regarding to image rotation, zoom and moving objects, when
features are appropriately used. However, they are computa-
tionally intensive [35].

According to the studied motion nature, this category of
approaches can be subdivided into three classes:

– a first class corresponds to cases where the camera motion
is limited to a translation or a rotation. Most of the existing
approaches use only the points of interest [77], particu-
lary the points of Harris [23] (also referred to as the Ples-
sey detector), to construct the mosaic [16,40,44]. Given
the difficulty of the interest points matching, this class
often requires a priori knowledge (intrinsic and/or extrin-
sic parameters) or manual matching of the primitives.
Each image of the studied sequence presents an overlap
space with several other images and thereby a motion
can be estimated given the presence of some correlated
primitives between each pair of these images. To choose
the best homography, the widespread idea is to use the
least-squares optimization method in order to compensate
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the error with all the images presenting an overlap space
with the current image. Once the mosaic is built, another
problem can appear if a digital camera, which regulates
automatically its diaphragms (presence of automatic gain
control system), is used. This problem is illustrated by the
presence of large differences of intensities in two adja-
cent images. The most used solution consists in applying
a transformation on the points belonging to the zone of
overlap. This transformation changes the intensity value
of the considered pixel by the average value weighted
by the distances between the studied pixel and the bor-
ders of the images containing this point. This radiometric
correction permits us to hide the discontinuities of the
intensities around the junctions while replacing them by
a non-real degradation between the fragments that make
the mosaic. This category of approaches is very limited
since it requires that the motion between two successive
images is too small or that an evaluation of the motion is
present as an input parameter for the mosaicing system.

– for the second class, the motion of the camera is a rigid
transformation. In other words, the camera can realize
more complicated motions such as translation + rotation
(without doing a zoom) [2,3,5,15,34]. Concerning the
existing methods for this class, the manipulation of the
interest points is often combined with the manipulation
of 2D structural primitives (structure in n-upletses and
regions) in order to simplify the matching stage. These
approaches suffer from the 2D primitives’ characteristics
instability in the case of an important motion, which does
not guarantee a big area of overlap.

– the motion of the camera is random (presence of scale fac-
tor) for the third class which is the most generalized class
and is correspondent to the case of any transformation
[78]. This last class is often based on the combination
of the interest points, especially the Harris points, and
the invariant corners [57], mainly the Deriche–Blaszka
(DB) corners [13]. To avoid the problem of interest points
matching, all possible homographies are always combi-
ned. Unfortunately, it is always possible to fall into local
optima because of the corners inaccuracy and the instabi-
lity of their characteristics relative to the viewpoint modi-
fication [62]. In recent years, there has been a growing
interest in using invariant features for images matching
[2,4,45]. These features are designed to be invariant to
translation, rotation and scaling of the images. In parti-
cular, given their geometrically invariance under simila-
rity transforms and their partial invariance under affine
changes in intensity, the scale invariant feature trans-
form (SIFT) features [33] are considered as a powerful
approach for matching procedure. In fact, in their compa-
rative survey, Mikolajczyk and Schmid [45] evaluated a
variety of these invariant descriptors and found that SIFT
generally outperforms most of the previous approaches

specially that it gives improved matching for images at
different scales. SIFT features are located at scale-space
maxima/minima of a difference of Gaussian function. At
each feature location, a characteristic scale and orienta-
tion are established. This provides a similarity-invariant
frame in which to make measurements. Illumination inva-
riance is achieved by using gradients and normalized
descriptor vectors [5]. However, each image can gene-
rate about one thousand SIFT keys which increases the
processing time of the mosaicing system. In our case,
the improved version of the Harris detector [58] is the
most suitable since we dispose a preliminary estimation
of the scale factor produced by the regions matching step.
Moreover, in order to highlight the invariance to different
geometric and photometric transformations, many dif-
ferent techniques for describing regions, which are cova-
riant with a class of transformations, have been recently
developed [19]. In [47], authors presented a snapshot
of the state of the art in affine covariant region detec-
tors used essentially for image registration. They compa-
red the performance of six types of detectors on a set
of real test images under varying imaging conditions.
The realized experiments allowed to deduce, in terms of
repeatability and accuracy, the slight superiority of the
“maximally stable extremal regions” detector (MSER)
[39] with regards to the other studied detectors. This
detector is based on the watershed algorithm to find inten-
sity regions, called extremal regions, which have either
higher or lower intensity than the pixels on its boundary.
The set of these extremal regions is stable under mono-
tonic change of image intensities [47], which ensures
that common photometric changes leave this set unaf-
fected. The extremal regions are also unaffected under
affine geometric transformations since extremal regions
are composed of connected topology-pixels which are
preserved against geometric transformations [39]. To the
best knowledge of the authors, covariant regions detec-
tors have not been widely utilized in image mosaicing yet
[61]. This is maybe because these methods are relatively
new [25,43,70,71].

2.3 Discussion

As indicated by the recent history of newly developed applica-
tions, image mosaicing has become a major field of research.
However, the existing mosaicing approaches differ accor-
ding to the type of the studied sequences (video sequences
or series of overlapping images) and the type of the acquisi-
tion device motion (simple or complex). We concluded that
for the conception of a mosaicing approach treating the case
of a sequence of overlapping images, it is necessary to spe-
cify the type of the images to treat (acquisition information).
Then, the adopted strategy should be specified, as well as the
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used primitives, while specifying the use-goal of each one.
As a conclusion, we can mention that merging automatically
collections of images having a partially overlapping content
where the motion effected by the acquisition equipment is
unspecified and important, is still a problem which was not
entirely solved. In fact, to build mosaic, it is necessary to find
the model of the motion to be applied on each image of the
input sequence. However, the motion model estimate requires
the matching of particular points in the space of overlap. The
majority of the existing approaches use the points of inter-
est due to the precision of their detection. Nevertheless, their
matching is the most critical task because it needs huge com-
putational cost. Indeed, the only radiometric attribute asso-
ciated to a point is its intensity which is not discriminatory
and can vary a lot according to the luminance variation. The
only geometric attribute associated to a point is its position
which moves randomly when the motion is undefined and
when a priori knowledge is not available. Some matching
techniques consider the neighborhood of an interest point
in order to find its potential homologous. Unfortunately, the
computed correlation scores are not steady for light change
and for any motion, particularly for the rotation around the
optical axis or the scale factor change. On the other hand,
regions are the 2D structures with the richest semantic attri-
butes and the most stable under any transformation. However,
the methods of regions extraction are not sufficiently precise
on the borders. Thus, our idea is to exploit the duality between
the regions and the points of interest in order to benefit from
the complementarity of these two primitives advantages. In
fact, we used a rotation and scale partially invariant matching
procedure based on regions in order to provide a first estima-
tion of the motion and therefore to define a reduced search
window of homologous coordinates, for each point of inter-
est. This has avoided blind search of correspondence between
the points of interest in two images. Simulations show that the
proposed method generates mosaics with accuracy without
being computationally intensive.

