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Abstract This paper presents an automatic Australian sign
language (Auslan) recognition system, which tracks multi-
ple target objects (the face and hands) throughout an im-
age sequence and extracts features for the recognition of
sign phrases. Tracking is performed using correspondences
of simple geometrical features between the target objects
within the current and the previous frames. In signing, the
face and a hand of a signer often overlap, thus the system
needs to segment these for the purpose of feature extrac-
tion. Our system deals with the occlusion of the face and a
hand by detecting the contour of the foreground moving ob-
ject using a combination of motion cues and the snake algo-
rithm. To represent signs, features that are invariant to scal-
ing, 2D rotations and signing speed are used for recognition.
The features represent the relative geometrical positioning
and shapes of the target objects, as well as their directions
of motion. These are used to recognise Auslan phrases us-
ing Hidden Markov Models. Experiments were conducted
using 163 test sign phrases with varying grammatical for-
mations. Using a known grammar, the system achieved over
97% recognition rate on a sentence level and 99% success
rate at a word level.

Keywords Visual tracking · Vision system · Target
detection · Human recognition

1 Introduction

Deaf communities in Australia communicate with each other
by using a sign language called Auslan. While Auslan is
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different from the American Sign Language (ASL) or any
other, all sign languages share the use of a combination of
hand shapes, locations and motion as well as facial expres-
sions.

Automatic recognition of a sign language requires the
tracking of three target objects, namely the face and the two
hands, and the extraction of features which are then classi-
fied as signs. Tracking is a difficult task since the face and
hands are of the same colour and often overlap from a view-
ing point or touch. For example, “thank you” is signed in
Auslan by having a straightened right hand tapping the chin
once, then moving the hand forward as partially shown in
Fig. 4. Thus the identification and the segmentation of oc-
cluded objects are necessary for the purpose of feature ex-
traction. Features specify signs using the global represen-
tation that deals with motion trajectories and coarse shapes
of the hands, or the local representation that deals with the
characteristics of the fine hand shapes. These features are
then classified as signs in the recognition process. Usually
the signs in the vocabulary are modeled through training
within the selected feature space, and used for classification.

We have developed an automatic Auslan recognition sys-
tem using the global sign representation. The system tracks
unadorned hands and the face in image sequences captured
from a single colour camera, and recognises Auslan phrases
using Hidden Markov Models (HMMs). It deals with occlu-
sions of the face and a hand by tracking the contour of the
foreground moving object. We have devised a set of global
features that are invariant to scaling, 2D rotations and sign-
ing speed to represent signs for recognition.

A real-time ASL recognition system developed by
Starner and Pentland [1] used coloured gloves to track and
identify left and right hands. They extracted global features
that represent positions, angle of axis of least inertia, and
eccentricity of the bounding ellipse of two hands. Using an
HMM recogniser with a known grammar, they achieved a
99.2% accuracy at the word level for 99 test sequences. Their
feature space is dependent on the user’s physical character-
istics and the viewing distance, since the absolute positions
and shapes of the target objects are used.
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Some systems, in contrast, deal with occlusions of un-
adorned hands and the face using a combination of image
cues such as colour and motion. Yang and Ahuja [2] utilised
these multiple cues to detect motion trajectory of ASL signs.
They firstly perform motion detection by analysing each pair
of successive frames for multiscale segmentation, matching
regions of all scales across frames, and computing affine
transforms for each matched region pair. Secondly colour
segmentation is used to detect skin regions. Then thirdly, the
head and palm regions are identified using the shape and size
of skin regions in motion. Finally, sign motion trajectory is
generated by concatenating affine transformations of the de-
tected skin regions’ motion. They classify these motion tra-
jectories using a time delayed neural network, and recognise
40 ASL gestures with a 96% success rate. Their technique
potentially has a high computational cost when false skin
regions are detected, because all pairs of skin objects in suc-
cessive frames are considered for the calculation of affine
transforms.

Imagawa et al. [3] also integrated colour segmentation
and temporal motion to track hands overlapping the face for
their Japanese sign recognition system. The colour segmen-
tation process uses a combination of colour look-up table
and histogram backprojection to extract skin-colour regions
and to enhance the contrast of the extracted regions. The mo-
tion tracking process uses the temporal difference images to
detect moving hands which are then tracked using a Kalman
filter.

