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Abstract The problem of automated visual surveillance
has spawned a lively research area, with 2005 seeing three
conferences or workshops and special issues of two major
journals devoted to the topic. These alone are responsible for
somewhere in the region of 240 papers and posters on auto-
mated visual surveillance before we begin to count those
presented in more general fora. Many of these systems and
algorithms perform one small sub-part of the surveillance
task, such as motion detection. But even with low level image
processing tasks it is often difficult to compare systems on the
basis of published results alone. This review paper aims to
answer the difficult question “How close are we to developing
surveillance related systems which are really useful?” The
first section of this paper considers the question of surveil-
lance in the real world: installations, systems and practises.
The main body of the paper then considers existing com-
puter vision techniques with an emphasis on higher level
processes such as behaviour modelling and event detection.
We conclude with a review of the evaluative mechanisms that
have grown from within the computer vision community in
an attempt to provide some form of robust evaluation and
cross-system comparability.

1 Introduction

The technical problems surrounding automated visual sur-
veillance are central to much research within the computer

H. M. Dee (B)
School of Computing, University of Leeds, Leeds LS2 9JT, UK
e-mail: hannah@comp.leeds.ac.uk

S. A. Velastin
Digital Imaging Research Centre, Kingston University,
Kingston-upon-Thames KT1 2EE, UK

vision community. The practical and social aspects of this
domain have received a good deal of attention within soci-
ology, criminology and also government, but there is a lack
of integration between technical practitioners and those who
study real-world surveillance installations. By working on
algorithms which address specific issues linked to surveil-
lance, researchers have developed a number of sub-systems
and partial solutions which go some way towards solving
elements of what we shall call the problem of surveillance.
Much progress has been made, but in a piecemeal fashion,
and often without reference to the situations in which such
systems might actually be used. The aim of this paper is
to provide a review of surveillance-related work within the
context of real-world surveillance problems.

One central issue here is the problem of robustness.
Robustness is defined by the IEEE [30] as “the degree to
which a system or component can function correctly in the
presence of invalid inputs or stressful environment condi-
tions”, and this property is clearly vital for automated visual
surveillance. Within computer vision, the term robustness is
often used in the related, statistical sense: robustness in statis-
tics is the ability for a test to handle data which deviate from
its assumptions (e.g. the ability for a Gaussian-based model
to handle non-Gaussian noise) [22]. This distinction is a sub-
tle one, and perhaps a result of an emphasis on mathematical
and scientific progress rather than upon systems engineering
within the computer vision community.

Peter Meer in [49] points out that the aim of computer
vision is to mimic human visual perception, and thus in the
broadest sense the robustness of a computer vision algorithm
should be judged against human performance at the specific
task. However, automated visual surveillance is a task that
can be described (and performed) at many different levels of
abstraction or explanation—we can talk at the level of detect-
ing interesting events or we can talk at the level of classifying
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a particular pixel as foreground or background. Success at
one level of analysis may or may not be predicated upon
success at lower levels. Whether we should follow Meer’s
advice and measure robustness against human performance
at the level of the surveillance system, or at the level of any
one of the individual components of such a system, is still an
open question. Whilst humans are very good at certain tasks
(e.g. the detection of unusual motion), they are quite poor
performers in other areas (e.g, the detection of abandoned
packages in crowded areas). There is no a priori reason for
assuming that a computerised surveillance system could not
outperform a human doing the same task—as we shall show
in the next section, human performance in this field is often
far from optimal.

This paper will begin in Sect. 2 with an overview of the
way in which CCTV installations really work, highlighting
the areas in which technology could be used to improve their
functioning. Section 3 covers the computer vision commu-
nity’s efforts to address the problem of automated visual sur-
veillance, both at the level of individual algorithms and at the
level of complete systems, discussing their applicability to
the real-world problems identified earlier. Section 4 looks at
the problem of evaluating such systems: this is a particularly
problematic area as traditionally vision scientists have each
tested their algorithms on different datasets, making cross-
system comparisons difficult if not impossible. We conclude
in Sect. 5 with suggestions for future research directions.

2 Surveillance in the real world

A useful source of information and guidance is often over-
looked by academics creating automated surveillance sys-
tems, and that is the experience of real-world closed circuit
television (CCTV) installations and operatives. This section
attempts to go some way towards correcting this imbalance
by describing the ways in which CCTV installations actually
work, the ways in which these real-world systems can help
inform technological development, and the ways in which
technology could be used to improve their working.

Norris et al. [53] provide an overview of the introduction
of CCTV cameras internationally, and show that the UK is
a clear leader. Whilst the precise number of UK cameras is
unknown, the human rights group Liberty put it at 4 million in
2005 [40] which is approximately one for every 17 people.
Other countries may be catching up with rapid take-up of
CCTV technology in the USA, the Netherlands, France, the
Republic of Ireland, and Italy. Increases in the use of CCTV
are also described in the Middle East, South Africa, Aus-
tralasia, India, Russia and Eastern Europe. The general trend
appears to be for the retail sector and other private concerns
to adopt CCTV first, and for the surveillance of public space
to follow.

In the majority of large CCTV installations, with some
hundreds of cameras, only a small fraction are ever watched.
One survey [39] reported camera to screen ratios (in a public
transport setting) of between 1:4 and 1:78. In our informal
survey of four local authority installations within the UK, we
found the ratio of screens to cameras lies between 1:4 and
1:30, and the ratio of operatives to screens can be as high as
1:16. So whilst in theory all cameras are monitored in some
way (and in some installations every camera is watched at
least once a day as part of a camera-test procedure), only a
small fraction are monitored in real-time. The rest are only
watched following an incident – monitored only in recorded
time.1 Practically, it is acknowledged that each operative can
only really monitor 1–4 screens at a time [87], so in a typical
installation with 100 cameras and 3 operatives, as few as 3%
of screens are likely to be actively monitored by a human at
any one time. There is also the issue of “breaks” away from
the screen (a recommendation of 5–10 min each hour [87])
for health and safety reasons.

In local authority installations in the UK, camera choice
is sometimes made with guidance from external agencies
(for example, many installations are linked into police radios
and/or maintain a police presence in the control room). How-
ever, current CCTV systems often leave the decisions about
which cameras to watch to the operatives themselves. This
can leave the system open to abuse (such as the targetting
of minority groups) and has attracted the attention of human
rights and anti-surveillance groups. A problem highlighted
by sociological studies [46,74] is that CCTV operatives fre-
quently decide which cameras to monitor based upon the
appearance rather than the behaviour of the people on the
screen.

