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Abstract. Information extraction of facial expressions deals
with facial-feature detection, feature tracking, and capture of
the spatiotemporal relationships among features. It is a funda-
mental task in facial expression analysis and will ultimately
determine the performance of expression recognition. For a
real-world facial expression sequence, there are three chal-
lenges: (1) detection failure of some or all facial features due
to changes in illumination and rapid head movement; (2) non-
rigid object tracking resulting from facial expression change;
and (3) feature occlusion due to out-of-plane head rotation. In
this paper, a new approach is proposed to tackle these chal-
lenges. First, we use an active infrared (IR) illumination to
reliably detect pupils under variable lighting conditions and
head orientations. The pupil positions are then used to guide
the entire information-extraction process. The simultaneous
use of a global head motion constraint and Kalman filtering
can robustly track individual facial features even in condi-
tion of rapid head motion and significant expression change.
To handle feature occlusion, we propose a warping-based re-
liability propagation method. The reliable neighbor features
and the spatial semantics among these features are used to de-
tect and infer occluded features through an interframe warping
transformation. Experimental results show that accurate infor-
mation extraction can be achieved for video sequences with
real-world facial expressions.

Keywords: Facial feature tracking – Information extraction
– Facial expression – Warping – Reliability propagation

1 Introduction

Automatic recognition (or analysis) of facial expression con-
sists of three basic steps [34]: face detection, information ex-
traction of facial expression, and expression classification. For
expression recognition from a video sequence, the purpose of
the information extraction is to detect facial features, track
them, and capture the spatiotemporal relationships among
these features. The facial information obtained in this step
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will eventually determine the performance of expression clas-
sification. This has been an area of active research.

Broadly speaking, we can divide the existing works in
the field into general-purpose and face-specific approaches.
Among the general-purpose approaches are moving-point-
correspondence methods, patch-correlation methods, and
optical-flow methods.

For the moving-point-correspondence methods [9,18,36–
38], the common assumptions are smooth motion, limited
speed, and no (or minimum) occlusions. Each method uses a
smoothness-based cost function. The cost function evaluates
the local deviation from smoothness and penalizes changes
in both direction and magnitude for the velocity vector. The
strong assumptions make them inapplicable to facial-feature
tracking. Another general-purpose technique is the patch-
correlation methods [1, 8, 25, 39, 40, 42, 54, 55], which char-
acterize each feature with a template. Feature-point detection
and tracking become a process of matching features with the
template. Feature detection entails seeking the position of the
normalized cross-correlation peak between a template and an
image (or an image region) to locate the best match. This
method is rather sensitive to illumination and object-pose vari-
ation. Finally, optical-flow-based methods [31, 43, 51] com-
pute a motion field for each pixel (some features) in an image.
The corresponding pixels or features in the next frame can
be determined based on the motion field vectors. Optical-flow
extraction often assumes image-intensity constancy for corre-
sponding pixels, which may not be the case for facial features
since the intensities may change due to illumination or face-
pose change. All general-purpose methods apply to a rigid
body while the face is nonrigid.