3 Overview of the proposed method

The construction of a mosaic from an ordered image sequence
(I1,. . .,Ii ,. . .,In) can be reduced to the problem of two suc-
cessive images alignment. Therefore, as we suppose that the
sequence is sorted out, the problem consists in the estima-
tion of the homography describing the motion between two
successive images Ii and Ii+1. The proposed method of auto-
matic mosaicing is based on three main levels: the primitives
extraction, the primitives matching and the mosaic construc-
tion (Fig. 2).

The primitives extraction level involves two stages. Ini-
tially, input images are segmented into regions using a region
growing process followed by a no-meaningful regions elimi-

nation step. Then, the second stage is dedicated to the extrac-
tion of Harris points which coincide with abrupt intensities
[57]. The second level is made up of three sub-stages. First,
a prediction/validation matching process is applied to the
obtained two regions maps, relative to the couple of images
(Ii , Ii+1). The prediction is made by measuring correlation
scores, and the validation is completed while verifying the
relative position constraint. Then, from the analysis of the
matched-regions relative positions, we can partially estimate
the angle of rotation, the scale factor and the search window
(position and dimension) of the potential homologous relati-
vely to each interest point. Given these estimations, the mat-
ching of the interest points is based on computing zero-mean
normalized cross correlation scores (zncc) [23] between the
potential homologous points followed by the verification of
the uniqueness constraint. Besides, the RANSAC consen-
sus [18] was applied in order to reject outliers matches. In
fact, given a point of interest, the framing of the search win-
dow of the potential homologous points increases the mat-
ching reliability while reducing the combinatory complexity.
The last level of the proposed method looks for the optimal
homography H minimizing the Euclidean error. This mini-
mization problem has been solved by the Q R-factorization
technique followed by a relaxation algorithm. The obtained
homography is applied to all of the image Ii+1 points in order
to express them in reference to the image Ii . To improve
the visual quality of the mosaic, two processes of intensi-
ties interpolation and radiometric correction are successively
applied. However, there is still some visible lines along the
boundary of the overlapping area despite the care brought
to the previous stages. For this, we proceed with a blending
strategy by taking into account the history of pixels values.
Blending consists in assigning specified colors to the over-
lapping regions. Blending is also important when there are
moving objects in the sequence in focus [11]. Ultimately, the
mosaic is built while projecting all the images of the studied
sequence on the plan of one image chosen as a reference.

4 Primitives extraction

This level is composed of two stages which can be perfor-
med simultaneously. The first stage consists in the segmen-
tation into regions of each couple (Ii , Ii+1) of successive
images belonging to the studied sequence. We chose to use
the regions primitives given the wealth of information offered
by them which will consequently permit to estimate correctly
the motions (rotation and scale factor) and to limit, thereafter,
the search space of homologous coordinates of each interest
point. To achieve the segmentation into regions, we used the
regions growing technique [42]. Indeed, as the segmentation
goal in our case is only a first estimation of the motion, we
opted for the region growing technique due to its rapidity and
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Fig. 2 The proposed image mosaicing method

its efficiency for various images types. This technique is one
of the conceptually simplest approaches to image segmen-
tation. Neighboring pixels of similar amplitude are grouped
together to form a segmented region. However, in practice,
constraints, some of which are reasonably complex, must be
placed on the growth pattern to achieve acceptable results. In
our case, we used an unseeded technique where the homo-
geneity criterion measures the similarity between the pixel
intensity and the intensity mean of the current region. This
unsupervised segmentation process is preceded by a pre-
treatment step permitting to improve the images quality while
preserving regions’ contours. In fact, we apply the filter of
Nagao [48] which is a well adapted pre-treatment technique
for regions segmentation by pixels aggregation [73]. It per-
mits the minimization of the noise effects on the final built
mosaic. The inherent over-segmentation effects have been
treated by a post-treatment. It consists in the merging of the
small no meaningful regions to the including regions or to the

regions maximizing the length of the common border with
these small regions (Fig. 3).

The second stage of this level is reserved for the inter-
est points extraction. Following a bibliographic survey on
the interest points detectors [57,77], we chose to apply the
improved version of the Harris detector (ImpHarris) [23,58].
This detector is more steady and more robust than many other
detectors [76] (Fig. 4). In particular, in [57] the authors pro-
ved that the improved Harris detector outperforms considera-
bly other detectors in terms of two novel relevant criteria for
the evaluation of points interest detectors: repeatability and
information criteria. Repeatability compares interest points
detected on images taken under varying conditions (camera
parameters, its position relative to the scene, illumination
conditions, etc.) However, information content is a measure
of the distinctiveness of an interest point, which is based on
the likelihood of a local gray value descriptor at the point
within the population of all the observed interest point des-
criptors. The Harris detector [23] is based on a matrix M
related to the auto-correlation function. This matrix averages
the derivatives of the signal in a window W around a point
(i, j) while using a Gaussian in order to weight the deriva-
tives inside this window (1). Then, interest points, particulary
the corners, are detected if the matrix M has two significant
eigenvalues. In the improved version [58], derivatives are
computed more precisely by replacing the [−2 − 1 0 1 2]
mask with derivatives of a Gaussian (σw = 1). In order to
guarantee a fast detection, Deriche’s recursive implementa-
tion of the Gaussian filter was used [14]. This allows us to
extract these points faster than many other detectors.

Mi j = e
−x2−y2

2σ2
w ⊗

(
Ix (i, j)2 Ix (i, j)Iy(i, j)

Ix (i, j)Iy(i, j) Iy(i, j)2

)
. (1)

5 Primitives matching

This level starts with regions matching in order to produce a
first estimation of the rotation around optical axis and of the
scale factor. This estimation makes a preliminary alignment
of successive images (Ii and Ii+1) possible. To match each
point of interest, the estimated homography relating the two
images permits the framing of the search area, which reduces
considerably the combinatory complexity of the interest
points matching.

