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Abstract This paper describes an adaptive image-segmen-
tation method based on a simplified pulse-coupled neural
network (PCNN) for detecting fabric defects. Defect seg-
mentation has been a focal point in fabric inspection research,
and it remains challenging because it detects delicate features
of defects complicated by variations in weave textures and
changes in environmental factors (e.g., illumination, noise).
A new parameter called the deviation of the contrast (DOC)
was introduced to describe the contrast difference in row
and column between the analyzed image and a defect-free
image of the same fabric. The DOC essentially weakens the
influence of the weave texture and the illumination. The sim-
plification of PCNN reduces the number of the network’s
parameters by utilizing the local and global DOC informa-
tion for the parameter selections. The validation tests on the
developed algorithms were performed with fabric images
captured by a line-scan camera on an inspection machine, and
with images from TILDA’s Textile Texture Database (http://
lmb.informatik.uni-freiburg.de/research/dfg-texture/tilda)
as well.

Keywords Fabric defect · Image segmentation ·
Pulse-coupled neural network · Synchronization

1 Introduction

Defect inspection is a vital step for quality assurance in
fabric production. To improve the efficiency and reliability
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of fabric inspection, computer vision technology has been
increasingly applied to detect and classify fabric defects auto-
matically to replace the hand-counting method [1–4]. Image
segmentation is the key to automatic detection of fabric
defects. The texture and shape features of fabric defects can
be extracted in the spatial domain using methods such as
gray concurrence matrix, Markov random fields and mathe-
matical morphology, ICA, and textural models, and then they
can be classified using preset thresholds or artificial neural
networks [5–9]. Fabric images can also be transformed to
other domains using the fast Fourier transform, the Gabor
transform, or the wavelet transform for locating defects in
the images [10,11]. Of these methods, the wavelet transform
appears more efficient and reliable for fabric defect detection,
because it is more suitable than other transforms for analyz-
ing localized features [10–13]. A PCNN-based method was
also developed for defect segmentation [14]. However, most
of these computer vision methods are limited to analyzing
certain types of defects or lack flexibility in dealing with
changes in fabric structures and background.

The study presented in this paper was in continuation of
the PCNN development for improving its reliability in detect-
ing fabric defects. A new defect descriptor was defined to
measure the contrasts of adjacent rows and columns by com-
paring features in defective images with those in a defect-free
image of the same fabric, which can undermine the effects of
fabric textures and background noise. The previously used
PCNN was also simplified to make it more computationally
efficient and reliable in parameter selections.

2 Feature description of fabric images

The common causes of fabric defects are yarn faults, marks,
and irregular interlacing of wefts and warps. In a defect-free
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132 M. Shi et al.

fabric, wefts and warps are regularly woven to form a period
structure, and the corresponding image exhibits uniformly
distributed patterns. On the other hand, a defective fabric
often displays irregular textures, thus yielding disturbances
in its uniform distributions. It is unreliable, however, to iden-
tify defects directly from the assessment of grayscale irreg-
ularity because the environmental factors (e.g., illumination,
noise) and the weave textures can alter the image intensity
appreciably. It is beneficial to use a defect-free image of the
same fabric as a reference for identifying defects in defective
images to undermine the influence of the overall texture of
the fabric and the illumination. A fabric defect often occurs at
a location where there is a sudden direction change between
adjacent yarns. A descriptor to describe this phenomenon
can be defined based on the grayscale contrasts of adjacent
rows and columns. To make the defect detection adaptive to
local grayscale variations, the contrast calculations will be
limited to a small moving window. The algorithm is detailed
as follows.

(1) Divide the M × N image into non-overlapping 3 × 3
windows, then compute the maximum, minimum, and
median values of grayscales for each row and column
in all of the windows. These statistical data are denoted
as rmax, rmin, rmed, cmax, cmin, and cmed, respectively.

(2) Calculate four contrast parameters for each window by
comparing the minimum and median values to the max-
imums, i.e.,

r1
kl = rmin

rmax

r2
kl = rmed

rmax

c1
kl = cmin

cmax

c2
kl = cmed

cmax

. (1)

where k = 1, 2, . . . , M/3 and l = 1, 2, . . . , N/3.
(3) Select a defect-free image, and compute the same con-

trast parameters, denoted as r1, r2, c1, and c2, respec-
tively.

