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Abstract Object appearance models are a consequence of
illumination, viewing direction, camera intrinsics, and other
conditions that are specific to a particular camera. As a result,
a model acquired in one view is often inappropriate for use
in other viewpoints. In this work we treat this appearance
model distortion between two non-overlapping cameras as
one in which some unknown color transfer function warps a
known appearance model from one view to another. We dem-
onstrate how to recover this function in the case where the dis-
tortion function is approximated as general affine and object
appearance is represented as a mixture of Gaussians. Appear-
ance models are brought into correspondence by searching
for a bijection function that best minimizes an entropic met-
ric for model dissimilarity. These correspondences lead to
a solution for the transfer function that brings the param-
eters of the models into alignment in the UV chromatic-
ity plane. Finally, a set of these transfer functions acquired
from a collection of object pairs are generalized to a sin-
gle camera-pair-specific transfer function via robust fitting.
We demonstrate the method in the context of a video sur-
veillance network and show that recognition of subjects in
disjoint views can be significantly improved using the new
color transfer approach.

1 Introduction

Persistent tracking of moving objects through multiple cam-
eras is a challenging problem. This problem is made more
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difficult by sparse camera networks that cover large geo-
graphic areas with diverse imaging conditions. A primary
challenge is that extracted appearance models, captured in
one camera, are coupled with the specific spectral response
of each sensor, characteristics of the local illumination condi-
tions, viewing direction, and other confounding factors. The
result is that appearance models acquired in one view are not
generalizable to other cameras.

Figure 1 depicts the problem for two cameras observing
the same moving object in disjoint views and shows how the
distribution of chromaticity measured for all pixels on the
object throughout the video sequence are distorted from one
view to the next. This color distortion function encompasses
the factors that lead to inconsistent appearance between any
two cameras. It is appropriate to ask if this color distortion
can be recovered from samples such as the one in Fig. 1 and
then taken into account to improve object matching.

In this work we treat this appearance model distortion
between two non-overlapping cameras as one in which some
unknown function, h, warps a known appearance model, Θ

from one view to another. This is a high-dimensional func-
tion (see [1] for an exploration of the dimensionality of image
change under more constrained illumination effects) and can-
not be represented in the simple 2D UV-plane. However,
approximations to this function will allow it to be estimated
and then corrected. In this work, we explore to what extent
this is possible.

Our approach, then, is to estimate this unknown function
for any pair of cameras for a particular choice of appear-
ance model by observing transitions of objects as they move
between two views in uncontrolled conditions. It is assumed
that the conditions under which this function is estimated
remain fixed when the function is then applied to objects for
recognition. For example, cameras remain stationary and the
illumination conditions at each camera do not change.
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Fig. 1 The same subject observed in two views (a, b), is illuminated
differently with different camera intrinsics and under different pose in
a surveillance network. This leads to a change in chromaticity samples
measured on the moving object. (c, d). This deformation should be taken
into account to support persistent object tracking in multiple views

Rather seeking an h that models the complex physical
sources of color appearance between two views, we select a
parameterization of h that is capable of capturing the class
of distortions that a model will undergo. A tradeoff between
complexity of this color transfer function and its ability to
capture expected color variability exists. This tradeoff has
impact on both learning the model and the computational
costs in applying the model at run-time. Here we explore a
model that can be learned and then applied in real-time and is
capable of capturing a large percentage of appearance varia-
tion for individuals moving through a surveillance network.

Given our emphasis on non-overlapping cameras, results
in cooperative multi-camera tracking cannot be easily applied
to this domain. Traditionally, different appearance models
have been used to complement spatial tracking in more than
one camera [2], or increase tracking robustness through
occlusions [3]. However, these methods are focused on cam-
eras with overlapping fields of view. Furthermore, work that
studies how changes in illumination can be characterized
in a low-dimensional space and perhaps compensated [1]
require approximate knowledge of the three-dimensional sur-
face under observation and is inappropriate for the tracking
domain where no such a priori object model is available.

Our approach is complementary of other work that is
focused on consistent tracking across non-overlapping fields
of view. For example Rahimi et al. [4] introduce the use
of spatial-temporal constraints to consistently track objects

between disjoint views by explicitly estimating the spatial
relationship between several cameras. Alternatively, Kang
et al. [5] use a pan-tilt-zoom camera to maintain persistent
tracking of objects as they leave the field of view of station-
ary cameras to avoid assumptions about constant velocity.
In fact, this work is motivated by the need to augment these
results with the ability to predict appearance change in the
different cameras.

In response to this need, several researchers [6,7] have
been proposed methods that deal with object matching
between non-overlapping cameras using image edges as
object features under an assumption that the edge maps of
two vehicles are already aligned for use of vehicle matching.
The results of this method are quite promising and are appli-
cable to multi-camera traffic analysis and flow-prediction.
However, in practice extracted edges of two images of the
same vehicle may be quite different when the images are
taken under different illumination conditions, different view-
ing angles, and other confounding factors. As a result, the
feature-based approach may not extend to general surveil-
lance scenarios. Moreover, edge-based methods can be insta-
ble when applied to deformable objects such as people.

Other researchers have explored how to address color and
intensity changes across disjoint views. Porikli et al. [8] atten-
uates color differences by utilizing a similarity metric that is
somewhat invariant to changes in global illumination. Javed
et al. [9] have used a low dimensional subspace method for a
brightness transfer function via principal component analysis
(PCA) on a set of known intensity mappings obtained from
object observation samples, under some linearity assump-
tions of the transfer function and independence of the color
channels. To increase accuracy, their matching scheme is then
combined with additional space-time cues from known cam-
era topologies. However, there are some drawbacks to the
subspace based transfer function. One drawback would be
that the choice of subspace dimensionality may affects the
accuracy of matching. Moreover, since the intensity-based
models are inherently sensitive to small changes in illumina-
tion [10], the linear subspace based transfer function which
is a static representation have to be rebuilt to incorporate new
intensity mappings as imaging conditions change.

We develop a method that operates on chromaticity sam-
ples to increase the temporal stability of the transfer function
between any camera pair. Furthermore, the approaches pro-
posed by [8,9] are quite different than the work here that
explicitly constructs a model of the expected color transfer
between views. We emphasize the importance of learning a
transfer function that is specific to the appearance model in
question (rather than the entire space) to reduce the dimen-
sionality of the model to be learned.

It should be pointed out that our work is similar in spirit
to Javed et al. [9] but there also exist several important distinc-
tions in the technical components used by the two approaches.
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Table 1 Comparison of the
technical components used
Javed et al. [9] and our method

Method Feature space Representation Transfer function Independence of
the color channels

Javed et al. [9] Intensity 1D histogram Linear subspace Yes

Our approach Chromaticity 2D mixture of Gaussians Affine transformation No

A comparison of the technical components are presented in
Table 1.