5.1 Regions matching

After the regions segmentation of the images Ii and Ii+1,
we proceed to the regions matching in order to produce a
first approximation of the transformation between these two
images while analyzing the relative positions of the potential-
matched regions centers of gravity. The camera motion is in
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Fig. 3 Segmentation in regions. At the top: two successive images of
the input sequence (the same input images are used for Figs. 4, 5 and 7).
At the bottom: correspondent region maps produced by region growing

general important. Therefore, the regions having a part of
their edges on one border of the image do not have, in gene-
ral, correspondents in the next acquired image. Indeed, these
regions perform often false matching which must be elimina-
ted. Hence, we consider for matching only the regions which
do not “touch” the image borders (Fig. 8). Then, a process
of matching by prediction/validation puts in correspondence
the two gotten region maps produced by the segmentation
step. The prediction is made while measuring, for every pair
of regions (R, R′) (∈ Ii × Ii+1), a correlation score Cor
calculated according to the Eq. (2). Thus, only the set Λ

(⊂ Ii × Ii+1) of couples performing high correlation scores
(Cor � 1) is kept (Fig. 5).

Cor(R, R′) = 1

|Ω| .
∑
A∈Ω

Min(A(R), A(R′)
Max(A(R), A(R′))

, (2)

where, | | is the set cardinality operator and Ω is the set of the
following normalized geometric and radiometric attributes
used for region characterization [74]: compactness, occupa-
tion rate, second invariant moments, intensity mean. As in
our case we suppose that the scene is sufficiently far from
the used acquirement device (hypothesis of scene planarity),
the matching procedure is partially invariant with respect to
translation (Fig. 7), rotation (Fig. 8) and scale factor (Fig. 9).

In order to be validated, these couples must thereafter
verify the constraint of the relative position [1]. We start
by focusing on four couple of regions (⊂Λ) verifying a
spatial likeness between quadrilaterals formed by their cen-
ters of gravity (Fig. 6). This returns to the checking of the
equations system (3) and of the orientation similarity bet-
ween the two angles αi = (

−−−−→
G1i G2i ,

−−−−→
G1i G4i ) and αi+1 =

(
−−−−−−−−→
G1i+1G2i+1,

−−−−−−−−→
G1i+1G4i+1), where Gnk is the gravity

Fig. 4 Interest points extraction with ImpHarris detector

Fig. 5 Regions matching (the set Λ of couples performing high cor-
relation scores)

center of the region Rn belonging to the image Ik .

∀ ( j, k) ∈ {1, . . . , 6}2,
di

j

di+1
j

≈ di
k

di+1
k

. (3)

Then, we browse the remaining couples belonging to Λ

in order to define the elements verifying the constraint of the
relative position according to the already validated regions
(Figs. 7, 8, 9). The set Λ f of these couples will form the
basis of the initial estimation of the motion between the two
images Ii and Ii+1. Note that we do not target to match all
the regions. But, we look only at match some regions cor-
rectly. The proposed mosaicing method fails only if it could
not match at least four couples of regions correctly. While
testing our method on various simulations, we had not seen
this case even for small overlapping areas. Theoretically, if
it was the case we will focus our interest on dealing only
with the points of interest matching. Indeed, the matching is
immediate for the residuals points in the small overlapping
area since the number of these points is extremely reduced
and there is almost no ambiguity about the matching of each
interest point.

5.2 Transformation estimation

In order to carry out the preliminary homography estimation,
the set Λ f of matched couples is now used to estimate the
motion between Ii and Ii+1, (Ii+1 being the current image).
To align the image Ii+1 with the image Ii , we start by a
first estimation of the rotation angle and of the scale factor
between the two considered images (Ii and Ii+1). We consi-
der, among the set Λ f , the two couples of regions (Ri , R′

i )

and (Ri+1, R′
i+1) presenting the best correlation scores Cor .
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G1
i

G2
i

G3
iG4

i

di
1

di
2

di
3

di
4

di
5

di
6

α
i

G1
i+1

G2
i+1

G3
i+1G4

i+1

di+1
1

di+1
2

di+1
3

di+1
4

di+1
5

di+1
6

α
i+1

Fig. 6 Constraint of the relative position

Fig. 7 The set Λ f of matched regions verifying the relative position
constraint

In fact, the angle α between the two vectors
−−−→
Gi G ′

i and−−−−−−→
Gi+1G ′

i+1 deals with a first estimation of the rotation angle
(Fig. 10). Besides, the ratio f of the distances between their
centers of gravity (Gi , G ′

i ) and (Gi+1, G ′
i+1) can be consi-

dered as a first estimation of the scale factor between the two
images. We applied the combination 
 of the rotation by the
angle α with the scale factor f on each pixel (x, y) of the
image Ii+1 according to the Eq. (4). However, taking into
consideration the discreet nature of digital images, the appli-
cation of the combination 
 can generate some points without
antecedents. This causes the apparition of some points with-
out corespondent intensities. To resolve this problem, we
applied, to each of these points, a bi-cubic intensity interpo-
lation while considering among its neighbors those already
having antecedents. This new image, noted RIi+1, will be
used instead of the image Ii+1 for the interest points mat-
ching. The composition 
 is also applied successively on the
gravity centers coordinates of the matched regions and on the
interest points detected in the first level, in order to cancel
the rotation and the zoom effects and then to optimize the
reduction of the search window of the homologous interest
points and thereafter the interest points matching results.

(x y 1).

⎛
⎝ f. cos(α) − f. sin(α) 0

f. sin(α) f. cos(α) 0
0 0 1

⎞
⎠ . (4)

We seek a framing of the search space of the possible
homologous according to each interest point that we detected

Fig. 8 Application of a rotation. At the top: two successive images
with a rotation of 45◦. Second row: correspondent region maps. Third
row: correspondent region maps after remove of regions touching the
image borders. At the bottom: the set Λ f of matched couples

in the first level. When the motion around the optical axis
of the camera is significant, the interest points matching by
using one of the traditional scores of correlation is impos-
sible. Even for a reduced rotation angle, the interest points
matching remains a very difficult task because of the blind
search of the interest points homologous in all the image.
However, given the analysis of the relative positions of the
gravity centers G j (X j , Y j ) and G ′

k(X ′
k, Y ′

k), corresponding
to each couple of homologous regions (R j , R′

k), we can
estimate the dimensions Lx and L y of the search window
of the homologous interest points. We compute for each
couple of homologous regions (∈ Λ f ) a disparity vector

D jk = (d jk
x , d jk

y ) according to the following Eq. (5):

d jk
x = X j − X ′

k and d jk
y = Y j − Y ′

k . (5)

The value of Lx (resp. L y), horizontal (resp. vertical)
dimension of the search window of the homologous interest
points belonging to the image Ii , corresponds to the length of
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Fig. 9 Application of a scale factor to a sequence containing a raster of
identical windows. At the top: two successive images where the value
of the scale factor approximates 2. In the middle: correspondent region
maps after remove of regions touching the image borders. At the bottom:
the set Λ f of matched couples
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Fig. 10 Estimation of the rotation

the X -disparity interval (resp. Y -disparity) (Fig. 11). These
values are estimated according to the following Eq. (6):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lx = |L1
x − L2

x |, with,

L1
x = max(R j ,Rk )∈Λ f d jk

x ,

L2
x = min(R j ,Rk )∈Λ f d jk

x .