While the above-mentioned systems [2, 3] used the
colour and motion cues sequentially, Akyol and Alvarado
[4] combined them into a single probability map to detect
the signer’s hands. Their technique uses Bayes’ classifica-
tion technique to generate a colour probability map, and uses
motion history images to generate a motion probability map.
Then these two probability maps are combined to detect the
signer’s hands. Tracking of these objects and recognition of
signs are yet to be implemented as their aim is to build a sign
recognition system for a mobile communication device for
deaf people.

Tanibata and Shimada [5] used a combination of the
colour cue and template matching technique for their
Japanese Sign Language (JSL) recognition system. Skin
colour detection is used to locate the hands and face, and
the elbow is tracked throughout the image sequence to lo-
cate the wrists. When an occlusion of hands and face occurs,
template matching is applied to locate and to separate the oc-
cluded objects. The texture templates of the face and hands,
prior to the occlusion are used for the template matching. By
rotating and translating the template, templates are matched
within an expected region. They then extract hand features
such as hand direction and the number of fingers to recognise
65 JSL words using HMMs. Applying template matching in
varying angles and positions has a high computational cost
and lacks reliability when the appearances change because
of occlusions.

Another local feature extraction technique is devel-
oped by Imagawa et al. [6] who used an appearance-based
eigen method to recognise signs even in two-handed and

hand-to-hand contact cases. Using a clustering technique,
they generate clusters of hand shapes on an eigen space,
which are then used for classification. Signs comprising one-
handed, two-handed, and hand-to-hand contact cases are
used for experiment and they achieved 93% recognition of
160 words. The problem of using such an appearance-based
recogniser is that the hand shapes and orientations appear-
ing in a sign may vary involuntarily amongst the signers and
amongst the utterances of a single signer. Thus they require
a large set of training data accommodating these variations.

More recently, Bowden et al. [7] developed a British sign
language recognition system that extracts a feature set de-
scribing the location, motion and shape of the hands based
on sign linguistics, Recognition is performed using Markov
chains combined with Independent Component Analysis.
The use of high level linguisitic features minimalised the
training effort for the recogniser. They achieved a recogni-
tion rate of 97.67% for a lexicon of 43 words using single
instance training.

1.1 The proposed technique

We have developed the Auslan recognition system that has
three components. The first is the tracking module that iden-
tifies the face and the hands while dealing with partial oc-
clusions [8]. The second is the feature extraction process
that extracts features that are invariant to scale, 2D rotation
and signing speed by using relative geometrical positioning
and shapes of the target objects, as well as their moving
directions. The last is the recognition module which uses
HMMs combined with a grammar to recognise colloquial
Auslan phrases. Experiments are conducted using 163 test
sign phrases of varying grammatical formations. The system
achieved over 97% recognition at the sentence level using a
known grammar and a 99% success rate at the word level.

The target objects are tracked using their geometrical
characteristics of position and shape. When the face and a
hand are occluded, we use the snake algorithm combined
with motion information to find the contour of the fore-
ground moving object. The active contour model or snake
[9] is a well-known contour detection technique using a pa-
rameterised energy minimising spline that converges to an
object contour within an image. A problem with the snake is
that a high-level process must place the initial snake points
close to the feature of interest because the snake will con-
verge to the closest contour. In signing sequences, contour
neighbourhhoods of the foreground moving object change
as it moves across the background object that contains sim-
ilar contour features. An added complexity is that the hand
object has many edge features within the object itself such as
the finger joints. This can cause the snake to gradually draw
onto a false contour such as the palm. Tracking the object
contour in a cluttered background often relies on knowledge-
based techniques [10] where viewing hand shapes must be
known. In signing, it is difficult to build such a knowledge-
base of hand shapes due to individually varying shapes for a
particular sign, and shape changes between signs.
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Our segmentation algorithm finds the contour of the
foreground moving object, then segments the merged object
in order to extract the corresponding geometric features. To
achieve this, two types of motion information are combined
with the snake algorithm to track the moving contour. One
is an optical flow algorithm to initialise the snake location,
where the shape of the initial snake is the bounding ellipse
of the object in the previous frame. The other is temporal
variance to draw the snake onto the moving object contour.