Compared with the general-purpose feature-tracking tech-
niques, the face-specific methods show higher efficiency be-
cause they exploit knowledge of the facial domain, such as
2D/3D geometric shapes, color, and brightness. Using face
models is an efficient way to conquer the variability of condi-
tions in a long face sequence. Based on SNAKES [22] or de-
formable templates [49], several model-based methods have
been proposed [10,13–15,24,27,47,50,53]. Malciu and Pre-
teux [27] proposed a typical model-based technique for facial-
feature tracking. First, a deformable template is specified by a
parameterized geometry, an internal energy function, and an
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external energy function. Then a matching procedure is con-
ducted to search for a 2D nonrigid transformation so as to
yield an optimal registration of the template model T with
the reference frame into the next frame. By combining a
general-purpose method [42] with specific domain knowl-
edge, Bourel [7] presents an approach to robust facial-feature
tracking. However, this method is entirely based on the visible
nostrils, which are often occluded in real-world facial expres-
sions. The Gabor wavelet method has been used for static face
analysis and recognition [28,52]. Maurer et al. [29] also used
Gabor wavelet jets to track facial features on a face rotating in
depth. However, each point is treated independently with an
equal confidence level, and no global shape constraint is im-
posed. The method makes it easy for features to get lost due to
rapid head motion and occlusion. McKenna [30] used Gabor
wavelet jets to extract each facial point and use a single point
distribution model (PDM) as a global constraint to correct
the missing points. Cootes et al. [64,66] proposed to perform
facial-feature detection based on combining the active shape
model (ASM) and active appearance model (AAM). Shape
and texture are combined in PCA space. More recently, they
proposed to combine AAM with the Reinforcement of Feature
Responses (PRFR) model [65] or with Adaboost training [63]
for more accurate facial-feature localization.

For real-world facial expressions, out-of-plane head rota-
tion often occurs, which is the main cause of feature occlusion.
The self-occlusion has recently attracted attention for deal-
ing with spontaneous facial expression [33, 44]. Moriyama
et al. [33] and Torresani [44] proposed, respectively, a 3D
face model method and a factorization-based method to re-
cover the occluded facial feature. In the factorization-based
method [44, 45], the object-structure and camera-motion pa-
rameters are first recovered from feature points tracked in ad-
vance. Then the motion and structure are propagated to recover
the missing points. These methods, however, require initial
feature detection in advance to recover the structure. Also,
they are not suitable for real-time implementation because of
the requirement of initial structure recovery and iterative pro-
cedure. We believe that without the feature identification, it
is very hard to efficiently infer feature occlusion, which is
basically the local behavior.

In summary, the existing methods share some common as-
sumptions: frontal-view pose, constant illumination, and mini-
mum out-of-plane head motion. Unfortunately, these assump-
tions are not realistic. Facial-feature detection and tracking
for real-world facial expressions should consider at least two
critical issues: (1) detecting and tracking important facial fea-
tures in a variety of lighting conditions and under rapid head
movements and (2) handling self-occlusion of features due
to frequent out-of-plane head rotation. In this paper, we pro-
pose a domain-specific approach. Our method is based on the
integration of several practical techniques. We developed an

IR-based sensing system to reliably detect pupil positions un-
der variable lighting conditions and rapid head motion. These
pupil positions provide strong constraints on the detection and
tracking of other facial features. The Kalman filtering is com-
bined with the constraints from pupil motion to predict the
location of each feature in the next frame. Gabor wavelets are
used to characterize each facial feature. The Gabor wavelet
coefficients are updated in each frame to adaptively represent
the feature profile due to facial expressions. To handle facial-
feature occlusion from face pose, a warping-based reliability
propagation method is proposed. The idea is to specify a warp
that maps a source image into the destination image. The re-
liable feature points within each facial region can be used
systematically to verify the newly detected feature based on
the interframe warping transformation.

2 IR active facial sensing

2.1 Hardware setup

To reliably detect and track eyes, we developed an active facial
sensing system. The system consists of two sets of IR LEDs,
distributed evenly and symmetrically along the circumference
of two coplanar concentric rings as shown in Fig. 1a. The
center of both rings coincides with the camera optical axis.
We use near infrared (NIR) LEDs with a nominal wavelength
of 880 nm.

According to the original patent from Hutchinson [62], a
bright pupil can be obtained if the eyes are illuminated with a
NIR illuminator beaming light along the camera optical axis
at a certain wavelength. At the NIR wavelength, pupils reflect
almost all IR light they receive along the path back to the
camera, producing the bright-pupil effect, very much similar
to the red-eye effect in photography. If illuminated by the IR
light off the camera optical axis , the pupils appear dark since
the reflected light will not enter the camera lens. This produces
the so-called dark-pupil effect.

