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Abstract The texture of a machined surface gener-
ated by a cutting tool, with geometrically well-defined
cutting edges, carries essential information regarding the
extent of tool wear. There is a strong relationship be-
tween the degree of wear of the cutting tool and the
geometry imparted by the tool on to the workpiece sur-
face. The monitoring of a tool’s condition in production
environments can easily be accomplished by analyzing
the surface texture and how it is altered by a cutting edge
experiencing progressive wear and micro-fractures. This
paper discusses our work which involves fractal analy-
sis of the texture of surfaces that have been subjected
to machining operations. Two characteristics of the tex-
ture, high directionality and self-affinity, are dealt with
by extracting the fractal features from images of sur-
faces machined with tools with different levels of tool
wear. The Hidden Markov Model is used to classify the
various states of tool wear. In this paper, we show that
fractal features are closely related to tool condition and
HMM-based analysis provides reliable means of tool
condition prediction.
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1 Introduction

In machining operations, cutting tools are discarded
once their expected lifespan is reached. However, the
usefulness of these tools very often exceeds the expected
lifespan and many tools are discarded even when they
can still be used. Conversely, if a machine tool fails be-
fore reaching its expected lifespan, it could potentially
damage the machine and the material being processed.
With real-time tool wear monitoring, it is possible to
ascertain the level of tool wear and therefore only change
the tools when they reach their maximum useful life.
Various techniques have been proposed for tool wear
monitoring and an extensive review, including those
involving acoustic emission, tool temperature, cutting
forces, and vibration signatures, is presented in [1]. How-
ever, due to the complexity of the tool wear process, reli-
able online tool wear monitoring remains a challenge.
In this paper, we propose a new surface texture charac-
terization approach to tool wear monitoring.

During machining operations, the quality of the ma-
chined surface changes as the tool wears. There is a
strong relationship between the degree of wear of the
cutting tool and the geometry imparted by the tool on
to the workpiece surface [2]. Since the tool operates
directly on the workpiece, the machined surface car-
ries valuable information about the machining process
including tool wear, built-up edge, and vibrations, which
in turn provides reliable and detectable information to
categorize the condition of the cutting tool. Random
process analysis techniques are applied to characterize
the machined surfaces in [3]. In a previous work [2, 4],
the degrees of tool wear during turning operations were
successfully ascertained by texture analysis of images
of machined surfaces using column projection and run
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length statistics. In this paper, we focus on analysis of the
texture of end-milled surfaces.

Figure 1 shows images of end-milled surfaces pro-
duced by a cutting tool when it is sharp (new), semi-dull
(flank wear of 0.3 mm), and dull (flank wear of 0.5 mm).
Figure 2 shows the images of turned surfaces for differ-
ent stages of tool wear. Clearly, the texture of end-milled
surfaces is quite different from that of turned surfaces.
The surface texture produced by the turning operation is
characterized by equally displaced grooves (Fig. 2a) and
as the tool wears, wear particles become more evident
as illustrated by Figs. 2b,c. On the other hand, surface
textures produced by end-milling operations are irreg-
ular and more complex. The vision-based methods in
[2, 4] which have been successfully used for analyzing
surfaces produced by turning operations cannot be used
for analyzing textures produced by end-milling oper-
ations because the regular features required by these
methods are simply not evident in the surfaces produced
by end-milling operations.

Fractal analysis is a relatively new but powerful tool
for texture analysis. In this paper, we investigate the use
of fractal analysis to characterize surfaces milled with
tools having experienced different levels of tool wear
and Hidden Markov Models (HMM) to classify the var-
ious degrees of tool wear. While HMM-based methods
have been used extensively, this is believed to be the first
work to use fractals with HMMs to analyze changes in
texture images.

The paper is organized as follows. Fractal analysis
is discussed in Sect. 2 and a brief introduction to the
HMM is provided in Sect. 3. The experimental setup is
presented in Sect. 4. An explanation of how the frac-
tal features are obtained from textures of end-milled
surfaces and their use with the HMM is provided in
Sect. 5. We present and discuss the experimental results
in Sect. 6, and provide our conclusions in Sect. 7. Some
nomenclatures used in this paper are summarized in
Table 1.