CCTV operators suffer from the obvious problem of bore-
dom: in the vast majority of surveillance situations, nothing
happens. Playing “hide and seek” with security officers on
the ground, reading newspapers, and frequent tea or coffee
breaks all help to alleviate the boredom. One operative admit-
ted to targetting a specific camera on his own car all evening
[74]. Finally, not all CCTV operators are trustworthy, as the
story of Sefton Council operators charged with voyeurism
shows [5].

Norris and Armstrong have carried out an in-depth study
of custom, rules and practise in surveillance installations
including long-term monitoring of both a city centre and a
small town CCTV system in the UK. In [52], drawing on
the work of Sacks [62], they codify the 7 working rules of
surveillance installations. The first three of these are direct
descendants of Sacks’s work with police officers, but the

1 Figures from Ms H Mallinder, Tower Hamlets Antisocial Behaviour
Control Unit, Mr L Walters, Liverpool CityWatch, Mr D Walsh, Man-
chester CCTV, and Mr R Greaves of Wandsworth Community Safety.
Personal communications, 2005–2006.
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remaining four are surveillance-specific. Rules four to six
concern spatio-temporal patterns of behaviour, and the tar-
getting of people considered to be out of place or out of time,
such as the targetting of homeless people in the city centre
[52, p. 141]. Rule 7 is the only rule to refer directly to the
surveillance cameras, and states that “Operators learn to see
those who treat the presence of the cameras as other than
normal as other than normal themselves” ([52], p. 119).

In a series of interviews we have held with CCTV opera-
tives and managers, similar patterns have emerged, in particu-
lar the targetting of cameras at those thought to be out of place
or out of time. Interestingly, it was reported that instances of
the people under surveillance actually noticing the cameras
were very rare.The interviewees were also keen to empha-
sise and identify particular behaviour patterns, which are of
particular interest to surveillance researchers, such as the
following:

– “Trouble happens when groups of lads stop”.
– A pattern of approach, retreat, strike—for example, with

car theft, the perpetrator will often go up and circle the
vehicle, then retreat before making a move.

– Loitering in certain areas (ATM machines, for example)
is seen as worthy of surveillance, but other areas (such as
bus-stops) are fine.

– Even those areas in which “loitering” is considered
acceptable have limits, such as waiting on a train plat-
form whilst several trains pass through.

How such information can be incorporated into automated
CCTV monitoring systems is an open research question, but
modelling the spatial or geographical characteristics of the
behaviour patterns—such as inactivity zones [47]—would
seem to be vital.

One significant question which needs to be addressed in
any consideration of practical CCTV operation is whether the
cameras are effective in reducing crime. The massive expan-
sion in CCTV coverage in the UK has happened without
much systematic evaluation into whether the systems actually
work. In [45] and [3] surveys of evaluative studies are pre-
sented and the only conclusion that can be drawn from these
is that nobody really knows. Some evaluations suggest CCTV
works, and some do not. Tilley, in [82] determines nine pos-
sible confounding variables many of which are echoed in
other studies of CCTV evaluation [3,15,73]. These include
problems associated with changes other than the introduc-
tion of CCTV, such as background fluctuations in crime rate
and changes to the area under surveillance. They also include
the frequently cited and strangely contradictory problems of
diffusion, where areas near to CCTV installations but out-
of-view also experience a drop in crime rate, and displace-
ment, where crime is simply displaced to neighbouring areas

without surveillance. CCTV seems to have different effects
on different types of crime—and these effects do not seem
to be consistent across different CCTV installations.

We can conclude from this brief review of the surveillance
literature from within criminology and sociology that there
are several outstanding problems with CCTV as a crime pre-
vention tool. External guidance of CCTV cameras in city cen-
tre installations is common (with, for example, police radio
links into the control room), but even in situations where such
a link exists the majority of camera targetting is carried out by
the operatives themselves. Studies into the impact of CCTV
are inconclusive on the question of whether an unwatched
CCTV camera has a deterrent effect. If it were feasible for
unmonitored cameras to be “watched” by intelligent CCTV
systems which were then capable of alerting any operatives,
this situation might change.

It is surely worth noting, too, that existing CCTV installa-
tions consist largely of pan-tilt-zoom (PTZ) cameras, which
are unlikely to be cutting edge technology (and indeed more
likely to be several years old). Algorithms which only work
at high resolution in good light with a static camera are not
likely to be widely adopted in the real world. Anecdotally,
those real world CCTV installations with static cameras suf-
fer from different problems, such as spider webs obscuring
the view, or cleaning staff moving the camera. This means
that even those algorithms designed to work on static cam-
eras require an element of robustness, in that they need to be
able to behave appropriately when their assumptions (clear
view, static camera) are violated.

3 Computer vision systems and algorithms applicable
to the problem of surveillance

This section provides an overview of those computer vision
technologies that are applicable to the problem of surveil-
lance. Some of these systems and algorithms are designed
to solve just one problem (for example, abandoned package
detection) and others are designed to be complete surveil-
lance systems, from pixels through to the modelling of behav-
iour. Often, the organisation of computer vision systems is
hierarchical and the organisation of this section reflects this:
we start with tracking and occlusion reasoning, then scene
modelling, then behaviour analysis, and conclude with event
detection systems. The majority of computer vision systems
for surveillance are organised in this way, with low-level
image processing techniques feeding into tracking algorithms
which in turn feed into higher level scene analysis and/or
behaviour analysis modules. The flow of processing is nearly
always unidirectional. We do not consider the “lowest level”
of processing here (motion detection and background sub-
traction algorithms) due to space constraints.
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3.1 Tracking and occlusion reasoning

In tracking, a process to estimate a model of dynamics such as
a Kalman filter [38] or particle filter (sometimes called CON-
DENSATION) [32] is used to identify foreground pixels
over time as belonging to a particular moving or occasionally
stationary object. Appearance-based approaches to tracking
using contours [4] and pattern matching [66,85] have shown
success, as have Bayesian [33] approaches.

One tracking problem which has received increasing lev-
els of attention recently is that of occlusion handling. Occlu-
sions are related to obstacles, and often researchers attempt
to model both at the same time. We make the distinction that
occlusions are defined with respect to the camera and occur
when something falls between the lens of the camera and the
object of interest. In contrast, obstacles are physical objects
that exist in specific ground plane locations, and may or may
not occlude the camera, but do affect the paths of the objects
moving within the scene. Whilst the handling of occlusions
is a tracking problem, the modelling of obstacles is a prob-
lem for scene and behaviour analysis and is considered in
Sect. 3.2.