As features for recognition, we have devised a set of
scale and rotation invariant features consisting of the geo-
metrical relationship between the two hands and their tem-
poral moving directions. Use of global features such as the
position and coarse shape changes of the hands over time
are sensitive to the physical characteristics of a signer, such
as the arm length, hand size, or the viewing distance, as
well as the signing speed. Instead, we use the angle between
two hands with respect to the head, their moving directions,
roundedness, and size ratio, to form a set of global features
that are invariant to scaling and 2D rotations.

We used HMMs for classification of the signs to recog-
nise colloquial Auslan phrases. The framework we employ
is analogous to that used to recognise discrete verbal utter-
ances. Originally developed by the speech recognition com-
munity, HMM technology has been widely used in gesture
recognition systems in recent years [1]. The HMM provides
a statistical model of development of the features associated
with each phrase over time. The model parameters are es-
timated from a corpus of training examples and can subse-
quently be used to recognise a previously unseen example.
Each model tracks the features over time using a sequence
of continuous density distributions and is therefore robust to
variation in the formation of signs and rate of signing. Mod-
els are constructed which correspond to individual signs and
these are chained together, satisfying the rules of a predeter-
mined grammar, to allow recognition of entire phrases.

2 Tracking the face and hands

The tracking process consists of skin colour detection, which
finds the locations of all skin blobs and the correspondence
algorithm that identifies the skin colour blobs as the face and
hands.

2.1 Skin colour detection

Skin coloured objects are detected from a colour image, us-
ing principle component analysis (PCA) of the RGB colour
space [11], which was previously used for face detection
[12]. This colour space can be derived from the RGB colour
space by using the following:

(R, G, B) → (a, b, c),

where a = (R + G + B)/3, b = (R − B), and c = (2G −
R − B)/2.

The skin model is represented by its average colour com-
ponent, m = (ā, b̄, c̄), and a covariance matrix of the skin
colour component,

C =



Caa Cab Cac

Cba Cbb Cbc

Cca Ccb Ccc


 ,

where Ci j = (1/n)
∑n

1(i − ī)( j − j̄), i, j ∈ [a, b, c], and
n is the number of the skin colour samples. The parameters
m and C have been derived from a database of sample skin
images.

The skin model forms a cluster of the sample population
on the PCA colour space. Thus given a colour component,
p, the Mahalanobis distance [13], D, measures the distance
of p from the skin model, using

D = (p − m)C−1(p − m)T.

The Mahalanobis distances are measured for the input
image and thresholded. Simple morphological operations
are applied to the output of this process to clean the contour
of the skin area.

2.2 Identification

The correspondence algorithm identifies the detected skin
objects using previous shapes and locations of the face and
hands in the image sequence.

2.2.1 Object representation

We represent an object by M = (m1, m2, m3), where m1 is
position (x, y), m2 is the object size (number of pixels), and
m3 is the eccentricity of the bounding ellipse. Given a binary
image of an object, the eccentricity of the bounding ellipse is
calculated as the ratio of the square roots of the eigenvalues
that correspond to the matrix
(

a b/2
b/2 c

)
,

where a, b, and c are defined as

a = (
∫ ∫

(x ′)2dx ′dy′)/N ,

b = (2
∫ ∫

x ′y′dx ′dy′)/N ,

c = (
∫ ∫

(y′)2dx ′dy′)/N .

Note that (x ′, y′) are the normalised coordinates of (x, y)
relative to the object centroid, and N is the size of the object
(that is, the number of pixels in the object).

The eigenvectors (v1, v2) correspond to the major and
minor axes of the bounding ellipse, and the eigenvalues
(e1, e2) represent the corresponding variances (σ 2

1 , σ 2
2 ) of

the shape distribution over the major and minor axes. Thus,
the eccentricity of the bounding ellipse, or roundedness, is
defined by the ratio of the standard deviations, that is σ2/σ1.
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Fig. 1 The identification algorithm finds the corresponding target ob-
jects that are the face, right hand, and the left hand. Bounding ellipse
of the face is shown in solid line, the right hand in dashdot line, and
the left hand in dashed line. Two dotted lines on each ellipse illustrate
the corresponding major and minor axes

2.2.2 The correspondence algorithm

Euclidean distances between the previous elliptical shapes
and locations of the face and hands, and that of the detected
skin coloured objects within the current frame, are used to
determine their correspondence. For example, given a skin
coloured object M = (m1, m2, m3) and the head object de-
tected in the previous frame Ht−1 = (ht−1