Table 1 Nomenclature List

Vbmax The maximum flank wear of the tool

λ Notation of Hidden Markov Model
A State transition probability matrix
B Observation probability distribution
π Initial state probability distribution
Gm Gaussian distribution
P(x) Probability of event x
p(x) Probability density function of x
E(x) Expectation of x
FD Fractal dimension
I(x) Image intensity profile

2 Fractal analysis

Fractals have been successfully applied in analyzing var-
ious chaotic phenomena [5] because many natural ob-
jects demonstrate self-similarity over a range of scales.
Fractal Dimension (FD) is the parameter that measures
the extent of self-similarity. The realization that the FD
shows close correspondence to human perception of
texture [6] has motivated research into possible applica-
tions of fractal analysis in image processing and computer
vision. The FD has been used for image segmentation
[6], finger print identification [7], and characterizing sur-
face topology [8].

2.1 Estimating the fractal dimension

Many methods have been proposed to estimate the
FD [5]. These methods vary in computational efficiency,
numeric precision, and estimation boundary. Thus,
FDs estimated by different methods may carry differ-
ent information about fractal objects. We used two FD
estimation methods in our work.

2.1.1 Method 1

The one-dimensional (1D) image profile can be approx-
imated by fractal Brownian motion function [7]. The
image profile is the set of gray level values along an arbi-
trary line across the image. Figure 3 shows an example
of image profiles, which is obtained along the vertical
line in the middle of Fig. 1a.

A fractal Brownian motion function I(x) has the prop-
erty that the mean value of its absolute differences,
E(|�I(x)|), is proportional to |�x|H , where H is called
the Hurst coefficient. Taking the logarithm, we obtain

log E(|�I(x)|) = H log |�x| + constant (1)

In this paper, I(x) is represented by the image inten-
sity value, and x is the distance along the profile as shown
in Fig. 3. Thus, H can be estimated by applying least
square regression for different values of �x and there-
fore E|�I(x)|.E|�I(x)| is computed by taking the aver-
age of all |�I(x)| determined by �x. The FD of the
fractal Brownian motion function is simply 2–H [7].

2.1.2 Method 2

The box counting (BC) algorithm [5] can be used to
compute the FD of 2D images of machined surfaces. As
shown in Fig. 4, the machined surface viewed as a 3D
surface is divided into cubic cells or boxes, each side of
length r. The number of cells, N(r), through which any
part of the surface passes through, is proportional to
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Fig. 1 Textures of machined surfaces produced by end-milling operations when the tool is a sharp, b semi-dull, and c dull (Vbmax =
0.5 mm). The size of the image is 1.1 mm×1.1 mm

Fig. 2 Textures of machined surfaces produced by the turning operation when the tool is a sharp, b semi-dull, and c dull (Vbmax =
1.0 mm). The size of the image is 1.1 mm×1.1 mm

r−FD, where FD is the BC dimension of the image. By
choosing different side lengths r, FD can be estimated
by using linear regression as in Method 1.

In general, the FD can be computed by measuring
certain metric property M over different scales ε [7]. In
Methods 1 and 2, the mean difference E|�I(x)| and the
number of visited cells N(r) are metric properties, while
�x and r are the respective scale variables. The FD is
estimated as follows:

• Compute the metric property M(ε) for different
scales ε.

• Apply least square regression to the plot of log(M)

versus log(ε).
• Derive FD from the slope.

2.2 Fractal analysis of end-milled surfaces

Fractal features are chosen in this work because they
should be able to better represent the irregular textures

of end-milled surfaces than other types of features that
rely on the regularity of textures. Fractal analysis of end-
milled surface textures involves computing the FD of
both image profiles and images themselves, which are
self-affine and not self-similar. The FD of self-similar
curves and surfaces satisfy

DT < FD < DT + 1 (2)

where DT is the topological dimension, and DT = 1 for
1D curves and DT = 2 for 2D images. Equation (2) is a
prerequisite condition of a fractal set in a strict mathe-
matical sense, but the estimated FD of self-affine objects
may not satisfy this condition. For this reason, the slope
of log–log plot is used as a fractal feature in this work.

The texture of end-milled surfaces is anisotropic. The
issue of characterization of anisotropic surfaces has been
well studied. In [8], the 2D Fourier transform is ap-
plied to anisotropic surfaces and the slope of the log
(magnitude2) versus log (frequency) plot is evaluated as
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Fig. 3 Profile of the end-milled surface image

a function of direction by dividing the frequency domain
into several pie-shape regions similar to Fig. 5. Li et al.
[9] proposed a new parameter to measure the anisotropy
based on profile spectral moments and surface spec-
tral moments of machined surfaces. Thomas et al. [10]
used the structure function (related to the autocovari-
ance function) of machined surfaces, to estimate the FD
and topothesy, and studied their relationship to anisot-
ropy. Topothesy, which is defined in the Weierstrass–
Mandelbrot function [9], is derived from the intercept
of the log–log plot of power spectrum versus frequency,
which is more sensitive to anisotropy than the FD [8].