In [57] vehicular occlusions are handled by maintaining
a ground plane representation and an estimate of vehicle
size. Senior, in [66] handles static foreground occlusions
by maintaining three models: pixels are classified as either
foreground occluding pixels, background pixels or moving
object pixels. In [65] a method for learning a model of scene
occlusions from the tracks of moving agents using minimum
description length is described, which creates successively
more detailed depth models by dividing the scene into “lay-
ers”. In [20] Greenhill and others develop this approach, and
create a depth map based upon the location in the image
plane of the top of each moving person’s head. These depths
are then regularised using a Hopfield neural network and
the resultant occlusion images deal well with difficult scenes
such as an underground station with a stepped row of ticket
machines. Xu and Ellis [90] have also carried out research
into occlusion analysis; however, they deal with tracking
through occlusions and rely upon a hand-crafted model of
actual occlusion location. Their classification of occlusions
into “long term” (occlusions from which agents are not
expected to reappear, such as doors to buildings), “short
term” (small occlusions like trees) and “border” occlusions
(things which abut the edge of the scene) is a useful one for
many tracking applications. Stauffer and Grimson in [21,79]
describe a multi-camera system which automatically cali-
brates to a world-coordinate system and produces ground
plane coordinates, and it is this which enables the mapping of
what they call obstacles (although in our terminology these
are more like occlusions). Using an estimate of height to
compute the distance from the lens to a pedestrian within
the scene, it is obvious that the portion of the field of view

between the camera and the person is unoccluded. Likewise,
when a person goes behind an object, it can be assumed that
there is an obstacle or occlusion at that point.

3.2 Scene modelling

Understanding scene characteristics can improve a surveil-
lance application in a number of ways. Knowledge of
entrance and exit points can assist in tracker initialisation
and knowledge of the paths agents typically take through
a scene can be fed back into a tracker to help disambigu-
ate difficult cases. For higher level applications, performing
behaviour modelling or cognitive analysis of a scene, a rich
scene model can assist greatly (entrances and exits can form
goals, as in [13] for example). Occlusion reasoning and scene
modelling are related in that they can both help to disambigu-
ate meaning in these situations—indeed they can be handled
together (such as in Stauffer [77]). The most common tech-
nique for modelling entrances and exits is to fit a Gaussian
mixture model (GMM) to the start and end points of trajec-
tories using the Expectation Maximisation (EM) algorithm,
as in McKenna and Nait-Charif [47], Stauffer [77], Makris
and Ellis [43]. As mentioned in Sect. 2, the real-world target-
ting of surveillance cameras is often dependent upon spatial
characteristics, as behaviour patterns such as loitering are
only worthy of interest if they occur in relation to particular
areas. Hence the modelling of scene characteristics could be
an important feature of any real-world system.

McKenna and Nait-Charif’s [47] work is in a constrained
environment: a single room inside a home. Inactivity zones
are learned by fitting a GMM to points in the scene where the
agent’s velocity falls below a certain threshold. The applica-
tion they describe uses this scene model to summarise activity
for privacy reasons (“Enter through the hall door, sit on the
sofa and then exit through the rear door” becomes HSR)
and to detect unusual inactivity, such as a fall, by detecting
inactivity outside of the learned inactivity zones.

In [77] Stauffer couples the problem of determining
entrances and exits – he uses the terms tracking sources and
sinks—with the problem of fixing broken tracking sequences.
This work is a development of ideas presented by Russell
et al. in [28,56], who were concerned with the determi-
nation of correspondences between tracked objects across
different scenes with very few entry and exit points
(a freeway). Stauffer has used a similar technique in less-
constrained single camera scenes using a conservative2

tracker, where tracking output can consist of numerous

2 A conservative tracker is one which only identifies an object or agent
as present if there is a high probability of this being the case: very few
false positives are returned, but the chance of temporarily losing an
object is high.
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“tracklets”, or partial tracks. Stauffer’s insight is to couple
the problem of stitching together these broken tracklets (the
object correspondence problem dealt with in [28,56]) with
the estimation of scene entrances and exits. If a tracklet ends
near an exit, it is more likely to have ended because the
tracked object left the scene than because the tracker has
failed. By stitching together the most likely pair of tracklets
at each iteration and updating the track stitching correspon-
dences alongside the exit estimation, both problems can be
solved simultaneously.

Determining the model order for GMM-based exit rep-
resentations is a problem solved in slightly different ways
in each implementation. McKenna and Nait-Charif [47] use
maximum penalised likelihood (MAP) estimation, which
they claim results in Gaussian components that correspond
to meaningful semantic regions. Stauffer [77] uses a variant
on minimum description length (MDL), and others [13,43]
fit a large number of Gaussians and delete those with low
probability.

Makris and Ellis [43,44] have developed a scene-
modelling technique learned from the tracks of moving
agents. The central feature of this technique is the creation of
“routes”, “junctions” and “paths”. The approach starts with
the detection of routes, which are built up over time from a
number of trajectories. Each route is represented as a spline
and a set of vectors normal to the spline direction defining
the extent to which trajectories deviate from the route spline.
Routes are learned by grouping geometrically adjacent tra-
jectories. Each new trajectory is compared to existing routes,
and the closest route is updated with the new trajectory data
unless the distance is over some threshold, in which case
the trajectory is used to start a new route. Paths and junctions
emerge from a second level of processing in which route sec-
tions that are similar are merged, and a junction placed at each
end. The modelling of areas of inactivity (called stop zones)
is also performed by fitting a GMM to areas of the scene
where an agent’s velocity falls below a certain threshold (as
in [47]) with the additional sophistication that typical stop
durations are also captured and modelled as an exponential
function.

In [61], Rowe proposes a system based upon multiple
pressure sensors rather than computer vision, in which a par-
ticular conception of suspicious behaviour is measured. Sus-
picious behaviour is defined as that which involves deception
or concealment: behaviour with multiple inconsistent goals.
The outwardly detectable signs of such behaviour include
attempts to hide from other agents, and changes in direc-
tion or acceleration. The model Rowe proposes involves first
quantizing the scene by dividing it into a number of squares,
and then scoring areas of the scene as obstacles. Predicted
occupancy and visibility are calculated based upon the ideal
paths through the scene and obstacle location. The system is
only demonstrated in simulation.