1 , ht−1
2 , ht−1

3 ),
where the object components represent the image location,
size, and roundedness respectively, the likelihood of the ob-
ject M being the head, P(Ht = M) is defined as a function
of the Euclidean distances between their object components.
Thus their likelihood is defined as

P(Ht = M) = α1 p1 + α2 p2 + α3 p3

where for i = 1, 2, 3, pi = e−‖mi −ht−1
i ‖2/(2σ 2

i ), αi repre-
sents the significance of the corresponding component and∑3

i=1 αi = 1. Given the image size 384 × 288, our
implementation uses [α1, α2, α3] = [0.5, 0.2, 0.3] and
[σ1, σ2, σ3] = [100, 200, 0.1].

Amongst all skin coloured objects, the object with the
highest likelihood is chosen as the target object. A result of
the identification process is shown in Fig. 1.

3 Segmentation of occluded objects

Occlusion is detected by observing the number of skin
coloured objects and their locations merging closer through-
out the sequence. Once objects are merged, we track the con-
tour of the foreground moving object and segment it from
the background object using the snake algorithm.

A hand is a non-rigid object with many edge features
within, such as the finger joints and finger nails. Also when
two skin colour objects overlap, edge features on the contour
of the foreground object are hard to detect because of their
similar pixel intensities. Such problems make the conven-
tional snake technique of drawing the snake onto the object
edge difficult. We deal with these problems by combining
temporal motion information through a two-step process.
The first is to initialise the snake location for each frame us-
ing an optical flow algorithm. The shape of the initial snake
is defined by the bounding ellipse of the moving object in the

Fig. 2 a Occlusion of the face and the right hand is shown as one
merged object as a result of skin colour detection. b Segmentation al-
gorithm separates the hand and the face to extract their corresponding
geometric features

previous frame, in order to avoid the snake gradually moving
towards a false inner contour within the object such as the
palm of the hand. The second is to draw the snake onto the
contour of the moving object by combining temporal vari-
ance information [14] with the object edge strength.

Figure 2 shows the skin detection process generating two
merged objects as a single object in (a), and the result of the
segmentation process viewing the bounding ellipses of two
separate objects in (b). This two-step segmentation process
is outlined next.

3.1 Optical flow snake initialisation

In snake tracking, it is important that the snake is initialised
close to the surface of the object contour. We model the ini-
tial snake, for each frame, using the bounding ellipse of the
object in the previous frame, where snake points are equally
distributed along the boundary. The location of the initial
snake is determined by a well-known, gradient-based opti-
cal flow method of Lukas and Kanade [15].

Within a small neighbourhood of a pixel, the Lucas and
Kanade algorithm computes the velocity or displacement of
the feature containing distinct horizontal and vertical gra-
dients, using spatio-temporal derivatives of image intensity.
In signing sequences, a contour neighbourhood of the fore-
ground moving object may view the sudden appearance of
similar gradient features from within the background object
as it moves across. For example, when a hand moves across
the face, the mouth and nose may appear in proximity to
the moving hand contour. This may confuse the measure-
ment of optical flow for the hand contour features. Thus we
measure, for each snake point, the optical flow of the con-
tour feature. Then the major flow vector that has the largest
Euclidean norm is chosen for the translation of the ellip-
tical snake that bounds the moving object in the previous
frame.

Feature displacement within a small spatial neighbour-
hood, �, is characterised by a constant velocity v =
(vx , vy)

T. Given first-order derivative of I (x, t), ∇ I (x) =
(Ix (x, t), Iy(x, t))T, where x = (x, y) ∈ � at time t , and
the partial time derivatives of Ix is It (x, t), then the flow
vector v is computed using

Av = B,
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Fig. 3 A close-up view of the snake initialisation shows the previous
snake in thin line, the optical flow calculated for each snake point, and
the initialised snake for the current frame in thick line

where n is the number of pixels in �, and

A = [∇ I (x1), . . . , ∇ I (xn)]T,

B = −(It (x1), . . . , It (xn))T.

In our implementation, equal importance is placed on all
pixels within �, and a spatio-temporal Gaussian filter is ap-
plied to attenuate temporal aliasing and quantization effects
in the input images. An example of optical flow calculation
for the elliptical snake is shown in Fig. 3.