In our work, the anisotropic nature of end-milled sur-
faces is addressed by analyzing fractal features for the
image profiles along different directions. The slopes and
intercepts of log–log plots are directly used as fractal
features that account for roughness and the directional-
ity of the texture, respectively. Figure 5 shows the slope
and intercept of profiles as a function of angular direc-
tion. The image profiles are extracted from Fig. 1a. It is
clear that the intercept varies greatly as the direction of
profile changes.

3 Hidden Markov Model

The main objective in tool wear monitoring is to detect
tool wear states from sensory signals. However, the sen-
sory signals are also affected by many factors including
the operational mode of the machine (including cut-
ting parameters, use of coolant, etc.), type of workpiece
material, composition of the tool, and noise from vari-
ous sources. Neural network techniques [2] have been
successfully used to overcome these effects.

Unlike the neural networks approach, the HMM uses
Markov chains to model dynamic processes. The HMM
is a stochastic model that describes piecewise station-
ary random processes and had been originally used for
speech recognition [11]. Recent work has focused on the
use of the HMM to classify and detect tool wear states.
The HMM has been used to detect tool wear stages in
drilling operations [12]. In [13], the vibration signals of
end-milling operations are analyzed in different time
scales and the HMM is used to categorize the states of
tool wear from these signals.

Tools experience several stages of tool wear before
they are worn out [12]. In our work, we explore the use
of the HMM approach to reveal the inherent structure of
the tool wear process. The aim is to investigate whether
different tool wear stages, such as sharp, slight-worn,
semi-worn, and worn-out, can be effectively modeled by
the discrete states of a HMM.

The basic elements of a four-state left–right HMM
model are exemplified in Fig. 6. N denotes the number
of states in the system and the observation sequence
O = O1O2O3 · · · ON is the only part accessible to the
outside world. Some important characteristics about
HMM model are listed below:

• At any given time t, the system will stay in one of
the discrete states qt = Si where 1 ≤ i ≤ N and qt is
the current system state.

• The state transition from Si to Sj can be made at next
event t + 1 with probability aij = P[qt+1 = Sj|qt =
Si]. A basic assumption of Markov chains is that the
probability of a system being in a state at time t + 1
depends only on the current state at time t and is
independent of all previous states.

• The observations are random variables that are ei-
ther discrete {v1, v2, . . . , vM} or continuous, v, with
probability distribution functions P(vj|qt = Si) and
p(v|qt = Si), respectively. For continuous observa-
tions, p(v|qt = Si) is usually modeled as the weighted
sum of Gaussian distributions, i.e., p(v|qt = Si) =
∑M

m=1 cimGm(μim, Uim), where Gm is the Gaussian
distribution with mean μim and variance Uim.

The HMM is specified by the state transition proba-
bility matrix A = {aij}, the observation probability dis-
tribution B = {bij} or B = {cij, μij, Uij}, and the initial
state probability distribution π = {πi}, where πi is the
probability of being in state Si at the beginning of the
observation sequence. Thus, the HMM is often denoted
as λ(A, B, π).

The basic issues of HMM are the evaluation of the
probability of observation sequence P(O|λ) given the
observation sequence O = O1O2 · · · ON and the model
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Fig. 4 Box counting method The side length of cubic box, r, decreases, 
whereas N(r), the number of boxes the surface pasing through, increases.
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Fig. 5 Slope and intercept of
profiles along different
angular directions

λ = (A, B, π); the decoding of the most likely state
sequence Q = q1q2, . . . , qt, given the observation se-
quence O = O1O2 · · · ON and the model λ = (A, B, π);
and the estimation of the model λ = (A, B, π) to maxi-
mize P(O|λ) given the observation sequence O = O1O2
· · · ON. Standard algorithms for resolving these issues
include the forward-backward procedure, Veterbi algo-
rithm, and Baum–Welch method [11].

In our work, we investigate two problems:

1. Detection problem: determining the most likely state
qt at time t, given a HMM model and observation
sequence.

2. Prediction problem: determining the probability that
the next state will be the tool-worn-out state.



332 A. A. Kassim et al.

Observation sequence: O1O2O3...ON 

S1 S2 S3 S4
a11

a12

a13

a14

a22 a33

a44=1
a23

a34

a24

Internal system

External observation 

Fig. 6 Left–right HMM

These two problems are of practical importance in tool
wear monitoring. Given the observation sequence of
fractal features, solving the detection problem will give
the current tool wear state at certain time t, and the
outcome of prediction problem is the probability of the
event “tool is worn out at next time event”.