(4) For the window at the kth row and lth column, a param-
eter gkl is defined as:
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(2)

gkl measures the localized deviation of the contrast
(DOC) of a fabric image from a defect-free image of
the same fabric. Once all gk,l are calculated, a DOC
image with the dimension of K × L = M/3 × N/3,

can be generated. Because most of fabric defects have
linear shapes oriented in the warp (vertical) or weft (hor-
izontal) direction, the DOC can be summed up in row or
in column to acquire the cumulative effect of a defect.
A DOC curve in row or column will explicitly exhibit
defects aligned in the perpendicular direction. Figure 1
shows the DOC curves of nine typical defects, in which
the x coordinates indicate the positions (row or column)
of the original image and the y coordinates denote the
cumulative DOC values in rows or columns. The signif-
icant peaks of the curve unambiguously reveal defects
out of the background.

3 Simplification of PCNN

3.1 PCNN’s principle for image segmentation

A PCNN model originated from the explanation of the
featured synchronization behavior observed experimentally
in the visual cortex of a cat’s brain [15]. In contrast to a
traditional artificial neuron model, PCNN has distinctive
characteristics. It transforms space information into tem-
poral information in phase by switching the relative active
phase among neurons corresponding to a series of binary
images containing objectives, edges, and textures in image
processing. These images have proven to be highly effective
in research areas of image segmentation [16]. The main fea-
tures of a PCNN [15,16] include, (1) each neuron outputs a
dynamic pulse, (2) the network synchronizes the pulsing of
neurons with similar external stimulus and spatial proxim-
ity, and (3) the network can be self adaptive to the varying
external stimuli without being trained.

In a PCNN, the iterations at neuron Ni j can be expressed
as follows:

Fi j [n] = Si j

Li j [n] = VL

∑

kl

wi jklYkl [n − 1]

Ui j [n] = Fi j [n](1 + βLi j [n])
Yi j [n] =

{

1 Ui j [n] ≥ θi j [n]
0 otherwise

θi j [n] = e(−t/τθ )θi j [n − 1] − Vθ Y [n]

, (3)

where n is the number of iteration, Si j is an external stimu-
lus from the feeding field, Li j is a regionally linking stimu-
lus of its adjacent neurons Nkl from the coupling field, and
∑

kl wi jkl is a weight matrix of the interconnection. Ui j is the
product of a feeding input Fi j and a shifted coupling input
(1 +βLi j ), where β is a coefficient adjusting the strength of
the linking. θi j is a time-dependant threshold that exponen-
tially decreases with a time constant τθ . When Ui j exceeds
θi j , the output Yi j of Ni j is “1” or “pulsing,” otherwise, it
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Fig. 1 DOC curves of various defects (images k–q are selected from the TILDA database)

is “0” or “not pulsing.” Obviously, the “pulsing” time of Yi j

depends on not only on Si j but also on β, τθ , wi jkl , and the
magnifying constants VL and Vθ .

For a two-dimensional image of M × N, the PCNN can
have M × N input neurons, each corresponding to a pixel in
the image and taking its grayscale as the external stimulus.
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134 M. Shi et al.

When β = 0, it means that the neurons are isolated rather
than regionally coupled to one another. Ni j only receives
external stimulus Si j , and it pulses naturally at t = τθ ln Vθ

Si j
.

After being reset, Ni j pulses again due to the influence of the
external stimuli alone. The phenomenon continues, and each
neuron pulses periodically at a frequency of 1/t . Neurons
pulsing at the same time (which is called synchronous puls-
ing) have the same external stimulus, and neurons pulsing at
different times (which is called asynchronous pulsing) have
different external stimuli. This leads to a binary segmenta-
tion of the processed image. When β �= 0, it means that the
neurons are regionally coupled, and a pulsing neuron Nkl

produces a linking stimulus Li j to a non-pulsing neuron Ni j

as long as they are mutually coupled. The internal activa-
tion of Ni j is elevated to Si j (1 + βLi j ) and will be caused
to generate pulsing, which is called captured pulsing. These
captured pulsing neurons will also lead other coupled neu-
rons to pulse, a phenomenon that leads to signal spreading
based on spatial proximity and external stimulus similarity
and that produces synchronous bursts of pulses in PCNN.
As a result of pulse coupling, neurons corresponding to the
pixels that are in the same region and have the same gray-
scale tend to pulse synchronously, and near and similar pixels
are more likely to be captured and then forced to pulse con-
currently. This inherent characteristic of PCNN lends itself
as one of most effective segmentation methods. Apparently,
the effectiveness of PCNN segmentation also relies on the
parameters used in the network, such as Vθ , VL , wi jkl , β and
τθ . The selections and adjustments of these parameters often
make proper image segmentation unreliable.