L y = |L1
y − L2

y |, with,

L1
y = max(R j ,Rk )∈Λ f d jk

y ,

L2
y = min(R j ,Rk )∈Λ f d jk

y .

(6)

For a large set of test sequences composed of 640 × 480
images, a reduction of the search window to the mean size
of 5 × 5 was achieved.

Fig. 11 Homologous search window

We evaluated the performance of the proposed preliminary
estimation of the motion under the following four changes
in imaging conditions: illumination, image blur, scale
(+ in-planar rotation) changes and viewpoint changes. This
was applied to the same reference set of test images used
in [47]. Each of the test sequences contains six images with
a defined gradual geometric or photometric transformation.
These images are either of planar scenes or the camera posi-
tion is fixed during acquisition, so that in all cases the images
are related by homographies. This means that the mapping
relating images can be correctly defined which permits the
determination of known ground truth matches. The ground
truth in all cases is provided by mapping the regions detec-
ted on the images to a reference image using the computed
homographies. More details about the used test sets can be
found in [47] (Note: all the images as well as the computed
homographies are available on http://www.robots.ox.ac.uk/
~km). Two examples from each sequence of the used test set
are shown in Fig. 12.

The aim of this evaluation is to measure the repeatabi-
lity of the proposed motion estimator, and implicitly regions
segmentation and matching, under different geometric and
photometric transformations. The basic measure of repeata-
bility� is based on the relative amount of overlap between the
homologous regions used for the motion estimation (Fig. 13).
This gives a good indication of the chance that the regions
can be matched correctly. For each estimation, we conside-
red the set of matched-couples Λ f used for the definition of
the search window (and implicitly the set Λme used for the
motion estimation). We applied the defined homography Href

on the set Λ f (and implicitly Λme) of the regions belonging
to Iref . Two matchable regions, Rr (∈ Iref ) and Rt (∈ Itest),
are deemed to correspond if their similarity degree S (7) is
sufficiently elevated.

S(Rr , Rt ) = 1

2
.

( |Rt
⋂

Ψ (Rr )|
|Rr | + |Rt

⋂
Ψ (Rr )|

|Rt |
)

, (7)
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Fig. 12 Outline of the used data set. At the top: light change. Second
row: image blur. Third row: zoom (+ in-planar rotation). At the bot-
tom: viewpoint change. (Note: all images are of medium resolution,
approximately 800 × 640 pixels)

where, Href is the given homography relating the two images
Iref and Itest and Ψ (Rref) = Ht

ref .RRef .Href is the projection
operator.

Given the set Λ f (resp. Λme) of the used matched-couples
for the search window (resp. for the preliminary motion
estimation), the repeatability � is defined according to the
Eq. (8). It reflects, in absolute terms, the average of similarity
degrees of matchable regions detected in images under gra-
dual increase of different geometric and photometric trans-
formations (Fig. 14). In general we would an estimator to
have a high repeatability score (ideal plot for repeatability
would be a horizontal line at 100%).

� = 1

|Λ f/me|
∑

(Rr ,Rt )∈Λ f/me

S(Rr , Rt ), (8)

where, Λ f/me is either the set Λ f or the set Λme.
The results of the realized tests are illustrated in Fig. 14.

We note that the best performance achieved for the motion
estimation based on Λme (resp. search window framing based

Fig. 13 Evaluation of the proposed motion estimator. At the top: ori-
ginal images (left: Iref , right: Itest). Second row: correspondent region
maps after remove of regions touching the image borders. Third row:
the set Λ f of matched couples. Fourth row: the set Λme of the used
matched couples for preliminary motion estimation. At the bottom: the
set Λ f after applying the given homography

on Λ f ) is 96.9% (resp. 92.7%) for light change. For small
transformations, the highest obtained repeatability scores
indicate how well the used estimator performs for this case.
The repeatability scores recorded with Λme outperforms the
ones recorded with Λ f (except one case that we explain
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Fig. 14 Evaluation of the proposed motion estimator. At the top: view-
point change. Second row: scale change (+ in-planar rotation). Third
row: image blur. At the bottom: light change

below). This can be accounted for by the fact that Λme is
composed of the two better matched couples among those
belonging to Λ f . The results for image blur and light change
are better than for viewpoint and scale changes, showing
a high level of invariance to image blur and light change.
In what follows we will discuss only the recorded results
with Λ f (Λme ⊂ Λ f ). The repeatability score for a light
change (resp. image blur) varies between 91.3 and 92.7%
(resp. 83.4 and 90.1%). Indeed, for image blur and light
change all curves are nearly horizontal, showing good robust-
ness to these changes. However, repeatability varies between
82.3 and 89.6% below scale change of 2.4◦ and decreases
for large viewpoint changes. For a scale change of 1.35, the
repeatability score recorded with Λ f is slightly higher than
the one recorded with Λme. This can be explained by the lack
of stable edges on which the region extraction is based. In
other words, the presence of tiny defects of the segmentation
around the regions borders is reflected by the fact that the two
best correlated regions (Λme) can not record the best simila-
rity degree (S) among the strongly correlated regions (Λ f ).
In fact, a small irregularity on the borders modify appreciably
the shape descriptors (from where the correlation measure-
ment) without too much deterioration of the overlapping rate.
For viewpoint changes under 40◦, the repeatability score is
going from 77.9 down to 87.9% and decreases considera-
bly for larger viewpoint changes. As a conclusion, we can
mention that viewpoint changes are the most difficult type of
transformation to cope with, followed by scale (+ in-planar
rotation) changes. Furthermore, the absolute score shows
that beyond a certain value, a small variation falls directly
the repeatability of the proposed estimator. This is because
the region boundaries become smooth, and the segmentation
process is less accurate. Concerning the null repeatability
scores recorded with the high viewpoint and scale changes,
this is due to the nonexistence of matchable regions for these
cases. Indeed, the used descriptors are not projective invariant
measures and therefore a significant change of the viewpoint
and/or scale factors (outside the range for which the estima-
tor is designed) limits the proposed approach. This can be
understood by the fact that in most cases larger transforma-
tions result in lower quality images and/or smaller commonly
visible parts between Iref and Itest [47]. In this case, regions
are considered as inefficient candidates for the preliminary
homography estimation and the proposed system uses only
the interest points to estimate the final homography. Thus,
interest points matching can be achieved without significant
ambiguity in the small overlapping area since the number of
these points is extremely reduced in this area.