3.3 Behaviour analysis and the detection of unusual
behaviour

Within computer vision for surveillance, behaviour is a word
used in its most general sense: the observable actions of
agents (humans, animals, cars, etc.). A large “toolkit” of
techniques exists for behaviour classification and summari-
sation. Once the behaviour in question has been tracked and
modelled and transformed into some numerical representa-
tion, a whole armoury of statistical methods can be used in
the classification of these representations—the partitioning
of the resultant behaviour space. Examination of the mem-
bers of each class or partition then enables the authors to
semantically label the behaviours: people walking to the left,
for example, or cars reversing up a slip road. Hidden Markov
Models (HMMs) and Bayesian Networks (BNs) (both exam-
ples of graphical models) are the most popular approaches
used in the literature. Indeed, a recent review [11] describes
the field almost entirely in terms of these techniques. How-
ever, other statistical methods are also brought into play. Due
to the recent publication of several review papers on this
topic, this section will provide a superficial overview and we
direct the reader to the aforementioned Buxton paper [11]
for a review of behaviour modelling techniques and [27] for
a more surveillance specific overview.

A huge variety of different variants on the first-order HMM
have been proposed. One such model is the CHMM—
Coupled Hidden Markov Model—of Brand et al., introduced
in [9]. In this model two (or more) HMMs are coupled, with
the state of each at time t affecting the state at time t+1. Oliver
et al. [54,55] go on to demonstrate this model’s usefulness
in modelling pedestrian activity for surveillance, analysing
actions which occur between two pedestrians. The CHMM
is particularly suited to the analysis of situations where there
are two behaviour patterns which may or may not be linked.

Brand and Kettnaker [8] use entropy minimisation to deter-
mine the structure of an HMM for the detection of events in
video: typically, HMM transition topology is either hand-
crafted, learned by clustering, or discovered through some
form of heuristic search. Instead, by minimising the entropy
over the model, the data relative to the model, and the cost
of encoding aspects of the data not captured by the model,
they learn an HMM structure that reflects the structure in
the training data. They demonstrate that these models can be
used to detect unusual behaviour by noting times at which
the HMM assigns a very low likelihood to the data.

Variable Length Markov Models (VLMMs) have been
used [17,63] for the modelling of behaviours in a number
of settings. Cyclic HMMs [42] can be used for the modelling
of recurrent or cyclic behaviour. Parallel HMMs (PaHMMs)
have been shown to be successful in the recognition of related
behaviours, such as the movement of both hands when using
sign language [86].

123



334 H. Dee, S. A. Velastin

In addition to this broad family of related HMM models,
researchers have coupled HMM systems to other techniques,
statistical and otherwise–such as VLMMs and vector quanti-
zation [17]. Ivanov and Bobick in [34] separate the problem
of recognising primitives from the problem of recognising
structure. They use HMMs for detecting primitive events (e.g.
car-stop) and a stochastic context free grammar to recognise
higher level events. The grammar is hand-crafted for each
scenario. A similar approach is described by Wu and others
in [89], in which paired HMMs are used to represent behav-
iours and support vector machines are subsequently used to
partition the behaviour space. Robertson and Reid [60] use
a database of previously seen actions for recognition, with
HMMs used for smoothing sequences and determining the
likelihood that a particular HMM explains the current action
sequence.

Bayesian Networks (BNs) are another type of graphical
model, representing factorisation of a joint distribution over
all variables. These probabilities can be learned from experi-
ence by training, which uses iterative schemes to find a maxi-
mum likelihood for the parameters, implemented as localised
message passing operations.

Remagnino, Tan and Baker in [59] develop a model for
the classification and annotation of multi-agent actions, using
BNs on two levels. Behaviour agent BNs have input nodes
associated with characteristics such as speed, acceleration
and heading, which feed up to hidden nodes that in turn feed
up into the final behaviour nodes which provide the most
probable interpretation of the agent’s behaviour. The second
level upon which they operate involves BNs called situation
agents, which are activated when the Euclidean separation
between two behaviour agents falls below a specified thresh-
old. These encode information about the interaction between
two behaviour agents (such as the pedestrian is passing by
car three). In [58] the issue of interactions involving more
than one agent is raised, and the authors suggest that a third
level of BN would be required to handle such complicated
interactions (a scene agent).

A similar approach to event detection is exemplified by
Intille and Bobick in [31]. They use multi-layered BNs to
model various aspects of a particular subset of structured
multi-agent behaviour. The behaviour they model is that of
American Football set “plays”, which are structured, highly
choreographed actions. The approach adopted is to use expert
information—they use a coach—to encode the actions of
each player during a specific play, and to build up a multi-
layered model of what is actually going on in the scene based
upon the visibly determinable goals of the individual agents
involved and the temporal and spatial relations between those
agents. The relationships between these atomic representa-
tions are used to determine the type of multi-agent action
being performed. BNs are used at two stages in this process—
to integrate the uncertain data from the visual trajectory

information, and to perform the multiagent behaviour
analysis. The authors do not detect “None of the Above”,
so are unable to determine patterns which do not fit one of
their plays.

Buxton and Gong, in [12] describe a BN-based system for
monitoring activity in certain types of surveillance situation:
specifically, traffic motion at a junction. Their architecture
features a pre-attentive system operating on low-level behav-
iours, such as velocity and orientation, and a central atten-
tional system which evaluates higher level behaviour patterns
such as “overtaking”. This was further developed by Buxton
and Howarth [26] who enhanced the attentional use of Bayes-
ian interaction agents to provide conceptual descriptions of
behaviour. The attentional component of the system consists
of a “tasknet” for a higher level behaviour, and once a task-
net is activated it begins gathering evidence for that particular
task. Similarly, Hongeng and others in [25] (expanded upon
in [48]) describe a system based upon BNs which can rec-
ognise and categorise single agent (single “thread”) events.
A finite state machine operates on the output nodes of the
BNs, recognising temporally extended multi thread events.
The events are hand-coded into the BN.