1.1 Problem description and methodology

Consider two stationary cameras ca and cb with non-
overlapping fields of view and differing illumination con-
ditions. A set of foreground color samples are acquired by
tracking objects in motion. As the object moves through
the scene (UV chromaticity samples are extracted from the
YUV color space and each channel is represented by one
byte in the range of [0, 255].). Tracking can be accomplished
using any number of methods [11–13]. In this work, we use
the foreground tracking algorithm by [13,14] that is capa-
ble of generating few false positives and eliminates mov-
ing shadows at real-time rates. Although the framework can
be extended to support other parametric models, a Gaussian
mixture model (GMM) that represents the probability dis-
tribution of the chromaticity of pixels on the object in all
tracked frames is fit to the observed foreground samples.
The choice of the GMM is motivated by its common use
within the community for color-blob tracking and foreground
region modeling [2,15–17]. In addition, parametric models
have important advantages over non-parametric representa-
tions such as a histogram of kernel (Parzen window) in that
they are compact and require fewer learning parameters.

As an object leaves the view of the camera, the acquired
GMM model is transmitted to a server along with a unique
identifier for further processing. This unmatched object is
then compared to other unmatched models previously
observed by the network. If correspondence is available, the
two disjoint appearance models are provided as input into
the algorithm that computes the color transfer between the
two cameras. These training pairs can be generated via other
sources of information such as RFID or by running a multi-
view matching algorithm that, given enough time, will pro-
duce these matches with low probability for false positives.

We approximate the unknown transfer function, h, with a
general affine transformation. The use of an affine model was
inspired by work in colorimetic modeling for both CRTs and
other color devices [18–20] and our results justify this choice
(see Sect. 3). Estimation of this transfer function proceeds in
three steps. First, given the two GMM models, their different
components (means and covariances of each mode) must be

assigned correspondence. Secondly, the two models, now in
correspondence, are used to compute the affine deformation
that will bring them into alignment. Finally, a camera-pair
specific transfer function that can generalize to other objects
at run time is derived. This leads to a set of pairwise functions
that can be used to predict appearance changes as subjects
move through the network.

1.2 Assumptions

The approach relies on several assumptions of varying com-
plexity. The robustness of the system with respect to deg-
radation of violation of these assumption is studied in the
experimental results section. In fact, removing one or more
of these assumptions can motivate future work in the area.

Perhaps the most important assumption is that the color
distribution on an object is somewhat isotropic. This assump-
tion allows us to operate in an uncalibrated manner between
the cameras. For example, cameras can be deployed over a
wide area (throughout an office environment in our studies)
without need for geometric registration which is very diffi-
cult to recover when view frustums do not overlap [4]. This
assumption typically holds but can be a problem for subjects
who are wearing shirts with significant color markings on
their back, for example.

In addition, we assume that subjects do not exhibit signifi-
cant self-shadowing. This is often not a problem in indoor
environments but strong self-shadows can corrupt color
measurements when the object is directly illuminated by
strong sunlight. When color measurements fail due to self-
shadowing or non-isotropic color distributions, our system
may detect the color match candidate as an outlier and dis-
card it from processing. In this way, the approach is somewhat
tolerant to these types of conditions. However, detection and
removal self-shadows from moving objects to build invariant
color models is an important and interesting problem.

We assume the color model acquired for a moving sub-
ject is invariant with respect to its position in the camera
frame. This location-independent assumptions implies that
we seek to derive a color transfer function that general to an
entire camera pair and not pixels (or subregions) within the
pair. Extensions to the framework can potentially incorporate
more accurate transfer models that relate different regions
within camera pairs (for example, a shadowed region in cam-
era A to an unshadowed region in camera B).
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Finally, we do not seek to color calibrate each camera
in the network independently. This is the focus of a signifi-
cant research effort that has produced results we can exploit
here [21,22]. Instead, we simply assume that each camera’s
saturation parameters are hand adjusted beforehand to max-
imize the response among the three color channels while
observing a color target.

2 Technical details

Given a set of chromaticity samples of a tracked object X =
{x1, . . . , xn} and an initial model estimate Θinit , we itera-
tively fit the parameters of a Gaussian mixture model Θ that
maximizes the probability of p(X |Θ) using the E M algo-
rithm [23], where Θ = {ωi , µi ,Σi }k

i=1 are the parameters of
k, d-dimensional Gaussians. We denote the weight of com-
ponent i as ωi > 0 so that

∑k
i=1 ωi = 1, mean vectors as

µi ∈ �d and covariance matrices as Σi ∈ �d×d .
The number of mixture components should accommodate

the major color distributions of the object as well as potential
appearance variation due to changes in lighting throughout
the tracking sequence. To achieve this goal, we sort the k
Gaussian components returned by the E M algorithm in a
decreasing order by ωi/det(Σi ), select only the top m com-
ponents that represent the dominant colors of the object, and
then normalize the weights so that

∑m
i=1 ωi = 1. This tech-

nique is quite well known and has been used to model appear-
ance in a number of different domains [24,11].

We now generalize the individual (and independent) color
models to the case where a pair of corresponding models of
the same object are derived from two different views. Given
the models, Θ = {θi = (ωi , µi ,Σi ) | 1 ≤ i ≤ m} and
Θ̃ = {θ̃i = (ω̃i , µ̃i , Σ̃i ) | 1 ≤ i ≤ m}, correspondence
between the constituent model components must be estab-
lished in order to recover the color transfer function between
them. Of course, recovering correspondence between model
components is difficult because the observed models have
already been distorted due to illumination, viewing param-
eters, and sensor response differences. Finding correspond-
ing components in the chromaticity coordinate between two
appearance models is challenging problem because the
parameters of each component is significantly distorted as
illumination changes. We formulate the problem of corre-
sponding the model components as one of finding a bijective
map γ that minimizes some similarity metric D:

γ = arg min
Γ

[
D

(
Θ, Θ̃, γ j

)]
, (1)

where Γ = {γ j | 1 ≤ j ≤ m!} is the set of all pos-
sible bijection functions (i.e. each γ j : S → S, where
S = {1, . . . , m}). Although the specifics of model compo-
nent similarity metrics are described in the next sections, the

general form of D is the log-sum inequality [25]. This form
computes the model-wise dissimilarity according to bijec-
tion function γ for a specific definition of component simi-
larity Ψ :

D
(
Θ, Θ̃, γ

)
def=

m∑

i=1

ωi

[

Ψ
(
θi‖θ̃γ (i)

)
+ log

ωi

ω̃γ (i)

]

. (2)

Ψ , then, is a similarity metric for each model component cor-
respondences (assigned during bijective mapping) that will
be described in the next section.