For the detection problem, we use the variable γt(j) =
P[qt = Sj|O, λ] [11], which is the probability of being in
state Sj, given the observation sequence O and the model
λ. γt(j) can be expressed as

γt(j) = αt(j)βt(j)
P(O|λ)

= αt(j)βt(j)
N∑

i=1
αt(i)βt(i)

(3)

where αt and βt are forward and backward variables in
the forward–backward procedure [11]. Using γt(j), the
best estimate of qt is

qt = arg max
1≤j≤N

[γt(j)] 1 ≤ t ≤ T (4)

The prediction problem can be solved by

P[qt+1 = SN |λ] =
N∑

i=1

P[qt = Si|λ]aiN =
N∑

i=1

γt(i)aiN (5)

where SN is the final state of left–right HMM model and
is defined as the “tool-worn-out” state.

4 Experimental setup

In our experiments, aluminum workpieces are milled
without using coolants by a 16 mm diameter high-speed
steel end mill at a rotational speed of 2,000 rpm, radial
depth of cut of 3 mm, axial depth of cut of 16 mm, and
feed rate of 180 mm/min.

1
2

3
4

5
6

camera 

milling tool 

workpiece (aluminium)

Fig. 7 Experimental setup

After each pass of the milling process, the flank wear
of the milling tool is measured and when the flank
wear shows an increase of 0.1 mm, images of the milled
aluminum workpiece are taken at six different locations.
This process is repeated until the flank wear reaches
0.5 mm. Figure 7 shows the experimental setup and the
positions (numbered 1, 2, 3, 4, 5, 6) at which the im-
ages are taken. The PC-based image capturing system
uses a CCD camera with appropriate magnification and
illumination. The images of the surfaces were captured
as 256 gray level images and are numbered sequen-
tially. Images #1 to #6 are taken during the first pass
when the flank wear of the milling tool is almost neg-
ligible, images #7 to #12 are taken after the flank wear
reaches about 0.1 mm and so on until a flank wear of
0.5 mm is achieved. Image #19, for example, is taken (at
the same positions as images #1, #7, and #13) after the
tool flank wear reaches about 0.3 mm. Therefore, the
image number is an index of both time and the state
of tool wear. We obtained 15 image sequences of 36
images each that show the changes in the machined sur-
face texture as tool flank wear progresses from 0.1 to
0.5 mm.

5 Using the fractal features with the Hidden Markov
Model

The fractal features extracted from each surface image
form a sequence of observations. A left–right HMM
model is used to detect the inherent tool wear states
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behind the observations. We discuss below how the
fractal features are obtained and the training of HMM
is discussed in Sect. 5.1.

Fractal feature extraction is carried out on 256 × 256
images of the machined surface. The fractal features are
obtained using Method 1 (image profiles) and Method
2 (BC). Method 1, which deals with the anisotropy of
the surface images, estimates the fractal features from
image profiles along the 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦
directions. The fractal features are simply the slopes and
intercepts of the log–log plots of log E(|�I(x)|) versus
log|�x|. Because the image is digitized in both position
and gray levels, it can only demonstrate fractal property
over a certain range. Therefore, in Method 1, the dis-
tance �x is set to the range of 2 ≤ �x ≤ 8 pixels. In
Method 2, the range of size r is set to 10 ≤ r ≤ 30 pixels.

A total of 14 fractal features are available where
12 features are extracted from image profiles along six
different directions and the remaining two features are
the slope and intercept of the log–log plot using
Method 2. Table 2 shows the extracted values corre-
sponding to the flank tool wear using Method 1 and
Method 2 for a particular test run. It is evident that ex-
cept for the slope corresponding to the 0◦ profile, most
slope and intercept values change proportionally or in-
verse proportionally to the tool condition and the rate
of change varies with the anisotropy.

We formulated a 13-element feature vector which in-
cludes all slope and intercept values except for the slope
of the 0◦ profile. As the texture of the machined surface
is highly anisotropic, it is necessary to use the infor-
mation in all 13 feature elements which essentially rep-
resent the absence/presence of features in the different
directions. The 13-element feature vector forms the mul-
tidimensional observation sequence that is used to train
the HMM model.

5.1 HMM training

We obtained 15 image sequences (of 36 images each)
that represent the changes in the machined surface tex-
ture as tool flank wear progresses from 0.1 to 0.5 mm.
Ten sequences are used as training images while the
remaining five sequences (180 images) are used as test
images. Fractal features extracted from these image se-
quences are used as the observation sequences of HMM
model.