Johnson and Hogg [36,37] have developed a method for
behaviour modelling which enables prediction of future
behaviour, trajectory classification and the detection of
unusual or atypical behaviour patterns. This is achieved
through a multi-layered approach in which sub-sampled tra-
jectories are subjected to a version of Vector Quantization
(Altruistic Vector Quantization, or AVQ) producing a code-
book of representative prototype vectors. These prototypes
are then used to train an artificial neural network which
contains a layer of leaky neurons which are responsible for
encoding the temporal nature of trajectories: each leaky neu-
ron takes just one input and produces just one output, but the
output depends upon the neuron’s history. A second neural
network with its output nodes is attached to the output of these
leaky neurons and performs AVQ on an agent’s whole trajec-
tory. This produces a set of trajectory prototypes (which form
a behaviour space), and unseen trajectories can be compared
to these prototypes for classification and event detection.
Sumpter and Bulpitt [80] present a related technique using
neural networks to quantize over trajectories for behaviour
modelling and prediction. The network they describe con-
sists of two competitive learning networks, linked by a layer
of leaky neurons. In this way, their approach differs from
Johnson and Hogg’s, who require an extra learning stage for
modelling the whole trajectory. Both of these approaches are
capable of prediction and extrapolation, as partial trajecto-
ries or configurations can be matched to the closest trajectory
prototype in behaviour space and extended.

Gong and colleagues [18,19,29,68,69] also attempt to
automatically summarise or categorise activities within
video. Whilst their systems sometimes incorporate Bayesian
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Networks or Hidden Markov Models, this work is character-
ised by a combination of many different statistical methods.
Much does not explicitly model or track events at the object
level at all. Instead pixel-wise change is computed, which
provides a crude measure of motion within the scene, and
a layer of filters are placed on top of this (typically wave-
let based filters). In [68,69] the output of these filters is
analysed using GMMs to detect events, and then these are
clustered (using K-means) to detect higher level events. In
[19] the filters are used to create a histogram which provides
a continuous scene descriptor, and then subjected to PCA,
retaining just the top three eigenvectors to reduce noise. Both
approaches can be used to identify events in video sequences
which correspond to specific activities—in [68,69] the sys-
tem detects events within a shop scenario such as “picking
up a can”, and in [19] events such as a car reversing are
detected. Hung and Gong in [29] present a technique based
upon correlating salient motion. Saliency is defined as a mea-
sure of the entropy of the data over a spatio-temporal neigh-
bourhood. By correlating salient events, interactions can be
determined. The least frequent interactions are found to be
unusual or interesting events (cars going the wrong way at
an intersection, for example).

In [21], Grimson et al. describe the Forest of Sensors pro-
ject at MIT. This uses the tracker outlined in [79] over a dis-
tributed array of sensors, which between them cover a large
area of campus. They hypothesise that simply through track-
ing motion, a range of different computations about the nature
and typicality of activity on a site can then be made, and
also that certain aspects of scene geography can be mapped
out. The authors also analyse the behaviour of the agents
within the scene using various clustering approaches. They
propose two families of approach, one involving Wallace’s
Numerical Hierarchical Cluster (NIHC) [88] and one using a
GMM-based approach combined with K-means. The NIHC
approach assigns data randomly to clusters in a binary tree,
and then iteratively reduces the entropy of this tree. Finally, a
Minimum Description Length cut is made which finds a level
of clusters that best describe the data. Given these clusters,
particular patterns of behaviours emerge such as “people in a
queue”. The second approach they describe involves overfit-
ting a large number of Gaussians, each representing a small
portion of the 6 dimensional state space (x , y, dx , dy, size,
aspect-ratio). This is then clustered using K-means, and the
resultant graph is partitioned using a Hopfield network. The
first graph cut divides the behaviours into leftbound and right-
bound traffic, and the subsequent child nodes represent faster
and slower vehicles, pedestrians and the like.

In [76] another classification system is described (also part
of the “Forest of Sensors” project). This system has similari-
ties to that of Johnson and Hogg [36,37] in that they use Vec-
tor Quantization to produce a number of prototypes. These
prototypes form a codebook which is then used in place of

the original data. From these a co-occurrence matrix is pro-
duced and then this new space is split iteratively into two sets,
producing a hierarchical tree structure of behaviour patterns.
The lower branches of this tree represent semantic categories
within the data, such as “pedestrians on a lawn”, or “activity
near a loading dock”.

The approaches discussed thus far have centered around
the idea of building a model of what could be considered
“normal” behaviour, and detecting unusual events by deter-
mining the degree of fit with the model. Zhong et al. [92]
use video prototype co-occurrence to detect unusual activity,
by first creating a spatial histogram for each frame and then
clustering these using Vector Quantization. Pairwise simi-
larity measures are then produced for each short video seg-
ment (a 4 second clip in the described implementation) and
these are then embedded in a co-occurrence space, which
can be thought of as clustering prototypes and video seg-
ments which frequently occur together. Event detection is
then performed by finding spatially isolated clusters. Boiman
and Irani [7] also deviate from the model-based approach
considerably, treating the detection of unusual or interesting
behaviour as a form of database search problem. The method
they describe depends upon a compositional approach, con-
structing elements of a new stimulus (either image or video)
from a database of previously seen material. Given a database
of “normal” video material, the system can detect irregular-
ities by attempting to match moving parts of the new video
with the old. This works well at detecting certain types of
irregularity – for example, given a database of walking and
running activity, any movement that differs from this (crouch-
ing, jumping, etc.) is highlighted as unusual. The system can-
not detect unusual activity over large timescales, however, or
events in which the local motion is normal but the global
pattern is unusual (such as circling a car).

3.4 The detection of specific alarm events

In the preceding section we reviewed some of the core
methods that have been proposed to make algorithms that
can derive scene descriptors from a set of data that has been
presented to them (normally assumed to represent normal
conditions unless specifically noted otherwise). Then, the
occurrence of a pattern of data that does not (statistically)
conform to the norm can give rise to the issuing of an alarm.
In operational conditions, such an alarm could be assessed by
a human operator to either result on intervention (if the alarm
is true) or feedback to correct future system’s assessment.
How the latter can be achieved is still an open question as we
do not yet understand how error traceability can be effected
in computer vision systems with a multitude of processing
levels. It should also be noted that, like most researchers in
this field, we have assumed that a decision on whether an
event that merits (re)action has occurred is taken purely on
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the basis of visual data from one or more cameras, whereas
there is evidence that this is certainly not the case in manual
systems (for example [81]). In such systems dynamic envi-
ronmental information such as time of day, weather, traffic
conditions, play an important part. How such context can be
fused with visual data is an exciting area of research, but its
consideration falls outside the scope of this paper.