For our IR illuminator, a bright-pupil image is produced
when the inner ring of IR LEDs is turned on, and a dark-
pupil image is produced when the outer ring is turned on. A
circuitry was developed to synchronize the inner and outer
LED rings with, respectively, the even and odd fields of the
interlaced image, producing, respectively, the bright-pupil and
dark-pupil image on the even and odd fields of a frame, as
shown in Fig. 1b, c. Pupil detection can be robustly achieved
from the difference image as a result of subtracting the odd
field from the even field. Details on the IR illuminator and on
eye detection may be found in [19].

The active sensing system allows us to accurately detect
and track eyes under variable lighting conditions, for different
face poses and for different individuals [54]. The detected eyes

a b c

Fig. 1. a IR camera with active IR illuminator.
b Bright pupils in an even field image. c Dark
pupils in an odd field image
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Fig. 2. Process flow of proposed facial-feature detection and tracking
method

will help greatly in the detection and tracking of other facial
features using conventional methods.

Figure 2 outlines the process flow of our facial-feature
detection and tracking method. At the first frame, based on
the detected pupil positions and generic face model, other fa-
cial features are detected and identified. After initialization, a
Kalman tracker is used to track each individual facial feature.
To improve the temporal prediction of feature position at the
next frame, the Kalman prediction is linearly combined with
head motion estimated by the detected pupils. The final fea-
ture position will be determined by a Gabor wavelet similarity
evaluation. Finally, the individually tracked features will be
verified and modified by the spatial relationships among the
extracted features. Occluded features will be detected and re-
covered with a warping-transformation-based reliability prop-
agation.

3 Feature extraction and tracking

3.1 Feature-based facial description

The analysis approaches to facial expression can be divided
into two basic categories: appearance-based methods (such as
EigenFace [46], SVM [11, 17]) and feature-based methods.
So far, many research groups have reported that the feature-
based approach, especially with the Gabor wavelet, has a solid
psychophysical basis in human vision and can achieve good
performance [12,23,52,56].

The facial features around the eyes and mouth repre-
sent primary spatial patterns to compose a facial expression
display. Generally, these patterns, with their spatiotemporal
changes and synchronization relationships, can describe most
facial expressions. On the other hand, for a specific appli-
cation, such as drowsy-driver monitoring, there are only lim-
ited facial expression displays; the facial-feature points around
the eyes and mouth contain enough information to capture all
these related expression displays. So here, as shown in Fig. 3,

Fig. 3. Facial fiducial feature points

we use 22 fiducial features around the eyes and mouth as the
descriptors of facial expressions.

The multiscale and multiorientation Gabor wavelet is a
very powerful method for describing the local property of each
feature point. In order to efficiently conduct the Gabor wavelet
transformation, the original image is first normalized into a
128 × 128 image. The 2D Gabor kernels used are as follows:

Ψ(k,−→x ) =
k2

σ2 e− k2−→x 2

2σ2 (eik×−→x − e− σ2
2 ) , (1)

where σ is set at π. The set of Gabor kernels consists of three
spatial frequencies (with wavenumber k: π/2, π/4, π/8) and
six distinct orientations from 0◦ to 150◦ in 30◦ intervals.

For each pixel (−→x ), a set Γ (−→x ) of 18 Gabor coefficients
obtained by convolution with the Gabor kernels can be used
to present the intensity profile of each point:

Γ (−→x ) = (m1e
iφ1 , m2e

iφ2 , ..., m18e
iφ18)T (2)

=
∫

I(−→x ′)Ψ [k, (−→x − −→x ′)]d−→x ′
,

γ(−→x ) =
∫

I(−→x ′)Ψ [k, (−→x − −→x ′)]d−→x ′
. (3)

Fig. 4. Convolution results of one image with three Gabor kernels
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Figure 4 shows an example of one image and its convolu-
tion results with three Gabor kernels. The upper row presents
the real component images and the bottom row the imagery
component images.