5.3 Interest points matching

In order to match efficiently the interest points, we start with
the generation of the matching hypotheses while calculating
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the zero-mean normalized cross correlation score zncc (9)
[23]. In practice, this measure provides, in a reduced calcu-
lation time, one of the best matching performance and it is
invariant according to the local linear changes of intensity
and therefore light changes do not affect the track [31,32].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zncc(x, y, x ′, y′) =
∑

l,k Q1
l,k .Q

2
l,k∑

l,k Q3
l,k .

∑
l,k Q4

l,k

,

with,

Q1
l,k = (I (x + l, y + k) − I (x, y)),

Q2
l,k = (I ′(x ′ + l, y′ + k) − I ′(x ′, y′)),

Q3
l,k =

√
(I (x + l, y + k) − I (x, y)

2
),

Q4
l,k =

√
(I ′(x + l, y + k) − I ′(x, y)

2
),

(9)

where, I (x, y) and I ′(x ′, y′) are the intensities means of
the two windows centered respectively on (x, y) (∈ Ii ) and
(x ′, y′) (∈ RIi+1).

After the search window estimation on the image RIi+1

for each interest point belonging to the image Ii , we can
conclude that all the points of the image Ii which generate
windows of search placed outside of the image RIi+1 are
points of interest without homologous. For all the remaining
interest points (which can have homologous), we calculate
the correlation score zncc between each of these points and
those which are inside the corresponding search area in the
image RIi+1. Then, only the hypotheses of matching having
a correlation score zncc greater than a threshold γ (≈1) and
which do not rape the uniqueness matching constraint, are
kept.

A point which is matched with two other points localized
in a small zone can construct an error source. This case is
not so frequent since the search window dimensions are in
general sufficiently small. In order to increase the interest
points detection accuracy, we keep the site of those detected
on the image Ii and we execute an alignment process for
the corresponding points of interest in the image Ii+1. An
iterative process considers each couple of matched points
ck = (Pk, P ′

k) (∈ Ii × Ii+1) and if one of the 3×3 neighbors
of P ′

k achieves with Pk a better correlation score, then P ′
k is

replaced by this neighbor (Fig. 15).
Given that there is a non-zero probability that some mat-

ched points are outliers, we refine the kept matches using an
outlier rejection procedure based on RANSAC (RANdom
SAmpling Consensus) [18], which has been by far the most
widely adopted method for the treatment of external sources
of error. RANSAC is a convenient tool to aim refinement
since it considers outliers detection prior to the homogra-
phy estimation. The application of RANSAC ameliorates the
homography estimate robustness, by keeping only the set of
feature matches which are loosely consistent (Fig. 16). Since

Fig. 15 Extraction of the homologous points of interest

RANSAC failed when the fraction of outliers is too great
[4], we opted for its use as the last step of the interest points
matching procedure [4].

6 Mosaic construction

Given the couples of the matched points produced by the
second level, the first stage of the mosaic construction level
consists on the homography computation. Then, two pro-
cesses of intensities interpolation and radiometric correction
are applied in order to improve the achieved mosaic quality.
At the end, given the produced results for the set of succes-
sive image couples forming the studied sequence, the general
mosaic is warped.

6.1 Homography computation

In the cases of a planar scene images acquired from different
viewpoints (general camera motion) or an image collection of
3D scene acquired from the same viewpoint (motion of rota-
tion), the transformation between two images Ii and Ii+1 is a
linear transformation in homogenous coordinates according
to the following Eq. (10):
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[xi+1
k , yi+1

k , zi+1
k ]t = T .[xi

k, yi
k, zi

k]t ,

with, T =
⎡
⎣ H1,1 H1,2 H1,3

H2,1 H2,2 H2,3

H3,1 H3,2 H3,3

⎤
⎦ .

(10)

(xi
k, yi

k, zi
k) and (xi+1

k , yi+1
k , zi+1

k ) are the homogenous coor-
dinates of the points pi

k (∈ Ii ) and pi+1
k (∈ Ii+1 which is the

current image).
Hence, we deduce the following system (11) that expresses

the cartesian coordinates (xi+1
k , yi+1

k ) (∈ Ii ) according to
(xi

k, yi
k) (∈ Ii+1):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xi+1
k = H1,1.xi

k + H1,2.yi
k + H1,3

H3,1.xi
k + H3,2.yi

k + H3,3

yi+1
k = H2,1.xi

k + H2,2.yi
k + H2,3

H3,1.xi
k + H3,2.yi

k + H3,3
.

(11)
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Fig. 16 Application of a rotation. At the top: interest points extrac-
tion with ImpHarris detector from the two successive images used in
Fig. 8. In the middle: homologous interest points. At the bottom: kept
homologous interest points after applying RANSAC

As the matrix T is defined up to scale factor, we obtain,
for H3,3 equals to 1 and for a given couple ck = (pi

k, pi+1
k ),

the following system of equations (12):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ak .H = Bk, with,

Ak =
⎡
⎣ xi

k yi
k 1 0 0 0 −xi

k xi+1
k −yi

k xi+1
k

0 0 0 xi
k yi

k 1 −xi
k yi+1

k −yi
k yi+1

k

⎤
⎦ ,

Bk =
⎡
⎣ xi+1

k

yi+1
k

⎤
⎦ , and

H = [H1,1 H1,2 H1,3 H2,1 H2,2 H2,3 H3,1 H3,2]t .