3.2 Simplified PCNN model and parameter descriptions

To simplify the PCNN model for this application, we modi-
fied the input–output iterations as follows:

Fi j [n] = Si j

Li j [n] =
+1
∑

k,l=−1

wi jklYkl [n − 1]

Ui j [n] = Fi j [n](1 + βi j Li j [n])
Yi j [n] = step(Ui j [n] − θi j [n])
θi j [n] = θi j [n − 1] − �θ

. (4)

(1) Li j only receives the outputs from the coupled neurons
in the 3×3 linking field. The connection weight wi jkl is
determined only by the external stimuli in the window,

i.e.,wi jkl = 1−|Si j −Skl |
|i−k|+| j−l| . This means that for two neu-

rons Ni j and Nkl in the same window, the smaller their
spatial distance, and the smaller the difference between

their external stimuli, the larger is the weight coefficient
wi jkl , and the easier it is to have synchronous pulsing.

(2) The linking coefficient βi j is now related to the
external stimulus, i.e., βi j = 1

eλ×|Si j −M| , where λ is a

coefficient that is inversely proportional to the contrast
of a non-defective image, and that is used to modulate
the duration of the neuron pulsing. M is the average
external stimulus of the currently pulsed neurons in the
net, and βi j can be used to excite or inhibit Ni j to pulse
synchronously with the pulsing neurons.

(3) θi j is a dynamic threshold that is linearly decreased with
a constant �θ = k×ḡ

ḡnormal
, where ḡ and ḡnormal are the

averages of the DOC of an image and its corresponding
non-defective image, and k is a constant (it was set to
5). The larger the rate ḡ

ḡnormal
, the larger the decay of the

pulsing threshold θi j .
(4) Initial threshold θ [0] can directly influence the itera-

tion speed and segmentation quality. A lower θ [0] can
improve the speed, but may cause underestimation of
defects. We chose the following equation to calculate
the initial threshold: θ [0] = gmax _normal+gmax

2 , where gmax

and gmax _normal are the maximum DOCs of an image
and its corresponding non-defective image.

In the above-described simplified PCNN model, several
former parameters are reduced to two parameters:βi j and
�θ , and their values are adjusted based on the DOC data and
spatial distribution of the external stimuli. As a result, the
segmented image tends to have a similar appearance to the
original image.

4 Experiment results and discussion

The sample images consisted of the fabric image taken by
a line-scan CCD camera and the images chosen from the
TILDA database [17], and the image analysis was imple-
mented on the VC++ platform. The line-scan camera has a
2,048 sensor array, and was mounted on a fabric inspection
machine where it had a resolution of 0.2 mm/pixel (approx-
imately 125 DPI). Hence, the camera’s transverse coverage
was about 410 mm. The lighting source was a regular fluo-
rescent light on the inspection machine. The weave struc-
tures and the image capture conditions of the images in the
TILDA were unknown, and they were used to demonstrate
if the proposed algorithm is able to segment defects out
of images that differ in textures, resolutions, and lighting
conditions.

Table 1 compares the segmentation results of the simpli-
fied PCNN method discussed above, the Otsu method [18],
and the regular PCNN method [15] on a number of common
fabric defects. Each defective image was mixed with 10%
random noise. When defective images are visually distinc-
tive, all the three methods can detect defects well (see foreign
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A Simplified pulse-coupled neural network for adaptive segmentation of fabric defects 135

Table 1 Segmentation of
different fabric defects with
various methodsa

matter and oily stain defects), but when defects are not so
sharp, only the simplified PCNN method is robust enough to
find them reasonably well and to suppress the background

noise with extracted defects being complete and clean. The
other two methods seem to underestimate the defects and
overestimate the noise in some defective images.
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Table 1 continued

a The last ten defect images are
from the TILDA database
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In order to quantitatively evaluate the performance of the
simplified PCNN method, we used a composite index J to
measure the quality of image segmentation in [19].

J = UM × C × SM × (1 − D) (5)

where UM, C, SM, and D are the uniformity measure, con-
trast, shape measure, and degree of fuzziness of segmented

objects, respectively. Table 2 presents these performance
parameters of the three segmentation methods for the same
defective images in Table 1. The individual parameters of a
segmentation method rely on the criterion used in the method.
If a parameter is defined in a way consistent with the crite-
rion, the performance of the method on this parameter will
be optimal [20]. Although different segmentation methods