Given the high demands to overcome the practical prob-
lem of the lack of human resources to monitor the ever
increasing number of CCTV cameras, a number of systems
designed to detect specific pre-defined (as opposed to inferred
from representative data) alarm events have been proposed.
These exploit the well-known approach in machine vision of
restricting environmental constraints and operational expec-
tations (as shown by one of the major recent successes of
computer vision applications: automatic number plate rec-
ognition). Usually linked to government initiatives, early
research concentrated on the monitoring of highways
[2,23] where typical events included speeding, stopping and
congestion. From the mid 1990s a number of projects (e.g.
CROMATICA, PRISMATICA and ADVISOR; funded by
the European Union) have addressed the monitoring of peo-
ple in public transport facilities such as metropolitan railways
[70,84]. Here, the environments are constrained to interior
areas (less prone to changes in ambient lighting), but with
the significant challenge that these places are subject to high
crowding levels, conditions in which people tracking (as dis-
cussed in Sect. 3.1) is well beyond the current state of the
art. In the example shown in Fig. 1, the system has success-
fully detected the displacement of the trash can even in the
presence of a large number of people. In this case the system
had been programmed to detect semi-permanent changes in
the environment (this would include abandoned objects and
graffiti). Interestingly, when this video sequence was shown
to an audience of fifty experienced CCTV managers, only
one noticed this event.

The emphasis in this class of systems tends to be on try-
ing to achieve robust pixel-level processing (e.g. background
modelling, foreground extraction and optical flow) and the
measurement of medium level features such as blobs (cent-
roids, motion vectors, stationary counts, tracks, etc.). Then
event detection is largely a matter of applying a set of pre-
determined spatio-temporal rules that have been found to
correlate to what humans would interpret as situations of
interest. For example, “blob of size > Sa that has remained
stationary for more than T in area A” might trigger the event
“abandoned package” while rule “blob of size > Si present
in area Ap and no blob of size > St in area At ” might trigger
the event “person too near the edge of the platform (when
the train is not in the station)” (see Fig. 2). As discussed in
Sect. 3.3, how these rules can be arrived at automatically
(as the pre-programming or configuration of a large number
of cameras is unreasonable especially as configurations will

Fig. 1 A typical crowded scene in a metro station (courtesy of ATAC
(Rome) and Ipsotek Ltd)

need to change frequently over the lifespan of a system) is an
issue for which there is still no satisfactory solution. Progress
has been made towards formalising this approach for example
[10] through a hierarchical classification of primitive events
(such as the presence of an object in an area given some
a priori meaning) and scenarios (a spatio-temporal combina-
tion of events). This gives rise to a structure that represents
knowledge in the particular domain in the form of an ontology
(see for example [16]) to which it is possible to associate an
inference engine to detect events. This type of explicit repre-
sentation still needs to be arrived at manually and only tends
to support simple deterministic rules.

4 Evaluating surveillance related vision systems

Surveillance-related vision applications, algorithms and
systems have historically been evaluated in an unsystem-
atic way. In some cases, algorithms have been reported as
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Fig. 2 Detection of presence in a forbidden area (courtesy of ATAC/
Ipsotek Ltd.)

outperforming their rivals, and the evidence presented tends
to be somewhat anecdotal, such as simple screen shots. These
screen shots may clearly show that algorithm “A” results in
(for example) fewer noise pixels than algorithm “B” on a
particular frame from a particular dataset, but for a robust
system we need to be able to quantify exactly how much
better this performance is over a range of data representa-
tive of operational conditions. In order to properly evaluate
how well an automated system performs a task (be it des-
ignating a particular pixel as foreground, or identifying a
specific agent’s behaviour as worthy of further investigation)
two things are needed: first, an indication of what the right
answer is (a ground truth); and second, a distance metric to
determine some degree of fit with this ground truth. These
factors are not as simple as they might first appear. The col-
lection of ground truth is not unproblematic, and the choice
of distance metric will be in part governed by the task.

When comparing classification or detection systems the
main tools available to aid in the visualisation of results are
ROC (Receiver Operating Characteristic) curves and confu-
sion matrices. Confusion matrices are used to visualise the
output of classifiers in which each row represents one of the
real categories (the “ground truth”) and each column repre-
sents one of the classifier outputs. The values in the matrix
are the number of items from each real category classified as
each classifier output. So if column one represents classified
as background and row one represents background according
to ground truth, a good classifier would have a high number in
that particular table cell. From confusion matrices a number
of useful summary statistics can easily be generated:

– The False positive rate is the proportion of negative cases
that were incorrectly identified as positive.

– The True positive rate (also known as sensitivity) is the
proportion of positive cases that were correctly identified.

– The False negative rate is the proportion of positive cases
incorrectly rejected.

– The True negative rate (also known as the specificity) is
the proportion of negatives correctly identified as such.

If a threshold is set very high there will be no cases iden-
tified correctly (true positives), but also no cases identified
incorrectly (false positives) as there will be no positives at all.
The converse holds if the threshold is set very low. An ROC
curve is a plot of true positive rate against false positive rate,
and is a means of visualising the interactions between these
characteristics as thresholds are changed. They can help in
the robust determination of a threshold, as choosing a thresh-
old which defines a point towards the top left of the curve
has the effect of maximising true positives whilst minimising
false positives.

There have been various significant attempts in recent
years to devise benchmarking processes to assess and com-
pare those algorithms or systems addressing the surveillance
task. The following sub-sections detail various workshops
and challenges developed to improve the quality of evalua-
tive techniques in computer vision systems for surveillance.

4.1 PETS

The PETS (Performance Evaluation of Tracking and Sur-
veillance) series of workshops began in 2000 in conjunction
with the IEEE Face and Gesture recognition conference. The
aim of these workshops is to further the systematic eval-
uation of surveillance and tracking systems, by providing
“standard” datasets alongside ground truth information. The
PETS dataset series began in 2000 with a car-park scene,
involving cars and pedestrians. Five datasets were released
in 2001, four of which cover a similar car-park scene to 2000,
from two cameras and for a longer time. The car-park data-
sets from 2001 are probably the most popular of the PETS
series in automated surveillance circles: they contain a range
of natural, fairly typical behaviours performed in good natu-
ral light, each viewed from more than one camera (dataset 4
even includes footage from a catadioptric camera). The sub-
ject matter of other PETS datasets includes footage from a
moving car (PETS2001 dataset 5), indoor scenes of people
(the particularly challenging 2002 dataset is taken through
a reflective plate glass window into a shopping centre, and
2004 is in a foyer), and various non-surveillance related data-
sets such as smart meeting rooms and hand tracking.

PETS-Metrics [91] is a new addition to the PETS series
providing an on-line means of evaluating segmentation algo-
rithms. This website (found at http://www.petsmetrics.net)
allows researchers to upload their results on a standard dataset
in a standard format. The format chosen for this is XML, and
a Document Type Definition and code for generating valid
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XML are available from the website. Once a researcher has
a valid XML file they can upload this to the website, and
various comparisons are performed between their results and
the ground-truth data.