3.2 Motion snake

Once the initial location of the elliptical snake is determined
for the current frame, the contour of the moving object is
detected using the snake algorithm of Williams and Shah
[16]. In signing sequences, edge features often appear close
to the moving object contour such as the edge features in
the background object or features within the moving object.
To deal with this, we employ temporal variance informa-
tion [14] combined with the object edge strength to draw
the snake onto the contour of the moving object.

3.2.1 Temporal variance image

Intensity change from one image to the next is caused not
only by object motion but also by camera or quantiza-
tion noise. While both the background and the foreground
of the image are affected by the noise, the object motion
should generate greater intensity change, especially around
the edges of the contour, than the noise. Motion between
two sequential frames is represented, for each pixel within
the skin detected regions, by the variance of temporal inten-
sity change within a small neighbourhood of the pixel. Given
greyscale images, I (t − 1) and I (t) of the image sequence,
the absolute pixel difference image, R = |I (t) − I (t − 1)|
is generated. Then, the variance image V at time t is defined
as

V (x, y) = var(R(x − n : x + n, y − n : y + n)), (1)

where for each pixel location (x, y), a small pixel neighbour-
hood of R(x, y) is used to calculate the variance. The vari-
ance image is then thresholded to separate the noise from the
object motion.

3.2.2 Snake tracking

Given a thresholded variance image and an initial elliptical
snake, the snake algorithm detects the moving object con-
tour. The snake algorithm uses an energy minimisation tech-
nique and iteratively draws the initial spline to the closest
object edges whilst maintaining its curvature (smoothness)
and continuity (equidistance between neighbouring snake
points). In an iteration, a scan line is generated for each
snake point along the normal of the spline surface. Then
the snake algorithm moves the snake point towards the ob-
ject contour, by finding the location within the scan line that
minimises the overall energy term which is defined as

E =
∫

(α(s)Econt + β(s)Ecurve + γ (s)Eimage)ds,

where the parameters α, β, and γ are used to control the
relative importance of each term.

Given n snake points in a single frame, s1 . . . sn , where
si = (xi , yi ), the continuity term is defined as

Econt = d̄ − di ,

where di = |si − si−1| and d̄ is the average of di . This
term ensures that the snake points will not be drawn to-
gether along the snake contour but will remain approxi-
mately equidistant.

The curvature term is defined as

Ecurv =
[
�xi

di
− �xi+1

di+1

]2

+
[
�yi

di
− �yi+1

di+1

]2

,

where �xi is xi − xi−1 and �yi is yi − yi−1. The curvature
energy controls the smoothness of the spline curvature.

For image energy, we combine the temporal variance im-
age V as previously defined in Eq. 1, with the edge detected
image W . Gaussian smoothing is applied to both V and W
and the image energy is defined as

Eimage = 0.6(1 − W (xi , yi )) + 0.4(1 − V (xi , yi )).

Figure 4 shows, in each column, the segmentation re-
sults of an example image frame. Therefore, by combining
the temporal variance with the edge strength, our snake al-
gorithm effectively finds the contour of the moving object.

4 Feature extraction

Once three target objects are identified, we extract features
for recognition. Absolute positions, roundedness, and areas
of the detected hand blobs have been used by other sign
recognition systems [1], but these are sensitive to the physi-
cal characteristics of a signer such as the arm length and the
hand size, as well as the viewing distance from a camera.
The use of temporal changes of these features, in contrast,
will result in sensitivity to the speed of signing. Thus we
have devised a set of features that are invariant to scaling,
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Fig. 4 Each column shows the snake tracking results of an image frame. The first row shows image energies as pixel intensities and the snake
tracking result in thick line. The second row shows the segmentation results. Using snake tracking, two merged objects are identified and their
elliptical features are extracted for recognition. For clarity, the face regions have been cropped

2D rotations, and signing speed. The features use relative
geometric properties of the target objects, specifically posi-
tions, and shapes as well as the directions of the movement
of the hands.