In our work, the coefficient set is used not only to detect
and identify each facial feature in the initial frame but also to
conduct tracking process as the template of each feature.

3.2 Kalman filter with pupil constraints

The face is a typical nonrigid object. The feature profile and
the relationships among features can change independently
according to the facial expression displays. Tracking for these
features involves three basic problems: (1) feature loss due to
rapid head motion, (2) random feature jumping due to noise,
and (3) feature self-occlusion as a result of head turning. For
the first two problems, we develop a pupil-guided Kalman fil-
tering solution. It consists of feature prediction and feature de-
tection. We will address the self-occlusion problem in Sect. 4.

3.2.1 Feature prediction

The pupil positions from active sensing provide reliable in-
formation that indicates roughly where the face is located and
how the head changes globally. This kind of information helps
the system capture facial features even under rapid head move-
ment.

For feature tracking, we employ a Kalman filter for each
feature. The Kalman filter imposes a smooth constraint on
the motion of each feature, thereby alleviating the problem
of local feature jumping. Each feature’s motion state at each
time instant (frame) can be characterized by its position and
velocity. Let (xt, yt) represent its pixel position and (ut, vt)
its velocity at time t in x and y directions. The state vector at
time t can therefore be represented as St = (xtytutvt)T . The
system can be modeled as

St+1 = ΦSt + Wt , (4)

where Φ is the transition matrix and Wt represents system
perturbation.

We further assume that a feature detector based on a Gabor
wavelet estimates the feature position Ot = (x̂t, ŷt)T at time
t. Therefore, the measurement model in the form needed by
the Kalman filter is

Ot = HSt + Vt , (5)

where H is the measurement matrix and Vt represents mea-
surement uncertainty. Given the state model in Eq. 4 and mea-
surement model in Eq. 5, as well as some initial conditions,
the state vector St+1, along with its covariance matrix Σt+1,
can be updated frame by frame. This process consists of two
steps: state prediction and state updating. For state prediction,
the position prediction of each feature P k

t+1 = (xk
t+1, y

k
t+1)

T

can be obtained based on the state model in Eq. 4. Meanwhile,
we also get the error covariance matrix Σt+1 to represent the
uncertainty of the current prediction from Kalman filtering.
The covariance matrix may be used to limit the search area.

The Kalman filtering estimates the predicted location of
the object based on assumed motion models and a smoothing

motion constraint. Capturing voluntary or involuntary rapid
head movement is a difficult task. This problem is resolved by
combining the Kalman prediction with head motion predic-
tion based on pupil motion. By linearly combining the head
motion with the Kalman filtering, we can obtain a relatively
accurate prediction of feature location even under rapid head
movement. The final predicted position for each facial feature
is

P̂t+1 = P f
t+1 +

(
e−σxx 0

0 e−σyy

)
(P k

t+1 − P f
t+1) , (6)

where the entire head motion P f
t+1 = (xf

t+1, y
f
t+1)

T is the
average of two pupil motions between consecutive frames.
P k

t+1 = (xk
t+1, y

k
t+1)

T is the predicted position of each fea-
ture from Kalman filtering. σxx and σyy are the first and second
diagonal entries of the covariance matrix Σt+1, respectively.
σxx and σyy represent the accuracy of P k

t+1 = (xk
t+1, y

k
t+1)

T .

They serve as the weights to weigh the contribution of P f
t+1

and P k
t+1 to the combined prediction. Considering two ex-

treme cases, zero and infinite, we use the exponential of −σ.
When it is zero, which means no uncertainty for the predicted
position, the predicted position gets P k. When it is infinite and
the predicted position is very uncertain, we use the position
from the head motion.

3.2.2 Feature detection

The combined prediction provides a possible region (as de-
termined by the covariance matrix) centered at the predicted
position. The next step is to detect the feature point near the
predicted position. The traditional approach is to search each
pixel within the area to detect the optimal position. In track-
ing a large number of feature points, however, this process is
time consuming and is not acceptable for real-time implemen-
tation. Here a fast detection method based on the phase-shift
theory proposed by [61] is employed instead.