(12)

While writing the Eq. (12) for four couples of no-collinear
points (c1, c2, c3, c4), we obtain the following Eq. (13):

[A1 A2 A3 A4]t .H = [B1 B2 B3 B4]t . (13)

The matrix H can be obtained by solving the given 8 × 8
Cramer system (13). However, our experimentations sho-
wed that the resulting mosaic quality is very sensible to
the false matching effects as it is illustrated by Fig. 17. The
final number of the matched couples, verifying the all consi-
dered constraints, is largely superior to four. Consequently,
the available equations’ number is greater than the unknown

Fig. 17 Application of the homography onto two successive images
(without interpolation). At the top: mosaic before error minimization.
At the bottom: mosaic after error minimization

variables number of the studied system. Thus, the homogra-
phy H can be seen as a solution of the following optimization
problem (14):

min
H∈�8

‖AH − B‖2. (14)

where, A = [A1 · · · Am]t , B = [B1 · · · Bm]t and m is the
final number of the matched interest points couples.

In practice, the system (14) has been solved by using a
valid method based on the QR-factorization technique [63]
followed by the relaxation-algorithm. This algorithm refines
the obtained homography H by iterative elimination of the
matched points couples belonging to the set ϑ (15).

ϑ = {(pi
k, pi+1

k ) / d(H(pi
k) − pi+1

k ) ≥ κ}, (15)

where, κ is a dynamically descendant threshold and d is the
Euclidian distance.

Then, the homography is computed again given the kept
couples. This process stops when a sub-pixellic level of preci-
sion (mean distance lower than one pixel) is reached. Figure 17
shows the contribution of the error-minimization step for the
improvement of the reconstruction process.

6.2 Intensities interpolation and radiometric correction

Once the image Ii+1 is mapped (Ht .Ii+1.H ) in the refe-
rence of the image Ii , an interpolation process completes
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Fig. 18 The mosaic illustrated in Fig. 17 after interpolation and radio-
metric correction

the built mosaic by interpolating the 3 × 3 neighbors of
each pixel without antecedent. Despite this interpolation, the
mosaic remains discontinuous around junctions. Indeed, in
the best conditions, each pixel along a ray would have the
same intensity in every image that it intersects [6]. However,
this is not always true. This is mainly due to the automa-
tic gain control system often integrated in the manipulated
camera. In addition, a number of unmodelled effects cause
the presence of some image edges in the resulting mosaic, for
instance vignetting, parallax effects, mis-registration errors,
radial distortion and so on [5]. For all that, a good blen-
ding strategy is important in order to improve the mosaic
continuity around junctions. We opted for the multi-bend
blending scheme used by [5] and developed by Burt and
Adelson [7]. This scheme ensures smooth transitions bet-
ween images despite illumination differences, whilst preser-
ving high frequency details. An assumption of this blending
strategy is described as: the image whose centre is closest
to a given pixel in the rendering has the best information
about that pixel, and therefore the highest blending weight
[6]. We thus assign a weight function to each image pixel
that varies linearly from 1 at the centre of the image to 0 at
the edge. This process permits the information merge from
multiple images. Besides, to avoid the blurring of high fre-
quency details (if there are small registration errors) the low
frequencies details are blended over a large spatial range, and
the high ones are blended over a short range. Figures 18 and
35 show the improvement of the produced results after the
application of the interpolation and the radiometric correc-
tion processes.

6.3 Mosaic warping

In the previous sections, we presented the different steps
to build mosaic from two successive images of the studied
sequence. In general, the number of images in the sequence
is widely higher than two. Therefore, we must generalize
the described mosaicing process for any number of images.

We suppose that every image Ii (i ∈ {2, . . . , n − 1}) of
the sequence overlaps only with the image Ii−1 (for i ∈
{2, . . . , n}) and the image Ii+1 (for i ∈ {1, . . . , n −1}). Each
image Ii is bound to the following image (resp. previous) by
an homography Hi (resp. Hi−1). We suppose that the final
mosaic is a projection of all the sequence on the plan of only
one image chosen as reference. To minimize distortions on
the mosaic borders, we chose the image I�n/2� as reference.
Hence, the final mosaic can be computed by computing, for
each image Ii , the composition of the necessary homogra-
phies in order to align the considered image on the reference
image plan (16). This minimizes the distortions and the cal-
culation time. The interpolation and the radiometric correc-
tion processes are necessary only after the projection of all
the images of the sequence. Indeed, our experiments allowed
us to deduce that the produced mosaic quality is much bet-
ter compared to the one recorded, if these two processes are
applied separately after each image projection (Fig. 24).

if (i > �n/2�) then H = (H�n/2� ◦ · · · ◦ Hi−1).

if (i < �n/2�) then H = (Hi ◦ · · · ◦ H�n/2�).
(16)

7 Experiments and results

The new method presented in this paper allows us to stitch
efficiently multiple panoramas fully automatically, without
an intervention of the user. This method is valid for large
camera translation and zoom, orientation of the input images
and partially to moving objects (Fig. 19). Moreover, it is
tolerant against light change (Fig. 20), change in acquirement
conditions (Fig. 21) and for image contrast change (Fig. 22)
(Note: all figures are scaled for a better fit to the pages).

In order to prove the importance of the regions matching
stage for the motion estimation (large translation, rotation
and zoom) as well as for the framing of the search window
associated with each point of interest, we compared the points
matching results produced by our method (with regions mat-
ching) versus those produced while using only the zncc score
(without regions matching). We perform this comparison in
the case of simple motion (translation without presence of
rotation and/or a scale factor), in the case of rotation around
the optical axis and in the case of a scale factor. For a subjec-
tive assessment of the proposed method, we defined a recons-
truction error which allows us to prove the effectiveness of
the proposed method.

7.1 Simple motion

Figure 23 illustrates relative statistics to the interest points
matching process, according to the applied threshold of cor-
relation (Cs). We recorded, for various values of Cs , the

123



An efficient image-mosaicing method based on multifeature matching 153

Fig. 19 Robustness of the proposed method against moving objects.
At the top: three successive images (the moving objects are the two
persons). In the middle: the set Λ f of matched couples relatively to,
up to down, first and second images, second and third images. At the
bottom: the built mosaic (the reference image is the second one)

number N of the well-matched points of interest while using
respectively the zncc score followed by the elimination of
the ambiguous couples and the proposed method. We noti-
ced that below a threshold value of 0.85, the number of mat-
ched points produced by the proposed method is extensively
superior to the same number while using only the zncc score.
This can be explained by the fact that the framing of the
search space reduces the number of ambiguous points whose
apparition is bound to the existence of repetitive structures
on two successive images. The application of low correla-
tion scores (<0.65) does not permit to match any point of
interest when we use only the zncc score. However, the pro-
posed method matches 68 points, for the same studied pair
of images (Figs. 24, 25).