Table 2 Comparison
of the performance evaluation
of the three methods

Defective images Segmentation methods UM C SM D J

Broken ends Simplified PCNN 0.9756 0.6419 0.4681 0.5170 0.1416

Otsu 0.9830 0.5190 0.9179 0.8655 0.0630

Regular PCNN 0.9786 0.5931 0.5296 0.6101 0.1198

Ropy filling Simplified PCNN 0.9880 0.6063 0.2841 0.1883 0.1381

Otsu 0.9907 0.5456 0.4599 0.7717 0.0567

Regular PCNN 0.9894 0.5536 0.3947 0.4168 0.1261

Loose warp Simplified PCNN 0.9959 0.8207 0.1291 0.6045 0.0417

Otsu 0.9964 0.6012 0.1757 0.8904 0.0115

Regular PCNN 0.9963 0.6302 0.1562 0.8440 0.0153

Single snick Simplified PCNN 0.9922 0.6447 0.2486 0.5802 0.0668

Otsu 0.9926 0.6074 0.2814 0.7971 0.0344

Regular PCNN 0.9924 0.6192 0.2774 0.6534 0.0591

Multiple snick Simplified PCNN 0.9874 0.6916 0.4782 0.6415 0.1171

Otsu 0.9887 0.6650 0.5102 0.7825 0.0730

Regular PCNN 0.9887 0.6650 0.5102 0.7201 0.0939

Foreign matter Simplified PCNN 0.9974 0.8639 0.4890 0.7103 0.1094

Otsu 0.9974 0.8639 0.4890 0.7507 0.1050

Regular PCNN 0.9972 0.8622 0.4865 0.6325 0.1053

Oily stain Simplified PCNN 0.9944 0.6825 0.3503 0.6405 0.0855

Otsu 0.9948 0.6724 0.3455 0.7694 0.0533

Regular PCNN 0.9946 0.6619 0.3012 0.5571 0.0878

C1R1EAEH Simplified PCNN 0.9982 0.5474 0.5727 0.8566 0.0449

Otsu 0.6925 0.5731 0.7028 0.8682 0.0368

Regular PCNN 0.4648 0.5910 0.3517 0.8885 0.0108

C1R1EAEM Simplified PCNN 0.7557 0.6056 0.4040 0.7723 0.0421

Otsu 0.5785 0.4804 0.6600 0.8616 0.0254

Regular PCNN 0.6358 0.5769 0.1318 0.4724 0.0255

C1R1EAEC Simplified PCNN 0.8324 0.6006 0.4324 0.8041 0.0423

Otsu 0.5402 0.5713 0.5927 0.8856 0.0209

Regular PCNN 0.3543 0.6665 0.2650 0.6540 0.0217

C1R1EADI Simplified PCNN 0.7305 0.7092 0.4349 0.3065 0.1563

Otsu 0.4957 0.6506 0.4789 0.9165 0.0129

Regular PCNN 0.3460 0.7286 0.1012 0.4208 0.0148

C1R1EAJA Simplified PCNN 0.5244 0.7371 0.1193 0.6095 0.0180

Otsu 0.3612 0.5117 0.3233 0.9208 0.0047

Regular PCNN 0.1821 0.8468 0.0886 0.3550 0.0088

C1R1EAMT Simplified PCNN 0.4417 0.7471 0.1618 0.7767 0.0119

Otsu 0.2173 0.6839 0.1556 0.9138 0.0020

Regular PCNN 0.3148 0.6387 0.1327 0.8923 0.0029
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138 M. Shi et al.

Table 2 continued Defective images Segmentation methods UM C SM D J

FADENAAC Simplified PCNN 0.8696 0.4585 0.3761 0.6821 0.0477

Otsu 0.3173 0.4721 0.3317 0.7525 0.0123

Regular PCNN 0.7115 0.4981 0.2679 0.6124 0.0368

NEST2 Simplified PCNN 0.5356 0.6618 0.1310 0.4239 0.0268

Otsu 0.3729 0.5882 0.2039 0.8409 0.0071

Regular PCNN 0.1610 0.8324 0.0595 0.6198 0.0030

C1R1EABU Simplified PCNN 0.3170 0.8324 0.7310 0.9585 0.0080

Otsu 0.1052 0.8275 0.0654 0.9451 0.0003

Regular PCNN 0.2170 0.8324 0.0731 0.9585 0.0005

HAFT1 Simplified PCNN 0.9720 0.6575 0.3515 0.6990 0.0676

Otsu 0.4267 0.6301 0.3627 0.8501 0.0146

Regular PCNN 0.6309 0.6575 0.2695 0.5463 0.0507

exhibit different rankings in these performance parameters
when applied to different defective images, the overall per-
formance measure J of the simplified PCNN is superior to
those of the other two methods.

5 Conclusion

This paper discusses the methods that describe the features of
fabric defects and perform defect segmentation from various
texture backgrounds using a simplified PCNN. The contrast
of fabric defects can be enhanced and the influence of weave
textures can be weakened by referencing the features of a
defect-free image of the same fabric. The contrast compar-
ison between a defective image and a defect-free image is
implemented in a moving window, and reflected by a new
parameter called as the deviation of the contrast (DOC).
The simplified PCNN needs only two parameters that can
be adaptively adjusted based on local and global characteris-
tics of the image. Both the visual assessments and quantita-
tive data of the images taken from a line-scan camera and the
images from the TILDA database prove the simplified PCNN
method to be effective and robust for defect segmentation.
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