For the pixel (−→x ) in the vicinity of the predicted position
(−→x ′), the phase shift of the Gabor coefficients Ω(−→x ) from
−→x ′ can approximately be compensated by the terms

−→
d × −→

kn.
The

−→
d indicates the displacement from the predicted position

(−→x ′). So the phase-sensitive similarity function of these two
pixels can be

S =
∑

n mnm′
ncos(φn − φ′

n − −→
d × −→

kn)√∑
n m2

n

∑
n m′2

n

, (7)

where mn and φn indicate the amplitude and phase in the
complex Gabor coefficients Γ (−→x ), respectively.

The similarity function can be approximated by the Tay-
lor expansion of the cosine term and ignoring orders greater
than 2:

S ≈
∑

n mnm′
n[1 − 0.5(φn − φ′

n − −→
d × −→

kn)2]√∑
n m2

n

∑
n m′2

n

. (8)

By maximizing the above function, we can obtain the optimal
displacement vector

−→
d opt of the feature position:

−→
d opt =

1
ΓxxΓyy − ΓxyΓyx

(
Γyy −Γyx

−Γxy Γxx

) (
θx

θy

)
(9)
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if ΓxxΓyy − ΓxyΓyx �= 0, with

θx = Σnmnm′
nknx(φn − φ′

n) ,

θy = Σnmnm′
nkny(φn − φ′

n) ,

Γxx = Σnmnm′
nknxknx ,

Γxy = Σnmnm′
nknxkny ,

Γyx = Σnmnm′
nknxkny ,

Γyy = Σnmnm′
nknykny .

Basically, the phase-sensitive similarity function can only de-
termine the displacements up to a half-wavelength of the high-
est frequency kernel, which would be ±2 pixel area centered
at the predicted position for k = π/2. But this range can be
increased using a low-frequency kernel. Currently, a three-
level coarse-to-fine approach is used, which can determine up
to ±8 pixel displacements. For each feature only three dis-
placement calculations are needed to determine the optimal
position, which dramatically speeds up the detection process
and makes real-time implementation possible. Our method is
similar to the phase-based optical flow work by Fleet et al. [57].

4 Spatial-pattern extraction

4.1 Local graph warping

A facial expression consisting of fiducial points undergoes a
variety of pattern changes. To capture the pattern changes, it
is important to extract and verify spatial relationships among
individually extracted features. This task involves two issues.
One is nonrigid object tracking; the other is self-occlusion. So
far, a great deal of research on facial feature tracking work
has been conducted based on an assumption of either (1) head
motion without facial expression change or (2) facial expres-
sion change with minimum out-of-plane head rotation. Most
of the research has focused on one of the above two issues.
But for real-world facial expressions, both issues should be
taken into consideration. We must deal with intensity profile
changes due to expression changes and self-occlusion due to
excessive out-of-plane head motion. To tackle these issues, we
propose a warping-based reliability propagation approach.

To accurately locate facial features under the two situa-
tions mentioned above, a facial feature should not be viewed
as an isolated point. We divide the entire face into three local
graphical objects: right eye graph, left eye graph, and lower
face graph, as shown in Fig. 5. Each graphical object is char-
acterized by its shape and attributes. The shape describes the
topology and geometry of a graphical object; the attribute car-
ries information about its different properties. Here the shape
is represented by edges between features. The attribute con-
sists of the intensity profile of the feature in the form of Gabor
wavelet coefficients. The warping transformation was origi-
nally proposed by Beier [6] and is widely used in the film-
making industry. It is a powerful tool for flexibly creating
natural facial expressions. The warping of a graphical object
is a 2D transformation that produces a continuous deforma-
tion from object O1 to object O2. The O1 is called the source
object, and O2 is called the destination. Instead of the reverse
mapping widely used in filmmaking, here we employ the for-
ward mapping warping. We use spatial relations in the previ-
ous frame and extracted features in the current frame to verify

Fig. 5. Three local facial regions and classification of facial features
for each region according to reliability

Fig. 6. One pair of line-segment-based warping

other current features. Figure 6 illustrates one line-pair-based
and uniform-scale warping in the form of forward mapping.