2.1 Component-wise similarity metric using bijective
mapping in chromaticity space

In this section, we describe the component-wise similarity
metric, Ψ , that forms the basis for both assigning correspon-
dence and computing model similarity. Secondly, we will
also detail an algorithm for computing a bijection function
γ between any two models known to have arisen from the
same object.

We denote δ as the dissimilarity metric between any two
components θ and θ̃ given by the relative entropy, also called
known as the Kullback-Leibler divergence [26,27]:

δ
(
θ‖θ̃

)
= 1

2

[

log
|Σ̃ |
|Σ | − d + trace

(
Σ̃−1Σ

)

+ (µ − µ̃)� Σ̃−1 (µ − µ̃)

]

(3)

An intuitive metric then, is a symmetrized entropy between
the two model components:

Ψ1

(
θi‖θ̃γ (i)

)
= δ

(
θi‖θ̃γ (i)

)
+ δ

(
θ̃γ (i)‖θi

)
. (4)

Given this metric, a bijective map, γ , can be discovered via
brute-force search of all m! possible permutations using the
Ψ1 metric. In the case that the number of components is rel-
atively low, the computational cost of this approach may not
be an issue. However, it becomes inefficient as the number
of components increases (the time complexity of a tighter
upper bound is o(mm) given by Stirling’s approximation).
Moreover, this approach has significant potential for yield-
ing a false bijection function. As depicted in Fig. 2, when the
two components, θ2 and θ̃1, are geometrically aligned, the
model-wise distance (in terms of D) with the false map, γa ,
can be smaller than or equal to that with the true map, γb.

A new metric that takes into account the importance that
the achromatic locus plays in color space [18,19] is needed.
When color measurements are represented in polar coordi-
nates, this point is the pole in the chromatic plane and dis-
tances between different color models must be made with
respect to this polar coordinate system. The spectral com-
position of lights that appear achromatic has been of long-
standing interest in colorimetry and color vision theory and
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Fig. 2 Assignment of model component correspondence is important
to accurate transfer function estimation. Two models are plotted on the
same chromaticity plane. a Straightforward pair-wise similarity metric
using Ψ1 can lead to a false bijective map (γa(i) = (2, 1, 3)) when
D(Θ, Θ̃, γa) ≤ D(Θ, Θ̃, γb) where γb(i) = (1, 2, 3) is considered to
be true bijective map. b This is avoided by utilizing characteristics of

the chromaticity plane where the achromatic locus acts as the polar ori-
gin. The relative entropy between each proposed correspondence and
an achromatic distribution (θC ) at this point is taken into account (see
text). c Relative orientation with respect to the achromatic locus resolves
ambiguities arising from two models whose relative distances to θC are
uniform

our work is inspired by successful approaches [18–20] using
achromatic adjustment to discover the colorimetric relation-
ship between color spaces. We therefore introduce an inter-
mediate component θC whose parameters are (ω = 1

m , µ =
(127, 127),Σ = I). This represents an impulse function,
located at the achromatic locus against which all components
can now be compared.

Given this intermediate component, an efficient algorithm
to compute an appropriate bijection function γ between a
pair of models that will be plugged into a new component
similarity metric Ψ2 can now be defined. Firstly, the simi-
larity between the m components of an appearance model
Θ with respect to the intermediate component is computed
as di = Ψ1 (θi‖θC ) for 1 ≤ i ≤ m. Components are then
sorted in increasing order by di and let A = (a1, . . . , am)

be the sequence of the ordered indices. For the correspond-
ing appearance model Θ̃ in the second view, the sequence
of the ordered indices, B = (b1, . . . , bm), can be similarly

obtained by first computing Ψ1

(
θ̃ j‖θC

)
for 1 ≤ j ≤ m and

sorting them in increasing order.
The sorting steps lead to a rank ordering of potential bi-

jections. However, we need to take into account the case
depicted in Fig. 2c that several components are equidistant
in the polar plane. This can be disambiguated via their angu-
lar separation by computing the angular distance between
the component means (written as a vector in the polar plane).
Thus we subsort the components in the second view using

an angular metric, cos−1
(

µai ·µ̃ j

|µai ||µ̃ j |
)

for all 1 ≤ j ≤ m.

In other words, Ψ1

(
θ̃ j‖θC

)
term is the primary sort field

and the angular term is the secondary sort field that acts to
disambiguate cases where color modes lie on the same radius
from polar origin. Finally we obtain the subsorted sequence
of the ordered indices of B, B ′ = (b′

1, . . . , b′
m).

As a result, the globally best bijection function γ is then
constructed with the mappings of ai and its corresponding
γ (ai ) = b′

j for all i . Intuitively, this algorithm gives priority
to the color components closest to the achromatic locus and
smallest angular distance, and assigns these components a
match from the second model before assigning matches to
components that are more distant from the polar origin.

Given the computed bijection function γ above, a new
component similarity metric, Ψ2, written in terms of Ψ1 can
now be defined as:

Ψ2

(
θi‖θ̃γ (i)

)
= Ψ1

(
θi‖θC

)
+ Ψ1

(
θ̃γ (i)‖θC

)
. (5)

The first and second terms of Eq. (5) are the entropic
distances between each component to the new intermedi-
ate component. Note that this is a similarity metric using
the Kullback-Leibler divergence on the mixture of Gaussian
model components and is not applied directly to the under-
lying intensity or color distributions.

This complete matching assignment γ and the compo-
nent similarity metric Ψ2 are then used with Eq. (2) to define
D which will be used to check global model consistency as
described in Eq. (12) as well as to compute distortions among
models directly.

We now must discover a color transfer function that max-
imizes this color similarity metric. The color transfer func-
tion operates on the model parameters and is dependent on
the camera used to derive the color models. This process is
discussed in the following section.

2.2 Estimating the parameters of color transfer function

Given a pair of appearance models arising from the same
object seen in two different cameras, (Θ, Θ̃) and the corre-
spondence mapping between their components, γ , we write a
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functional form of the relationship between the components
with respect to the function h with unknown parameters T as:

Θ̃ ≈ hT(Θ). (6)

A global transform between two models is computing
using only those components that are close to the polar origin.
This region of color space has been shown to be important in
understanding the effect of illumination changes on color
since the loci of achromatic points establishes equivalent
chromatic appearances in the chromaticity space
[18–20,28].