Figure 5 illustrates the positional relationship between
the three target objects. The angle between the two arm vec-

tors
−→

Ft Rt and
−→

Ft Lt is called θ1, representing the degree of
spreading of two hands regardless of the arm length of the
signer. The moving directions of the right and left hands are
determined by the angles θ2 and θ3 where each represents the
angle between the hand velocity vector from the previous to

the current frame (
−→

Rt−1 Rt or
−→

Lt−1Lt ), and the correspond-
ing arm vector. These angles define the velocity directions
with respect to their arm vectors, thus are invariant to 2D
rotations and the signing speed. They are within the range
of [0◦, 360◦], and to avoid the discontinuity at 360◦, we use
sine and cosine values of these angles as features. The fea-
tures also use coarse shape descriptions of the hands such as
the roundedness of each hand, that is the eccentricity of the
bounding ellipse previously specified in Sect. 2.2.1, DRt and
DLt , and the ratio between their areas SRt and SLt . These
shape features are relatively invariant to varying hand sizes
and camera distances.

Thus the feature set comprises {cos θ1, sin θ1, cos θ2,
sin θ2, cos θ3, sin θ3, DRt , DLt , SRt /SLt }.

5 Pattern recognition

The extracted features are recognised using a set of contin-
uous density HMMs [17]. HMMs have been widely used to
recognise sequences of feature vectors emanating from non-
stationary stochastic processes, such as the neurological pro-
cesses which generate verbal or signed utterances. The pa-
rameters for an HMM are estimated from a set of training
utterances for each word in the vocabulary. When combined

Fig. 5 The feature set uses geometric properties of the current posi-
tions of the target objects and their previous temporal changes. Centre
positions of the face, right hand, and left hand at time t are labeled
as Ft , Rt , and Lt respectively. Hand positions in the previous frame at
time t −1 are labeled as Rt−1 and Lt−1. Their positioning is defined by
the angles between the vectors as shown. The variable θ1 is the angle

between
−→

Ft Rt and
−→

Ft Lt , θ2 is the anglebetween
−→

Ft Rt and
−→

Rt−1 Rt , and

θ3 is the angle between
−→

Ft Lt and
−→

Lt−1 Lt

with a grammar, which describes all the allowed sequences
of words in an utterance, the models can recognise any test
utterance to find the most likely sequence of words.

Our HMM recogniser is constructed by using the Hidden
Markov Toolkit (HTK), which has been widely used by the
speech recognition community [18]. The HTK (Version 3.0)
provides a number of default implementations of the algo-
rithms needed to implement HMMs.

5.1 Hidden Markov models

The operation of HMMs is described in detail elsewhere
[17], but a broad description of training and testing the pat-
tern recogniser is as follows.
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The algorithms process each training utterance U by
decomposing it into a time-sequence of feature vectors (or
observations). Each of the utterances is initially linearly
segmented against the models and subsequently the Viterbi
algorithm [17] is executed to provide initial estimates for
the parameters of the HMMs. This algorithm is a form of
dynamic programming which builds a trellis of possible
alignments of the observations against the states of the
HMM. It determines a map showing which state each
observation vector most probably matches. Once this map
is determined it can be inverted to determine the subset of
observation vectors which are associated with a specific
HMM state. The observation vectors within the subset
can then be used to improve the estimate of the mean and
covariance parameters associated with a state.

After this initialisation stage the Baum–Welch [17] algo-
rithm is repeatedly executed; at each iteration it refines both
the transition probabilities and also the mean and covari-
ance matrices associated with each of the HMM state dis-
tributions. In our experiment each HMM state corresponded
to a single 10-dimensional multivariate Gaussian distribu-
tion and all non-diagonal covariance elements were held at
zero. Baum–Welch is a form of dynamic programming but,
unlike the Viterbi algorithm, it does not make a categori-
cal decision of which state a specific observation matches.
However, similarly to the Viterbi algorithm, Baum–Welch
has two phases of operation. In phase 1, a probabilistic map-
ping is established between observations and states, whereas
in phase 2, the mapping is used to improve the parameter es-
timates of the states. Consequently, the Baum–Welch algo-
rithm is repeatedly iterated between the two phases for each
word model until the average probability of the training ex-
amples converges to a final value.

The HMM parameters derived from the training phase
are then used to recognise test utterances. Each of the test ut-
terances was evaluated against the possible word sequences
resulting from the grammar to find the most likely sequence
using the Viterbi algorithm. The algorithm can find the best
possible alignment of feature vectors against HMM states
so as to maximise the probability of the utterance given the
model, P(U |Si ), where U is the sequence of observation
vectors constituting the utterance and Si is the sequence of
HMMs corresponding to the i th phrase. The HMMs corre-
sponding to individual words in the phrase can be “chained
together”, in accordance with the grammar, to form a sen-
tence level HMM. Bayes’ rule can be used to reverse the
conditional probabilities, resulting in the probability of each
sentence model given the utterance:

P(Si | U ) = P(U | Si )P(Si )

P(U )
.