We calculated for the same data (input sequence and corre-
lation thresholds) the mean distance between the real homo-
logous and the correspondant points of interest determined

Fig. 20 Robustness of the proposed method against light change. At
the top: two successive images. In the middle: the built mosaic before
blending. At the bottom: the built mosaic after blending

Fig. 21 Robustness of the proposed method against change under
acquisition conditions. At the top: two images acquired in different
conditions (sunny and raining days). At the bottom: the built mosaic

by application of the estimated homography, and this while
using respectively the zncc score (d1) and the proposed
method (d2) (Table 1). A sub-pixellic precision is recorded
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Fig. 22 Robustness of the proposed method against image contrast
change. At the top: two different images acquired with different devices
(mobile phone and hand-held camera). At the bottom: the built mosaic
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Fig. 23 Number of matched points relatively to the correlation score

while using the introduced method (d2), even for low corre-
lation scores, for which we could not match any point while
using only the zncc score (d1). Let’s note that a high number
of matched couples guarantees a good quality of reconstruc-
tion. In fact, the presence of no precise matching does not
have perceptible influence when the number of couples is
in the order of tens. However, this can generate a defect of
reconstruction when this number is low.

7.2 Rotation around the optical axis

In Fig. 26, we recorded the same number N in the case of a
rotation around the optical axis. This was done by applying
a gradually increasing rotation angle to an image of the input
pair. We deduced that below a rotation angle value equals to

Fig. 24 Application of a simple motion (translation). At the top: four
original images of a sequence (outdoor scene) where the overlapping
area is about 80%. At the bottom: the built mosaic (the reference image
is the first one). This figure illustrates also the distortion when the inter-
polation is performed after each image projection

Fig. 25 Application of a simple motion (translation). At the top: three
successive images where the overlapping area is about 50%. At the
bottom: the built mosaic (the reference image is the second one)

π/8, the use of the zncc score (without regions matching)
does not permit to match any point of interest. This can be
explained by the no-invariance of the zncc score against rota-
tion. The preliminary evaluation of the rotation angle is very
profitable, hence.
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Table 1 Mean distance between real homologous and correspondant points of interest determined by application of the estimated homography

Cs 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

d1 0.76 0.89 0.79 0.7 0.72 0.6 – –

d2 0.76 0.8 0.79 0.8 0.8 0.77 0.77 0.79
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Fig. 26 Number of matched points in the presence of rotation

In Table 2 we calculated for an increasing rotation angle
(e1) and with a fixed correlation threshold (=0.8), the esti-
mated rotation angle (e2) as well as the error (aee) of this
estimation. This table shows that aee is always low (≤0.023).
Moreover, the estimation of e2 and its application allow the
interest points matching independently of the applied rota-
tion angle. This permits to deduce that the proposed method
minimizes clearly the dependance between the number of
matched points and the rotation angle e1 even if this rotation
is planar (Fig. 27) or it is non-planar (Fig. 28).

7.3 Scale factor

In Fig. 29, we evaluate the interest points matching against
scale change. We present the statistical results of the inter-
est points matching relatively to an increasing scale factor
(with a correlation threshold equals to 0.8) applied to one
image of the considered pair. We deduce that the number of
matched points is lowly bound to the scale factor when we
use our method, contrarily to the only use of the zncc score.
Besides, we can conclude that below a scale factor of 1.2,
the determination of the zncc score does not permit to match
a sufficient number of interest points. This is explained by
the no-invariance of the zncc score by homothety. The scale
factor must be thus estimated before performing the interest
points matching.

Fig. 27 Application of planar rotation. At the top: two successive
images where the value of the rotation angle is 180◦. At the bottom:
the built mosaic

Fig. 28 Application of non-planar rotation around the optical axis.
At the top: two successive images where the value of the rotation is
approximately 60◦. At the bottom: the built mosaic
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Table 2 Estimation of the rotation angle

e1 0 Π
32

Π
16

Π
8

Π
2

3Π
4 Π

e2 0.022 0.107 0.179 0.385 1.569 2.334 3.118

aee 0.022 0.009 0.016 0.007 0.001 0.022 0.023
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Fig. 29 Number of matched points in the presence of a scale factor

Fig. 30 Application of a scale factor. The built mosaic of the two
images used in Fig. 9

In Table 3 we measure for an increasing scale factor (z1)
(∈ [1, 2]) and with a fixed correlation threshold (= 0.8), the
estimated scale factor (z2) as well as the error (zee) of this esti-
mation. This table shows that zee is relatively low (≤0.06).
Thus, we deduce that the proposed method minimizes stron-
gly the dependance between the number of matched points
and the scale factor z1, contrarily to the only use of the zncc
score (Fig. 30).

7.4 Objective assessment of the built mosaic quality

For an objective assessment concerning the interest points
matching and the radiometric correction processes, we defi-
ned a reconstruction error E (17) measuring the mean of the
intensity difference between two successive images Ii and
Ii+1, on the overlapping area O .

E = 1

|O| .
∑

(x,y)∈O

|Ii+1(x, y) − Ii (x, y)|. (17)

The error E was calculated for 11 pairs of indoor and
outdoor images in order to plot four curves (Fig. 31) defining:

1. the reconstruction error (error E1) when only the best
four couples, of the matched points of interest, are used;

2. the reconstruction error (error E2) when n couples (n ∈
]4, 12]) are used;

3. the reconstruction error (error E3) when more than 12
couples are used;

4. the reconstruction error (error E4) after the application
of the radiometric corrections (n > 12).

The relative curve of the error E1 shows the insufficiency
of the best four couples for the homography estimation. It is
important to introduce an optimization technique to calculate
therefore the desired homography. However, the manipula-
tion of more than four points (error E2) decreases conside-
rably the reconstruction error. The use of a greater number
of interest points couples (error E3) improves further the
results. This confirms our anterior interpretation concerning
the necessity of increasing the matched interest points num-
ber to the detriment of a slight decrease of the correlation
score. The smallest reconstruction error has been recorded
after application of the radiometric correction (error E4). For
the images pairs 4, 6, 8 and 10, the application of radiometric
correction did not improve the reconstruction quality. This
can be explained by the fact that these pairs do not require
a such stage, since the two correspondant images have been
practically acquired in similar conditions. For all other pairs,
the reconstruction has been clearly improved.