Given the bijection function γ , and our definition of model
similarity, D, a model component pair that minimized D is
selected:

a = arg min
i

[
Ψ2

(
θi‖θ̃γ (i)

)]
(7)

for all i = 1, . . . , m, where m is the number of components
that represent the dominant colors of the object. It should
be noted that although all model components are used in
the computation of γ , at this stage we only operate on these
particular component pairs. This may seem counterintuitive
but allows us to utilize all the information in the model to
accurately assign the bijection function while retaining the
robustness of using color modes that are closest to the achro-
matic points. These corresponding model components are far
more reliable in a learning process that can be biased when
using outlying color components.

The selected component pair (θa, θ̃γ (a)) is used to extract
the parameters of the color transfer function T by correspond-
ing the component means,

µ̃γ (a) = Aµa + t, (8)

and covariances,

Σ̃γ (a) = AΣaA�, (9)

where A ∈ �d×d is the affine matrix, and t ∈ �d is the
translation vector in the polar plane.

In order to reduce the complexity in solving the quadratic
equation given in Eq. (9), we utilize whitening transforma-
tion matrices W and W̃ that can be obtained by performing
an eigenvalue decomposition on each covariance matrix Σa

and Σ̃γ (a):

W = ED−1/2E� and W̃ = ẼD̃−1/2Ẽ�,

where E and Ẽ are the orthogonal matrices of eigenvectors,
and D and D̃ are the real diagonal matrices of its eigenvalues.

By multiplying W̃−1 and W, we get a solution A for the
affine parameters:

A = W̃−1W (10)

such that Σ̃γ (a) = AΣaA�. This can be easily proved by
substituting the solution in Eq. (10) into Eq. (9):

A
︷ ︸︸ ︷
ẼD̃1/2Ẽ�ED−1/2E�

Σa
︷ ︸︸ ︷
EDE�

A�
︷ ︸︸ ︷
ED−1/2E�ẼD̃1/2Ẽ�

= ẼD̃1/2D̃1/2Ẽ� = ẼD̃Ẽ� = Σ̃γ (a) (11)

since Ẽ�ED−1/2E�EDE�ED−1/2E�Ẽ = I.
Note that unlike the general image alignment domain

where the rotational ambiguity in determining affine param-
eters arises, our goal can simply be solved by exploiting
the rotation matrix by the decomposition of the covariance
matrix. That is, the direction of the covariance axes does not
impact the similarity of the two covariance matrices. In this
aligned space, one can still rotate one Gaussian with respect
to another without problem because of the rotational sym-
metry in the aligned space.

This is true because the orthogonal matrices, E and Ẽ rep-
resent rotation angles with respect to the standard basis, the
rotational component of the affine matrix A can be deter-
mined by multiplying the inverse of the second orthogonal
matrix Ẽ by the first orthogonal matrix E. Again, thinking
geometrically, each ellipse is defined by the parameters of
the covariance matrix and can be aligned with the chroma-
ticity coordinate axes by the inverse of the second orthogonal
matrix and then be rotated by the first orthogonal matrix.

The translation parameters, t, are then computed simply
by substituting A into Eq. (8). Finally, the parameters of the
color transfer function between the two color models T are
given by T = [A|t].

We now evaluate if the parameter set T obtained from a
particular object correspondence should be retained and used
to estimate a global, camera-specific affine transform. This
step is important and can increase the robustness of the trans-
formation estimate when foreground pixels are detected in
error, local occlusions, or sparse samples lead to an estimate
of T that is inconsistent. Since the affine transformation is a
map T : �n → �n that is the composition of an invertible
linear map, we can write the global transformation error Φ

as a symmetric metric:

Φ(hT,Θ, Θ̃, γ ) =
[

1

2

(

D
(

hT(Θ), Θ̃, γ
)2

+ D
(
Θ, hT−1(Θ̃), γ

)2
)]1/2

. (12)

If the global error is below some threshold, τ , (for the results
shown here, τ was set to 1.2), T is then accepted as a mem-
ber of the parameter collection T to be used to estimate a
camera-pair-specific color transfer model. If the resulting
error exceeds τ , then it is discarded. This procedure elim-
inates model correspondences from the learned transitions
in cases where objects transition observations are degenerate
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(i.e. tracking fails significantly in one view.) or our assump-
tions (see Sect. 1.2) are violated. In practice, this is quite rare
and generally a transition model can be acquired quickly from
few observations.

2.3 Refining the color transfer function

Given a set of model-specific affine deformations correspond-
ing to a single camera pair in the surveillance network, these
are now combined into a single color transfer function that
can then be used to map general appearance models in one
camera to their expected values in the next. The robust Least
Median of Squares technique [29] is used to derive a cam-
era-pair specific transfer function, T̂, from a collection of
appearance model correspondences: G = {(Θi , Θ̃i ) | i =
1, . . . , M} taken from a pair of views (ca, cb) as well as
the corresponding collection of the color transfer function
parameters between the two color models T = {T j | j =
1, . . . , N }.

The initial estimate of T̂, T0, is the transfer function that
minimizes the medians of the squared residuals over all i
models and j transformations:

T0 = arg min
T j

[
mediani

(
Φ

(
hT j ,Θi , Θ̃i , γi

))]
(13)

where Φ is the error function defined in Eq. (12). Simul-
taneously, an inlier set, Ginliers, with respect to this median
is determined by computing the transformation error εi =
Φ(hT0 ,Θi , Θ̃i , γi ) and comparing it to a threshold τ , for
all i .

The iteration step begins with the affine distortion cor-
responding to each model contained in the inlier set Ginliers

indexed by i , written as, T′
i . These different models are lin-

early combined with unknown weights to derive the final
camera-to-camera color transfer function:

T̂ =
N∑

i=1

αi T′
i (14)

where N is the cardinality of Ginliers and αi are the weight-
ing coefficients. This weighting is necessary to give more
weight to transfer functions which yield smaller transforma-
tion error, and consequently more likely to be representative
of the underlying camera-pair color transfer. The weighting
coefficients are normalized by the sum of the transformation
errors:

αi =

⎧
⎪⎨

⎪⎩

α̂i∑N
i=1 α̂i

if
∑N

i=1 εi 	= 0

1
N if

∑N
i=1 εi = 0

(15)

and α̂i is defined as:

α̂i =

⎧
⎪⎨

⎪⎩

1
N if

∑N
i=1 εi =0 or

∑N
i=1 εi =εi ( 	= 0)

N if
∑N

i=1 εi =ε j ( 	= 0, i 	= j)
1− εi∑N

i=1 εi
otherwise.