A left–right HMM is used because it effectively mod-
els a one-way process such as the tool wear process
[12]. The observation is modeled as a unimodal multidi-
mensional Gaussian distribution. From our experiments,

Fig. 8 Training result in a feature1–feature2 space and b feature1–
feature13 space

it was found that using four states produced desirable
results. The Baum–Welch method is applied to train the
HMM, i.e., estimate the parameters in λ = (A, B, π).

Figure 8 shows the four HMM states detected in
the training image sequences. The progress through the
states highlights the progress of tool wear, i.e., the tool
is sharp in State 1, semi-dull in State 2 and 3, and worn
out in State 4. The training result in 2D feature space
is shown in Fig. 8. The selection of the two features is
arbitrary as similar plots are obtained when any two
feature elements are used. In Fig. 8, features 1 and 2 are
slopes corresponding to the 90◦ and 30◦ profiles, respec-
tively, while feature 13 is the intercept obtained from
Method 2. The overlapping of states in Fig. 9 would be
reduced or avoided as more features are used (i.e., in a
multidimensional feature space).
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Table 2 Typical fractal feature values versus flank tool wear

Features Flank tool wear

0 mm 0.1 mm 0.2 mm 0.3 mm 0.4 mm 0.5 mm
Profile direction Method 1

0◦ Slope 0.6817 0.7324 0.7435 0.7235 0.7153 0.6972
Intercept 0.0513 0.0457 0.0748 0.1705 0.1912 0.1964

90◦ Slope 0.7224 0.6990 0.6946 0.5076 0.4706 0.4550
Intercept 0.1528 0.1805 0.2026 0.3527 0.3726 0.3902

30◦ Slope 0.8426 0.8398 0.8389 0.7530 0.7108 0.7128
Intercept −0.0871 −0.0829 −0.0541 0.585 0.0987 0.0905

120◦ Slope 0.7746 0.7576 0.7512 0.5893 0.5624 0.5477
Intercept 0.0854 0.1036 0.1263 0.2624 0.2592 0.2827

60◦ Slope 0.7696 0.7569 0.7504 0.5878 0.5605 0.5438
Intercept 0.0856 0.0975 0.1216 0.2652 0.2622 0.2851

150◦ Slope 0.8483 0.8465 0.8450 0.7630 0.7182 0.7270
Intercept −0.1019 −0.0855 −0.0577 0.505 0.0861 0.0741

Method 2

Slope −2.2414 −2.2423 −2.2991 −2.4009 −2.3853 −2.4021
Intercept 13.3230 13.4133 13.7225 14.3363 14.1778 14.3277

6 Experimental results and discussion

The trained HMM model is applied on the fractal fea-
tures extracted from the test data set of 180 images to
detect and predict the tool wear state. The extracted
fractal features form observation sequences and the
Veterbi decoding algorithm is applied to detect the state
for each test image. All four states are clearly evident
in Fig. 9 which shows the classification results of all 180
test images. Some states overlap in the two-feature space
but they can be separated by using more features. The
evolution of tool wear illustrated in Fig. 10 for the vari-
ous test sequences is obtained using the state detection
algorithm. The state of a particular image provides an
estimate about the tool wear. In Fig. 10, the actual flank
wear is plotted as straight lines and the state is repre-
sented by circles (one for each of the 180 test images).
It can be seen that as the flank wear increases from 0 to
0.5 mm, the tool wear state changes accordingly. It starts
from sharp tool (State 1), evolves through intermediates
states (State 2 and State 3), and finally reaches the worn
state (State 4).

The tool wear process is essentially a state transi-
tion process. Tool wear starts from the sharp state, goes
through several intermediate states, and finally reaches
the dull state. These state transitions are often hard to
capture due to the complexity of the tool tear mecha-
nism and noise. Clearly, the results show that features
extracted using fractals and the HMM are a very effec-
tive means for capturing these transitions. This is more
appropriate because in tool condition monitoring the
interest is not in the absolute level of the tool wear but

Fig. 9 Classification result for the 180 test images
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Fig. 10 Estimated states for each of the five test sequences
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in the tool condition which can be expressed as sharp,
semi-sharp/semi-dull, or dull.

7 Conclusions

In this paper, the fractal characteristics of end-milled
surface textures are investigated for the purpose of tool
wear monitoring. To analyze the anisotropic nature of
end-milled surface textures, fractal analysis is applied on
the image profiles along different directions as well as
to the entire image. A 13-element feature vector made
up of the extracted fractal features forms the multidi-
mensional observation sequence that is used to train
the HMM model. The HMM is successfully used to
determine four distinct states of tool condition. This
work shows that it is feasible to develop a tool wear
monitoring system for end milling operations based on
fractal analysis and HMM techniques.
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