7.5 Discussion

As mentioned above, to be qualified as efficient, a mosai-
cing approach should be effective against camera motion,
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Table 3 Estimation of the scale
factor z1 1 1.2 1.4 1.6 1.8 2

z2 1.01 1.18 1.38 1.59 1.75 2.06

zee 0.01 0.02 0.02 0.01 0.05 0.06
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Fig. 31 Evaluation of the reconstruction errors

light change, moving objects and image noise. The proposed
method tried to address all of these issues. In fact, in the pre-
vious subsections, we showed the tolerance of the introduced
mosaicing method against image motion (large translation,
rotation and scale factor) and radiometric changes. The tes-
ting of the proposed method on the various complex and
challenging images sequences, of outdoor (Figs. 32, 33) and
indoor scenes (Fig. 34), confirms the high quality of the visual
evaluation of the obtained results. The mosaicing is perfor-
med without camera calibration or prior knowledge about
the studied scene. The regions matching step minimizes the
effects of noise presence, illumination variation and changes
in the scene. Indeed, most of the used sequences are held by a
simple device (hand-held camera without tripod) and they do
not present necessarily a wide overlap spaces. Scenes with
moving objects can be partially handled by our method since
there are at least four matchable regions in the overlapping
space. Our method is fully automated and is tolerant against
the segmentation errors since we consider only the best mat-
chable regions.

Thus, experimental assessment stage allows us to summa-
rize the contribution of our method in four points:

1. fully automated method requiring no a priori knowledge;

Fig. 32 Application of a rotation and a scale factor. At the top: two
successive images (outdoor scene) where the scale factor is approxima-
tely 2 and the rotation angle around optical axis is approximately 50◦.
At the bottom: the built mosaic

2. stability relative to the camera motion and partially to
the presence of moving objects (Fig. 35);

3. the high quality of the rebuilt generalized mosaic, which
is tolerant against changes in the acquirement conditions;

4. the reduced complexity of our method thanks to the fra-
ming of the potential homologous search window relative
to each point of interest.

The study of some mosaicing approaches based on Harris
points matching permitted us to justify the reason of the pro-
posed method. Some approaches [16,44,66] impose that the
acquirement instrument motion is a rotation or a translation.
Some more general approaches [3,15] treat the case of rigid
motion, but they require a slight motion guaranteeing a very
big space of overlap. However, our method does not require
the verification of any constraint on the camera motion which
can be complex. Compared to others approaches treating the
case of complex motion, our method produces more rele-
vant results. The manipulation of the region primitive, which
is steady against viewpoint change, permitted the estimation
of the desired homography from the correctly matched points
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Fig. 33 Application of a scale factor and in-planar rotation. At the top:
three successive images (outdoor scene). At the bottom: the built mosaic
(the reference image is the second one)

Fig. 34 Mosaic obtained from two images (indoor scene) where the
overlapping area is about 60%

of interest with no need to explore all the possible matching
combinations. This reduces considerably the combinatory
complexity.

8 Conclusions and perspectives

This paper has presented a new method for fully automatic
image mosaicing permitting the integration of information
from an ordered image sequence in order to create a com-
prehensive view of the scene. The suggested method is made
of three levels. First, regions and invariant Harris points are
extracted form each image. Then, the extracted primitives
are matched by measuring correlation scores. The estima-
tion of the camera motion and the framing of the search win-
dow of the potential homologous interest points are carried
out by analyzing the matched-regions correspondant posi-
tions. The reduction of the search window of the potential
homologous points decreases considerably the complexity
of the interest points matching. Two processes of intensities
interpolation and radiometric correction are then applied in
order to improve the visual quality of the resulting mosaic.
Finally, images are projected onto a common image grid to
form a clear view. The proposed mosaicing method has been
well tested on real-world indoor and outdoor scenes. It is
shown to be accurate and adequate and runs in acceptable
time within a timeout. Indeed, experimental simulations and
objective assessment show that the proposed method is stable
against camera motion, light change, moving objects and
image noise.

The essential limitation of the suggested method is its res-
triction in the case of a relatively far scene, compared to the
used acquirement devices, in order to guarantee the planarity
hypothesis of the scene. Otherwise, with significant camera
translation, it will be impossible to align images without
using dense 3D reconstruction (3D mosaicing). One of the
most crucial problems in image mosaicing is the local mat-
ching error accumulation in the case of pairwise stitching. In
our case, as the images are captured and ordered in advance,
the global matching stage reduces the accumulated errors
by minimizing simultaneously the mismatching between all
successive pairs of images. Moreover, the blending does not
only remove the visual discontinuities, but also make the
method more robust against small matching errors accumu-
lation. Finally, we noticed that even under the emitted pla-
narity hypothesis, the suggested method is partially invariant
against view point change (Fig. 36) and scale change. Our
method fails only in the case of images in natural environ-
ment. This is mainly due to the limited efficiency of the used
segmentation with textured images.

We are now working on the extension of the proposed
method to the case of an unordered image dataset in which
an image can overlap with a part of the mosaic which is
not seen in its predecessor [5]. We are also working on the
application of the proposed method to combine a serie of
video frames in the framework of video indexation and wide-
area video surveillance. In addition, we are also trying to
improve the treatment of moving objects. The idea is to detect
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Fig. 35 Typical output of the proposed panoramic mosaicing method. At the top: five successive images characterized by many camera motions
and the presence of moving objects. In the middle: the built mosaic before blending. At the bottom: the built mosaic after blending (the reference
image is the third one)

these objects during the segmentation and matching steps in
order to remove them from the final mosaic. Possible future
directions would be made to attempt the use of the propo-
sed method for 3D image registration applications such as
robot navigation in 3D environment. Furthermore, a multi-
agent implementation of the herewith described method can

clearly reduce its calculation time. This helps propose a glo-
bal consistency estimation of alignment specially in the case
of full view panoramic mosaic generation. To summarize, the
proposed method allows us to construct, automatically and
in a reliable way, high-quality seamless full view panoramic
mosaics from arbitrary collections of images acquired using
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Fig. 36 Application of viewpoint changes. At the top: two succes-
sive images affected by viewpoint change. Second row: correspondent
region maps after remove of regions touching the image borders. Third
row: the set Λ f of matched couples. At the bottom: the built mosaic

inexpensive simple photographic equipments and relatively
free hand motions. The final mosaic is not a full 360◦ view,
nor is 3D geometrical correctness guaranteed.
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