(16)

At each iteration, the color transfer function, T̂, is re-esti-
mated and used to re-compute the transformation error εi =
Φ(hT̂,Θi , Θ̃i , γi ), for all i . Processing halts when the total

transformation error:
∑N

i=1 εi stops decreasing. Typically,
the process requires fewer than ten iterations and is quite
efficient and discovering the optimal transfer function with
ε. The result is a color function estimate that is robust to the
presence of outliers, since we ignore the magnitudes of the
largest residuals in G.

Although a global and optimal transfer function may be
valuable, the iterative approach we utilize has advantages in
that it is robust with respect to a large number of outliers
and can be coupled with any robust technique. Furthermore,
the method can incrementally learn an updated color transfer
function as new observations are available. This is important
in a video surveillance context where color transfer functions
are likely to become obsolete over time (i.e. as lights are
turned on and off) but new color model samples via tracked
subjects are readily available.

3 Experimental results

In this section we demonstrate how the acquired color transfer
function can be utilized in a wide-area video surveillance net-
work to improve baseline appearance matching techniques.
In particular, we study the accuracy of the system under
real-world imaging conditions including uncontrolled light-
ing and subjects wearing normal clothing. The technique is
compared to other color correction/calibration approaches of
varying complexity.

3.1 Multi-camera dataset

In the experimental setup, nine non-overlapping cameras
from the “Terrascope" dataset [30], were used. These cameras
were deployed in an indoor office environment under dra-
matically different illumination conditions (i.e. strong light
from windows, fluorescent lights, and dark rooms lit by desk
lamps) and various viewing conditions to capture subjects as
they move from room to room throughout the space.

The dataset, consisting of eight individuals moving
through the camera network, was divided into training and
validation sequences. Each sequence was approximately
three minutes long and contains video captured from all
nine cameras. Initially, color transfer functions for all
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Table 2 Confusion matrix for all eight subjects seen throughout the
experiment. Table contains true positive rates without applying the
appropriate color transfer functions

From \ To A B C D E F G H %

A 12 5 6 52

B 5 10 5 3 43

C 6 9 5 4 37

D 6 4 9 3 5 4 29

E 3 5 2 5 4 2 24

F 1 5 2 4 5 4 19

G 6 2 6 7 2 30

H 4 4 5 7 35

Mean 34

(9 × 8)/2 pairs were computed using the method described
in this paper. The training sequence contained four different
individuals whose ground-truth transitions between cameras
are part of the dataset were provided as input to the algorithm.

In order to study the utility of these color transfer func-
tions, a second video surveillance sequence from the same
camera network was captured and used as validation. Here
the goal is to correctly identify subjects as they transition
from one camera to the next both with and without the trained
color transfer functions. Eight difference subjects were used
for validation who were seen in all nine camera views over
the span of 10 min. At the end of processing, the similarity
between the stored models is measured as:

s = arg min
j

[
Φ

(
hT,Θ, Θ̃ j , γ j

)]
, (17)

and the nearest model, s, (in terms of Φ) is labeled as a match.
This matching process is performed with application of the
color transfer function and without for comparison.

Table 2 depicts the object confusion matrix for all eight
subjects when applying the similarity measure without the
benefit of the corresponding color transfer function. Element
i, j where column and row are indexed by i and j respec-
tively in each Table represents the number of times subject
i was recognized as subject j in another camera. Each sub-
ject’s true positive rate is computed by dividing the value at
(i, i) by the total number of times that the subject i appeared
and is reported in the last column of the table.

The color transfer functions were then used to improve
recognition rates across the different cameras. Let Θa and Θ̂b

be an incoming appearance model sent from camera a and a
model sent from camera b stored in the central server respec-
tively. The corresponding transfer function, T̂ab, is then be
chosen accordingly to be applied to map model Θa to the
model space of camera b and vice versa by using Eq. (17).
Table 3 shows the confusion matrix for all eight subjects
when the transfer functions are used.

Table 3 Confusion matrix for all eight subjects observed in the experi-
ment when using the derived color transfer functions. Table shows true
positive rates for each subject. The use of color transfer functions leads
to an overall improvement of over 50%

From \ To A B C D E F G H %

A 19 1 3 83

B 22 1 96

C 24 100

D 4 24 1 2 77

E 2 1 1 16 1 76

F 17 2 2 81

G 3 3 17 74

H 1 1 21 91

Mean 85

The mean recognition rate when using the new color trans-
fer functions grows from 34 to 85%. The results demonstrate
that the color transfer models can support the recognition of
subject transfer between disjoint views even when using a
relatively simple color matching scheme.

Obviously more sophisticated object recognition schemes
can improve these results somewhat, however, any color-
based appearance models will be degraded by the diverse
imaging conditions and the poor results here are unsurpris-
ing but can serve as baseline to study improvement using the
color transfer functions.

3.2 Object pixel classification

The color transfer functions were then tested to show the
pixel classification rates of objects across the different cam-
eras. Figure 3 shows a typical camera transition event for
subject B. The dramatically different illumination and pose
leads to pixel classification results (Fig. 3c) of only 29%
if the appearance model from Fig. 3a is directly applied to
the pixels in Fig. 3b. A significant improvement (Fig. 3d) to
84% true positives results when the appearance model is first
transformed using the color transfer function.

Figure 4 shows why recognition and classification rates
improve significantly when using the color transfer functions.
Two views of the same subject lead to dramatically different
color models (of three components each), shown in Fig. 4c
and d. Using the recovered deformation parameters, model
in Fig. 4c is aligned with the model from the view of Fig. 4b
(shown in Fig. 4d). Geometrically the mean µ gives center
of ellipse and the semi-axes are

√
λi vi where vi are orthogo-

nal eigenvectors of covariance Σ with eigenvalues λi , for all
i columns. Classification results both without applying the
color transfer model and applying the model are shown in
Fig. 4e and f respectively.
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Fig. 3 A typical camera transition from camera 3 to camera 5 shown
in images a and b respectively. c Classification result when all pixels
in motion from camera 5 are compared directly to appearance model
derived in camera 3. White pixels correspond to chromaticity samples

within a Mahalanobis distance of less than 1.5. d By first applying the
color transfer function from camera 3 to camera 5, classification results
improve dramatically

Fig. 4 Result of two views of subject F under dramatically different
illumination conditions. Subject F’s transition is shown in (a) and (b).
c, d Display enlarged sections of chromaticity samples of the subject
shown in (a) and (b) respectively. Note that the different axis scales are
used for clarity. Solid ellipses represent the components of the color
model. In (d), dotted ellipses depict the recovered deformation param-
eters of the model shown in (c). e, f are the pixel classification result
without/with transforming the model in view (a) respectively

3.3 Direct comparison to other techniques

The technique was directly compared against color histo-
gram-based techniques as well as object matching with and
without applying the color transfer function. By varying these
different approaches slightly, six different baseline object
matching schemes that involve different levels of color

matching complexity, were generated. These baseline tech-
niques were then compared against the method proposed
here. For these experiments, 190 object models were used.