4.2 CREDS

A recent step towards more systematic evaluation has been
made in [93]. In the “Challenge for real time event detec-
tion solutions” or CREDS, researchers were invited to try
their software on a specific scene from the Paris metro. Sys-
tems were tested on their ability to issue warnings when cer-
tain pre-defined events such as walking on rails or dropping
objects on tracks were detected. A number of camera con-
figurations (both visible and infra-red) and scenarios (such
as walking on rails) were released for researchers to use as
training data and to fine-tune their algorithms. The submit-
ted software was tested for its ability to produce alarms cor-
responding to the hand-crafted ground truth. The systems
demonstrated as part of the CREDS challenge [6,64,67,75]
detected some activities with ease – often simply by defin-
ing areas of scene which were forbidden unless the moving
object happened to be a train. Some of the systems submit-
ted for the challenge were fully-fledged surveillance systems
which were capable of detecting events not specified in the
challenge (such as [6], which could detect graffiti and aban-
doned packages). As a challenge, in which surveillance sys-
tems were evaluated against each other and against ground
truth, the results are interesting and a move towards more
objective evaluation. However, the sequences all appear to be
performed by actors, and there was no separate test dataset
meaning that the systems were evaluated against the example
training data.

4.3 i-LIDS

The Home Office Scientific Development Branch (HOSDB)
in the UK has recently announced the project i-LIDS (Imag-
ery Library for Intelligent Detection Systems) [24]. This is
made up of three datasets: one public training dataset, avail-
able to all; one public test set; and one evaluation set which
will be retained by the HOSDB for the systematic evaluation
of intelligent surveillance systems. The scenarios included
within i-LIDS are parked vehicle detection in no-parking
or no-waiting areas, abandoned baggage detection in public
transport areas, sterile zone monitoring detecting intruders
in the perimeter boundaries of secure sites and doorway sur-
veillance. Each dataset contains examples of both alarm and
non-alarm sequences, determined by the operational require-
ments of the scenario. These datasets were made available
alongside simple XML ground truth data in late 2006.

4.4 ETISEO

Project ETISEO3 [72] is a French Government funded project
into the evaluation of surveillance applications. There are
two aspects to the ETISEO project: one of which is to pro-
duce datasets for evaluation (in a similar way to the UK
Home Office’s i-LIDS project) but also to develop metrics
to measure performance on these (and other) datasets. Allied
to these practical outputs, the project also aims to develop
conceptual understanding of the domain through defining
ontologies for surveillance: one associated with the video
processing and interpretation (e.g., blob, trajectory); and one
associated with the application domain (e.g., abandoned
package).

As with i-LIDS, the ETISEO video sequence database
will be tripartite with training data (called work data by the
ETISEO project), test data and evaluation data. The plan is
to include a variety of application domains in their video
sequence datasets, including airport apron, vehicular/
pedestrian traffic, interior corridor, small car-park, metro
station…Many of these scenes are to be presented as multi-
camera datasets, some with more than one imaging modality
(e.g. visible/infra-red).

4.5 Metrics for surveillance systems

When determining the effectiveness of systems such as track-
ers, background models, and event detectors, different met-
rics are required. It is possible to convert tracker output
into true/false (e.g. x% of bounding box overlap between
“ground-truth” and “tracker” = true, otherwise false as in
[41]), and even easier to convert the output of background
subtraction routines to simple true/false output using per-
pixel measurements. However, more sophisticated measures
are available, and we shall concentrate on these here.

In 2003, Needham and Boyle [51] discuss the evaluation
of positional trackers, suggesting trajectory comparison met-
rics such as mean-distance and area-between-trajectories
and ways in which systematic error (such as time-shifting
by a few frames, or slight camera miscalibration) can be
corrected. Somewhat surprisingly, this is also the first paper
we have found that touches upon the nature and reliability
of ground truth for tracker evaluation: in Sect. 3.1 of the
paper two hand marked up trajectories are compared and
discovered to differ noticeably. The generation of accurate
ground truth is considered in more detail by List et al. [41] in
which three human annotators mark up the same sequence.
Their performance is compared on positional criteria such as
bounding box location, but also on semantic criteria as the
ground truthing involved the labelling of behaviours as e.g.

3 Evaluation du Traitement et de l’Interpretation de Séquences vidEO.
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running or walking. Rather than calculate some continuous
statistic to determine degree of agreement, the authors of [41]
calculate the percentage of agreement between labellers for
various degrees of concordance, such as the bounding boxes
overlap by x% in y% of cases. What is clear from both of
these papers is that agreement between humans is not guar-
anteed, even when considering such simple things as agent’s
position.

Whilst it is useful to consider and define metrics which
provide some quantification of how well an agent has been
tracked through a scene, it is also worth bearing in mind that
we may not require a great deal of precision in a tracking
application. If it turns out we can expect 95% concordance
between human observers, it seems unreasonable to demand
greater accuracy from computerised systems (especially if
this accuracy is being measured against human-generated
ground truth). This is, of course, not a valid argument against
accurate measurement, and should instead be construed as an
argument for accurate measurement with clearly defined tol-
erances.

The metrics proposed by the ETISEO project are arranged
hierarchically, and centre around the ideas used in confu-
sion matrices and ROC curves – nearly all of the metrics
are calculated from the number of true positives, false pos-
itives and false negatives. There are subtly different met-
rics defined for each of the different tasks (object detection,
object classification, object tracking and event detection),
with slightly different terminology. For example, with object
detection the various categories are called Good Detections
(true positives), False Detections (false positives), and Miss
Detections (false negatives). Metrics proposed include the
precision and sensitivity, using both object shape and bound-
ing box size and location. With object classification, simi-
lar metrics are proposed, some allowing for the fact that an
object may be misclassified at one level of description (e.g. a
motorbike is not a car) but correctly classified at another (e.g.
a motorbike is a vehicle). Metrics proposed for the evaluation
of tracking systems take into account not just the overlap of
bounding boxes (location in space) but also the problems of
linking objects over frames to handle the well-documented
tracking problems of splitting and merging. For event detec-
tion, the metrics are defined simply in terms of precision, sen-
sitivity and specificity with qualifications and refinements to
do with event timing and onset. Further details on these met-
rics, including definitions, are available from the ETISEO
homepage (see [72]).