If the models have some a priori bias (i.e. it is known
that some sentences are more likely to be spoken than oth-
ers) then this can be reflected in the choice of P(Si ) other-
wise uniform probabilities should be chosen. A value of 1
can always be used for P(U ). Consequently, the sentence

Fig. 6 The grammar structure used by the recogniser

for which P(Si |U ) is maximal can be chosen—this is the
classification decision.

5.2 Grammar

We created a grammar representing colloquial Auslan sen-
tences as used by the deaf communities. The sentences con-
sist of a sequence of pronouns, verbs, adjectives, or nouns
formed in a legitimate order. The grammar of colloquial
Auslan varies to some extent from the formal grammars of
the language [19]. With the aim of building a practical ap-
plication, we decided to accommodate colloquial grammar.
We chose some useful sign phrases and requested our local
deaf community to determine the grammatical formations
of each phrase. On the basis of these colloquial grammars, a
grammar graph was generated for the HMM recogniser. The
graph for the recogniser is shown in Fig. 6.

5.3 Experimental results

Figure 6 shows the grammar structure used by the recogniser
during an experiment. Note that some words are separated
from the word groups to avoid feedback loops, thus allow-
ing only forward paths in the network. The words “thanks”,
“bye”, “sorry” are separated because these words are often
used by themselves without forming connections to other
word groups. Also a separate class of “you” is defined as
it is often used at the end of phrases for questioning.

The grammar allows about 415 possible sentences to
be constructed from 21 distinct words (but of these, many
would be non-sensical). We were able to train and test
the system using 379 utterances of 14 distinct sentences.
Examples of these sentences include questions such as
“where-live-you” (meaning “where do you live?”) and
“you-name-you” (“what is your name?”), simple pronoun-
adjective phrases such as “me-cold”(I am cold), pronoun-
verb-noun phrases such as “me-want-salad”(“I want salad”),
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and commonly used phrases such as “thanks-bye”(“thank
you, bye”). Each utterance resulted from processing a dif-
ferent video recording of a signer to produce a sequence of
10-dimensional feature vectors as described in previous sec-
tions. The 379 utterances were partitioned into two disjoint
subsets: 216 training examples and 163 examples for testing.
The training and test subsets each contained examples of all
14 sentences.

The recognition result shows that the system achieved
97% recognition at the sentence level, and 99% at the word
level. Some of the failed cases were caused by coarticulation
effects, where the hand motion that occurred from the end of
a sign to the next is recognised as a sign.

6 Limitations and future developments

The proposed system has the following limitations that will
be considered for future developments.

The tracking algorithm uses a combination of skin colour
detection and a simple geometric correspondence algorithm.
If skin coloured objects appear in complex backgrounds or
the signer’s clothing, with the similar shape and location of
the target objects, the tracking may fail to determine the
correspondence. The use of a prediction algorithm using
spatio-temporal velocity may be difficult as a hand changes
its direction suddenly causing the discontinued velocity. To
deal with complex backgrounds, the system may require the
tracking of elbows or other physiological landmarks.

The segmentation algorithm has been tested with moving
foreground objects, but does not deal with the background
object changing shape. This is important when dealing with

Fig. 7 A screetshot of our Auslan display system

occlusions of two hands where both of the foreground and
background objects are changing shapes.

The current sign representation mainly deals with global
motion in space with limited information on local motion of
the hands. If two signs have the same trajectory, the system
can only differentiate them if the hand shapes of both signs
differ in their roundedness, or the signs differ in the size ratio
of the right and left hands. For future developments, a better
local shape representation technique needs to be incorpo-
rated into our sign representation to recognise fine motion
of fingers and hands.

Another future research direction is to develop a two-
way communication tool between English and Auslan in a
practical application domain. We have also developed a real-
time sign display system that generates Auslan signs using a
3D human model on computer graphics [20] which is shown
in Fig. 7. We aim to combine the proposed sign recogniser
and the sign display system to aid deaf people to communi-
cate in places where sign language interpreters are not im-
mediately available.
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