For each baseline variation, we additionally apply an RGB
diagonal color correction to the raw pixel values. In order to
obtain each channel scale factor between a camera pair, we
first compute the mean values of each channel of object’s
pixel values that were tracked in each camera view. With
known ground-truth matching information of each object,
we stack the mean values of all objects from one camera to
the other into a measurement matrix M as follows:

M =
⎡

⎢
⎣

x1 −x ′
1

...
...

xn −x ′
n

⎤

⎥
⎦ (18)

where the x and x ′ are the mean channel values of each object
and n is the total number of objects observed for a given cam-
era pair. Each channel ratio between the camera pair is the
solution of a least squares problem, whose solution can be
found using SVD, taking the last column vector of the right
orthogonal matrix of M and normalizing the column vector
by dividing it by its last component.

For the color histogram methods, we have tested two
different color spaces. The first is a 3-dimensional histo-
gram that is built from the RGB values corrected by the
RGB diagonal color corrections model and the second is a
2-dimensional histogram corresponding to the UV chroma-
ticity values transformed from the RGB values corrected by
the RGB diagonal color correction model. From our exper-
iments, the 2-dimensional UV color histogram performed
better than the 3-dimensional RGB color histogram in terms
of the space and time complexities as well as matching per-
formance. This may be because the brightness component
(discarded in the UV-space) is more sensitive to lighting var-
iation from shadows and the relative distance of the tracked
object to the light source. Therefore, the results here com-
pare the 2-dimensional UV (32 × 32) color histogram to
the method proposed in this paper. For the comparison, the
red chrominance (U) and blue chrominance (V) bins were
divided into 32 and 32 sections respectively.
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Fig. 5 Performance comparison of object different matching methods
as compared to the approach introduced here. Graph shows the true
positive rates (y axis) versus the number of objects (x axis). The solid
and dashed curves denote with/without the RGB diagonal color cor-
rection (CC) respectively. CTF stands for the color transfer function
method

Figure 5 shows the performance of the different object
matching methods. The graph represents the true positive
rates (y axis) of each method as the number of objects (x
axis) were increased. The solid and dashed curves represent
cases where the RGB diagonal color correction is applied
and not applied respectively. The red (square) and green (dia-
mond) curves are matching pipelines that use the Gaussian
mixture model matching method with/without applying our
color transfer function respectively. The blue (circle) curves
correspond to the color histogram matching methods.

The effect of the RGB diagonal color correction rarely
improved matching performance when using the GMM
method in conjunction with our color transfer function. How-
ever, it can help improve results if a more sophisticated color
transfer model (i.e. the one presented here) is unavailable.

In order to demonstrate the robustness of each method, the
true positive rate was measured as the number of objects to be
matched were increased. It should be noted that the matching
rates were computed by counting correct matches based on
the ground-truth information where a match for a given query
object is defined as the nearest model in the stored models
during runtime. For the GMM methods the matching scheme
shown in Eq.( 17) was used, while color histogram methods
utilized the Bhattacharyya distance.

Since a match to be applied to the true positive rate is
counted when a single nearest model retrieved from the stored
models correctly matches to a queried object, it is not sur-
prising that the true positive rates are decreasing relatively
fast as the number of objects are added in the model database.
However, one would hope that a recognition scheme that uti-
lizes color transfer should still perform well as the number
of objects in the database becomes large.

0
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Unapplied
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Fig. 6 The Φ error measure between each object and itself (based on
ground-truth information) across all cameras with and without the color
transfer function

It can be seen that matching methods using the color his-
togram showed better performance when only the number
of objects are small but as the number of increases in the
object model database the methods started breaking down.
On the other hand, the GMM methods using the color transfer
function was resilient from the event of increasing the num-
ber of objects. Quantitatively, the true positive rates of our
method was more than 11% higher than the more straight-
forward color histogram matching methods , while average
performance degradation rate of our method and the color
histogram were measured as 1.87 and 3.25% respectively.
This means that the color transfer method is almost half as
affected from as a color histogram matching scheme as the
number of objects are increased.

Finally, we studied the separability of the objects in the
database using the color transfer measure and a the GMM
matching scheme. Overall, the method should be capable of
reducing the appearance differences measured by similarity
distance. In order to measure this, the Φ distance between
each object and itself across all cameras was measured using
the ground-truth object transition information provided by
the dataset. Figure 6 plots the mean Φ distance computed for
each object with and without the color transfer.

4 Discussion

Most existing computational color constancy algorithms
attempt to recover chromaticity information about the illumi-
nation in an input scene for which the only known information
is the sensor responses for each point (or color patch) in that
scene. In contrast to the color constancy work, our goal was
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to show how well the color transfer method would do on an
typical vision task, namely, consistent object tracking in non-
overlapping multi-camera video surveillance. In the multi-
camera video surveillance, the sensor response for point or
patch is not generally known in advance, rather it must be
recovered by extracting pixels on the object as it moves
from one view to the next. Furthermore, change of object
pose, size, and spectral reflectance are likely as the object
is observed in different cameras. These problems make it
nearly impossible to reliable correspond single color patches
from the same point on the object across views. We have
shown that, instead of utilizing a color calibration method
that requires these correspondences, a more general model
of color transfer that relates the entire extracted color model
in each view is feasible.

Due to the complexity of the problem and domain con-
straints, it is difficult to directly compare the new approach to
existing techniques that may require direct pixel color corre-
spondence. However, a few comments about similar methods
and our results can be made. In important and recent work,
Javed et al. [9] have proposed a brightness transfer function
that is acquired across multiple non-overlapping views, and
run detailed experiments in three different multi-camera sce-
narios. The validity of their subspace based method was dem-
onstrated by using appearance combined with supplements
of known camera topology where the space–time informa-
tion of entry and exit locations, exit velocity and inter-cam-
era time interval are available in prior. We summarize their
matching results of the three video scenarios for schemes
they used. The space–time scheme achieved a matching rate
of 83, 93 and 88%. When only the brightness transfer func-
tion subspace was used, 88, 90 and 81% were obtained. As
expected, the joint scheme showed the best results of 94, 100
and 96%. These performance results are similar to the ones
achieved by the method proposed here. However, the tracking
schemes are quite different in that known camera topology
information was exploited in the maximum a posteriori esti-
mation framework. This can be a considerable advantage in
order to increase the accuracies in tracking but is quite con-
straining in a typical large-scale video surveillance network.
However, it is clear from the results that both the appearance
and space–time models are important sources of information
as the tracking results improve significantly when both the
models are used jointly.