The PETS metrics site [91] provides automatic evalua-
tion of motion detection algorithms using metrics from the
AVITRACK project, detailed in [1]. Four metrics have been
implemented in the PETS metrics online evaluation site:

– The Negative Rate metric is calculated as
1
2 (False negative rate + False positive rate);

– The Misclassification Penalty metric penalises misclas-
sified pixels based upon their distance to the object
boundary in the ground truth

– The Rate of Misclassifications metric is very similar
to the Misclassification Penalty metric, in that it relies
upon distance from misclassified pixel to object bound-
ary, however this metric is normalised by the number of
misclassified pixels.

– The Weighted Quality Measure metric is a measure
of the spatial discrepancy between the ground truth and
the motion segmentation, with pre-determined weights
affecting the influence of false positive and false negative
pixels. The weights used favour segmentation algorithms
which result in larger foreground objects.

With systems and algorithms presented as “interesting
event” detectors, the problem of systematic evaluation is
exacerbated. This is acknowledged by the authors of [78],
who stated they were working on methods of evaluating
the unusual event detection aspect of their work. There is
great difficulty in obtaining footage of genuinely interesting
events; muggings, robberies and the like are highly unlikely
to occur in the university car parks and streets often used as
training and test data at the exact time a vision researcher
chooses to capture their hour or two of footage. Obtaining
any volume of footage of such events is arguably impossible
without a great deal of cooperation from real-world CCTV
operations, and any datasets so obtained would have serious
data protection and privacy implications.

Hence evaluative techniques for such systems have, at
their simplest, involved investigating the problematic cases
by hand. This involves looking at the outliers and saying “Yes,
that’s unusual” [37,78]. One such model, trained on pedes-
trians, had a major outlier which turned out to be a cyclist.
The evidence this type of evaluation provides can only be
anecdotal. It is also somewhat circular—if you look at the
examples which do not fit the model, and find they are odd in
some way, then of course they are interesting to you—they
don’t fit your model of what is going on. The opposite situ-
ation, in which the dataset is examined and unusual events
identified by the authors of the research alone (as in, for
example [29]) suffers from analogous problems.

Another means of evaluating such systems is through the
use of “actors”. These people behave strangely in front of
video cameras, and the system in question is evaluated on its
ability to single out the sequences featuring these actors [37,
50]. For example, in [35] interesting behaviour was defined as
rapid head movements and video produced specifically fea-
turing just that behaviour and in [89] the interesting behav-
iour detected was people driving in circles or zig-zags in a
car-park. If the decision of what constitutes unusual behav-
iour is left up to the actors, questions about their links to the
software designers become paramount. The alternative case,
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in which the actors are instructed by the system designer on
the behaviour to exhibit would result in even worse science.

In [14] a means of generating a form of ground truth for
surveillance systems is described, relying upon a result from
the psychological literature [83] showing that when trying to
predict future behaviour from CCTV footage naïve observ-
ers perform as well as trained security guards. The authors
then make the assumption that benchmarking against a num-
ber of humans is an improvement over relying on the author,
actors, or serendipity to provide some measure of the inter-
estingness or otherwise of the data set. The evaluative system
involves showing the footage to a number of volunteers and
asking them to rank the behaviour of each agent in the scene
in question on the basis of how interesting a hypothetical
security guard would find that particular behaviour pattern.

The mean score from the human rankers is then assumed
to provide a simple measure of “interestingness” for each
agent’s trajectory, which can then be compared directly to
the output of any machine-generated indication of typicality,
and if a binary decision (interesting, or not) is required ROC
curves can assist in the determination of a threshold. For a
general measure of how well a computer-generated interest-
ingness statistic performs, non-parametric correlation statis-
tics such as Kendall’s Tau or Spearman’s Rho [71] can be
used.

5 Conclusions

This paper has presented an overview of behaviour analy-
sis and event detection systems within computer vision for
surveillance, with an emphasis upon the ways in which we
can determine the robustness of the systems and upon the the
interface between real-world surveillance installations and
cutting-edge research. Given the large and expanding nature
of this research area, we could not have reviewed everything
in a single paper but we hope to have given an accurate picture
of current state of the art in vision systems for surveillance.
Significant progress has been achieved over the last decade in
this field, particularly associated with the recognition that it is
essential to have experimental methodologies demonstrating
the characteristics and limitations of a given proposed solu-
tion. In this sense, the field is maturing quickly and catching
up with conventional engineering and other scientific disci-
plines. This is something that cannot be ignored given the
immediate applicability of this area, and we argue that the
accurate characterisation of performance will assist greatly
in this aim. If we as a research community can produce algo-
rithms that are able to determine when they are “out of their
depth”, we will have got a step closer to producing systems
that are robust in a variety of input conditions.

Progress can be measured by seeing that some of the
solutions proposed by researchers find applicability and

indeed become almost transparent in the real world. There
have been some major successes, mainly at the level of signal
processing. Automated number plate recognition (ANPR)
and vehicular traffic monitoring are perhaps the main two
success stories, in which mature technologies have been
implemented in real-world settings. On the other hand, much
remains to be done in the area of behaviour analysis and mod-
elling, building systems that could make sense of human
behaviour especially in unstructured or changing environ-
ments such as public places. We are beginning to see possi-
ble applications in systems that can detect pre-programmed
events such as overcrowding, intrusion, and abandoned pack-
ages. These systems do not require a deep understanding of
behaviour and successfully exploit constraints (provided, for
example, by structured environments and fixed cameras).

Further progress is required in providing understanding at
a more cognitive level of processing, perhaps even emulat-
ing the processes carried out by human surveillance opera-
tives. We should accept that there is a case for developing
systems that acquire knowledge over a long period of time
and also accept that a certain amount of bootstrapping, or at
least supervised learning (as humans do) may be required. To
expect otherwise seems unnecessarily unrealistic. We need
to be able to represent and process visual information in a
manner that recognises the stochastic nature of data: reason-
ing with uncertainty is likely to be a central feature of any
successful higher level behaviour analysis system. It could
also prove necessary to produce easily comprehensible out-
put, as any system designed to integrate within an existing
CCTV control room environment will need to be accepted
and understood by the operatives. As a human computer
interaction problem, this has not received a great deal of
attention to date; but the problem is not just one of interface
design but also of information design. Any system perform-
ing (for example) behaviour summarisation will need to be
able to produce results in a form that makes sense to those
unfamiliar with computer vision. To this end, recent develop-
ments aiming to define ontologies for computer vision [16,
for example] are a move to be encouraged.
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