Other work [31] presents a novel solution to the inter-
camera color calibration problem, which is very important
for multi-camera systems. This work considers radiometric
properties using a non-parametric function to model color
distortion for pair-wise camera combinations. A correlation
matrix is computed from three 1-D color histograms, and the
model function is obtained from a minimum cost path traced
within the matrix. The first experiments was conducted with
several synthesized image pairs. Each pair consists of a ref-

erence image and a distorted version of its illumination histo-
gram. The histogram distortions were random, non-linear and
non-parametric. After the cross-correlation matrix and the
model function are computed, the histogram of the distorted
image accordingly is transformed to obtained the illumina-
tion corrected image. The improvement was substantial even
though histogram operations are invariant to spatial trans-
formations but unfortunately the results were not reported
quantitatively. In a second experiment, images were acquired
under different lighting conditions. Since each image was
taken at a different time, there are appearance mismatches
in addition to the lighting and the camera difference. They
computed the aggregated cross-correlation matrices for each
color channel from 150 pairs. It would be interesting to apply
this technique to the challenging domain of video surveil-
lance and directly compare recognition rates (and degra-
dation) to the proposed approach. In particular, correlation
between models (or histograms) must to yield separability
between objects in the database even as models are degraded.

There is a significant amount of work related to under-
standing the physics of light change and determining how to
predict and correct these changes. Much of this work cannot
be directly compared to our method because it requires point-
wise correspondence. However, some techniques utilize a
diagonal transfer model [32,33] of illumination change that
can be acquired under the same conditions as the work here.
The diagonal model simply describes the effect of moving
from one scene illuminant to another by scaling the R, G, and
B channels via independent scale factors. These scale factors
can be written as the elements of a diagonal matrix. Previ-
ous work [34,35] has shown that the diagonal model works
with the particular type of sensors which have relatively nar-
row band and non-overlapping sensitivity functions. under
typical scene illumination. One thus might claim that a sim-
pler approach that relates RGB space (as opposed to our UV
approach) is linear and simple to compute. This is simply not
the case in the multi-camera video surveillance. As addressed
factors above, it is non-trivial to find corresponding pixel
locations of the same object that will be the cue to estimate
the change in illumination. Moreover it is well known from
the illumination cone work of Belhumeur and Kriegman [36]
to except for the case of a planar object seen by a fixed cam-
era and illuminated by point light sources at infinity, RGB
values of the object seen under different illuminations cannot
be modeled by a simple diagonal scaling.

The approach using a log chromaticity domain by Berwick
and Lee [37] has the advantage that it implies invariance
under pure rotation. While we acknowledge if a single clus-
ter is centered at the origin this approach is useful, this work
has shown that object appearance in the UV space under
different imaging conditions cannot be modeled by a simple
rotation. Rather, the appearance model of the object includes
multiple clusters as well as scaling. In this case, transfor-

123



454 K. Jeong , C. Jaynes

mation to the log-polar domain does not yield a rotational
matching scheme.

5 Future work and conclusions

In this work, a technique that estimates the unknown color
transfer function between pairs of disjoint cameras was intro-
duced. Object appearance model correspondences, generated
as a subject moves throughout a surveillance network are
provided as input to a robust estimation procedure. Transfer
functions are then able to predict appearance change from
one camera to the next and have been shown to increase rec-
ognition capabilities of even simple object matching schemes
to above 80% in an indoor multi-camera network.

The technique was compared to a variety of baseline
approaches of varying complexity and was shown to out-
perform them. In particular, the technique degrades more
slowly than competing techniques as the number of objects
to be matched across views is increased. Although the method
cannot be directly compared to several state-of-the-art
approaches in color calibration, either because these meth-
ods require different operational conditions, or data is simply
not available. Many of the more related techniques were dis-
cussed in the context of our performance studies and advan-
tages and disadvantages of each technique was discussed.

Although we have emphasized the importance of using
color (rather than intensity) to achieve stability of the recov-
ered models over time, changes in illuminate color, relative
pose of the cameras to the scene, or intrinsics, will require re-
estimation of color transfer functions online. In future work,
we are exploring real-time update of the functions that will
make this feasible.

References

1. Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspac-
es. IEEE Trans. Pattern Anal. Mach. Intel. 25(2), 218–233 (2003)

2. Orwell, J., Remagnino, P., Jones, G.A.: Multi-camera color track-
ing. In: Proc. the Second IEEE Workshop on Visual Surveillance
(1999)

3. Mittal, A., Davis, L.: Unified multi-camera detection and track-
ing using region-matching. Proc. IEEE Workshop on Multi-Object
Tracking (2001)

4. Rahimi, A., Dunagan, B., Darrell, T.: Simultaneous calibration and
tracking with a network of non-overlapping sensors. Proc. Comput.
Vis. Pattern Recog. vol. 1, I–187–I–194 (2004)

5. Kang, J., Cohen, I., Medioni, G.: Persistent objects tracking across
multiple non overlapping cameras. In: Proc. IEEE Wacv-motion
2005. Vol. 2, No. 2 (2005)

6. Shan, Y., Sawhney, H.S., Kumar, R.T.: Unsupervised learning of
discriminative edge measures for vehicle matching between non-
overlapping cameras. cvpr 1, 894–901 (2005)

7. Shan, Y., Sawhney, H.S., Kumar, R.: Vehicle identification
between non-overlapping cameras without direct feature match-
ing. Iccv 1, 378–385 (2005)

8. Porikli, F.M., Divakaran, A.: Multi-camera calibration, object
tracking and query generation. In: Proc. IEEE International Con-
ference on Multimedia and Expo (ICME). Vol. 1, pp. 653–656
(2003)

9. Javed, O., Shafique, K., Shah, M.: Appearance modeling for track-
ing in multiple non-overlapping cameras. In: Proc. IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 20–26 (2005)

10. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis.
7, 11–32 (1991)

11. Stauffer, C., Eric, W., Grimson, L.: Learning patterns of activity
using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell.
(2000)

12. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.: Back-
ground and foreground modeling using nonparametric kernel den-
sity for visual surveillance. In: Proc. the IEEE (2002)

13. Xiong, Q., Jaynes, C.: Multi-resolution background modeling of
dynamic scenes using weighted match filters. In: Proc. the ACM
2nd International Workshop on Video Surveillance & Sensor Net-
works (VSSN ’04), New York, pp. 88–96 ACM Press (2004)

14. Jeong, K., Jaynes, C.: Moving shadow detection using a combined
geometric and color classification approach. In: IEEE MOTION
(2005)

15. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-
time tracking of the human body. IEEE Trans. Pattern Anal. Mach.
Intell. (1997)

16. McKenna, S., Raja, Y., Gong, S.: Tracking colour objects using
adaptive mixture models. Image Vis. Comput. 225–231 (1999)

17. Sanders, N., Jaynes, C.: Class-specific color camera calibration
with application to object recognition. In: IEEE WACV (2005)

18. Bauml, K.: Color appearance: effects of illuminant changes under
different surface collections. J. Opt. Soc. Am. A 11(2), 531–
542 (1994)

19. Speigle, J.M., Brainard, D.H.: Predicting color from gray: the rela-
tionship between achromatic adjustment and asymmetric match-
ing. J. Opt. Soc. Am. A 16(10), 2370–2376 (1999)

20. Werner, J.S., Schefrin, B.E.: Loci of achromatic points throughtout
the life span. J. Opt. Soc. Am. A 10(7), 1509–1516 (1993)

21. Grossberg, M.D., Nayar, S.K.: Determining the camera response
from images: what is knowable?. IEEE Trans. Pattern Anal. Mach.
Intell. 25, 1455–1467 (2003)

22. Grossberg, M.D., Nayar, S.K.: Modeling the space of camera
response functions. IEEE Trans. Pattern Anal. Mach. Intell. 26,
1272–1282 (2004)

23. Dempster, A., Laird, N., Rubin, D.: Maximum-likelihood from
incomplete data via the em algorithm. J. Royal Statist. Soc. Series
B 39 (1977)

24. Gross, R., Yang, J., Waibel, A.: Growing gaussian mixture models
for pose invariant face recognition. In: Proc. the 15th International
Conference on Pattern Recognition. vol. 1, pp. 1088–1091 (2000)

25. Cover, T.M., Thomas, J.A.: Elements of Information Theory.
Wiley, New York (1991)

26. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann.
Math. Statist. 22, 79–86 (1951)

27. Johnson, D.H., Orsak, G.: Relation of signal set choice to the
performance of optimal non-gaussian detectors. IEEE Trans.
Comm. 41(9), 1319–1328 (1993)

28. Walraven, J., Werner, J.S.: The invariance of unique white; a
possible implication for normalizing cone action spectra. Vis.
Res. 31, 2185–2193 (1991)

29. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier
Detection. Wiley, New York (1987)

30. Jaynes, C., Kale, A., Sanders, N., Grossmann, E.: The terrascope
dataset: a scripted multi-camera indoor video surveillance data-
set with ground-truth. In: Proc. the IEEE Workshop on VS PETS
(2005)

123



Object matching in disjoint cameras using a color transfer approach 455

31. Porikli, F.: Inter-camera color calibration using cross-correlation
model function. In: Proc. IEEE Int. Conf. on Image Processing
(2003)

32. Drew, M.S., Wei, J., Li, Z.: Illumination-invariant color object rec-
ognition via compressed chromaticity histograms of color-channel-
normalized images. In: Computer Vision, 1998. Sixth International
Conference, pp. 533–540 (1998)

33. Finlayson, G.D., Schiele, B., Crowley, J.L.: Comprehensive colour
image normalization. In: Proc. European Conference on Computer
Vision (1998)

34. Barnard, K., Cardei, V., Funt, B.: A comparison of color constancy
algorithms. part two: experiments with image data. IEEE Trans.
Image Process. 11(9), 985–996 (2002)

35. Barnard, K., Martin, L., Coath, A., Funt, B.: A comparison of color
constancy algorithms. part one: Methodology and experiments
with synthesized data. IEEE Trans. Image Process. 11(9), 972–
984 (2002)

36. Belhumeur, N., Kriegman, D.: What is the set of images of an
object under all possible illumination conditions? Int. J. Comput.
Vis. 28(3), 245–260 (1998)

37. Berwick, D., Lee, S.: A chromaticity space for specularity-, illu-
mination color- and illumination pose-invariant 3-d object recog-
nition. In: ICCV pp. 165–170 (1998)

Author Biographies

Kideog Jeong is an research
scientist in the Center for Visu-
alization and Virtual Environ-
ments (http://www.vis.uky.edu)
at the University of Kentucky.
He received his M.S. degree at
the University of Kentucky in
2006. His research interest lies
in methods that estimate proper-
ties of an object or scene under
the dynamic nature of the world
taken under varying conditions
of viewpoint, illumination and
time. He has worked on geo-
metric and color based mov-
ing shadow detection, and color
transfer based object matching

across non-overlapping camera views. Currently he focuses on motion
estimation from a pair of uncalibrated wide-baseline images.

Christopher Jaynes is an asso-
ciate professor in the Depart-
ment of Computer Science and
founding research director of
the Center for Visualization
and Virtual Environments (http://
www.vis.uky.edu) at the Univer-
sity of Kentucky. He received his
B.S. degree at the University of
Utah in 1994 and his Doctoral
degree at the University of Mas-
sachusetts, Amherst in 2000. He
was awarded the NSF CAREER
award in 2001 for work related
to wide-area video surveillance
and human-computer interac-
tion technologies. Christopher’s

research is related to visual information processing and its role in mixed
reality and novel display technologies (http://www.metaverselab.org).
He is the author of over 60 scientific articles, and is the editing author of
the book Computer Vision for Interactive and Intelligent Environments
(IEEE Press 2003). He has been the keynote speaker at events ranging
from the IEEE Conference on Virtual Reality and Cluster Computing to
the Architectural Design conference ACADIA. His research related to
multi-projector display systems lead to the formation of Mersive Tech-
nologies (http://www.mersive.com) in 2004 where he currently serves
as Chief Technical Officer.

123

http://www.vis.uky.edu
http://penalty -@M www.vis.uky.edu
http://www.metadiscretionary {-}{}{}versdiscretionary {-}{}{}elab.org
http://www.merdiscretionary {-}{}{}sive.com

	0pt Object matching in disjoint cameras using a color transfer approach
	Abstract 
	1 Introduction
	1.1 Problem description and methodology
	1.2 Assumptions

	2 Technical details
	2.1 Component-wise similarity metric using bijective mapping in chromaticity space
	2.2 Estimating the parameters of color transfer function
	2.3 Refining the color transfer function

	3 Experimental results
	3.1 Multi-camera dataset
	3.2 Object pixel classification
	3.3 Direct comparison to other techniques

	4 Discussion
	5 Future work and conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