Given the interframe correspondence of the line pair
−−→
QP

and
−−−→
Q′P ′ and feature point X , the mapping position X ′ in

the destination image from X is determined by the following
formulae.

u =
(
−−→
XP ) × (

−−→
QP )

‖−−→
QP‖2

, (10)

v =
(
−−→
XP ) × (

−−→
QP )⊥

‖−−→
QP‖2

, (11)

X ′ = P ′ + u(
−−−→
Q′P ′) + v(

−−−→
Q′P ′)⊥ , (12)

where (
−−→
QP )⊥ is a vector with the same length and perpendic-

ular to (
−−→
QP ).
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With more than one pair of line segments, a weighting of
the coordinate transformation for each line pair is performed.
The weight based on the geometry such as distance to the line
i and line length can be defined as

wi =
[

lengthp

(a + dist)

]b

, (13)

where a, p, b are the factors to control the effects from the dis-
tance, length, and the line itself, respectively. The final map-
ping position of X is calculated as follows:

X ′ =
∑

wiX
′
i∑

wi
. (14)

In the information-extraction step, the confidence level of
the extracted feature is different. Besides the above geometric-
based weighting, we add reliability-based weighting. We as-
sign a larger b to the line segment with reliably extracted fea-
ture points. Based on the weighted warping, we can actively
integrate the reliable features to verify and correct the unsta-
ble feature extraction. Warping’s integrating ability makes it
more flexible and powerful than similarity or affine transfor-
mation. Although the thin plate spline (TPS)-based transfor-
mation [3,4] is also an effective method for changing shapes,
especially for biological subjects, the requirements for dense
features and its iterated regularization make it inefficient for
real-time applications [5]. Our feature-based warping needs
only sparse features in each local graph and does not need
time-consuming computation.

4.2 Refinement with reliability propagation

Each feature is related to one of three local graphs.With known
pupil positions and a 22 landmark from the common facial
model, the position of every other feature in the initial frame
can be extracted and identified. From these extracted features
their Gabor coefficients and spatial relationships are used to
create a personalized facialm for the current face. During in-
formation extraction from image sequences, the Gabor coef-
ficients as the template (or profile) of each feature are used
to identify the feature point in the current frame. The Gabor
coefficients are also updated frame by frame in order to han-
dle change due to different expressions in the sequence. While
tracking a nonrigid object, profile updating in each frame is
a reasonable way to handle the profile change due to expres-
sion change and head motion. When occlusion of a specific
feature happens, however, the updated profile becomes mean-
ingless because in the current frame there is no detectable
visual information for updating. This is a difficult issue. First,
we have to update the profile frame by frame so as to cap-
ture the expression change. On the other hand, some nonsense
profiles are adopted as templates to conduct tracking in the
upcoming frame. The more critical issue is that basically it is
difficult to detect when and where an occlusion will happen if
we only focus on each single facial feature. Here a refinement
method based on reliability propagation and warping is pro-
posed. Although it is still hard to correctly locate the feature
under the occlusion, we can detect when and where the occlu-
sion will happen and immediately capture the position once
the occluded feature shows up again.

All facial features are divided into three types: most believ-
able, believable, and detectable, as shown in Fig. 5. The pupil
positions detected from the IR-based sensor are the most re-
liable information. They labeled the most believable features,
indicated by the filled circles. The inner feature points, such
as inner corners of eyes and eyebrow, are not easily occluded.
Features with high contrast such as nose ends are easily de-
tected. These features – including the inner end of eyebrow,
inner corner points of eye, nose ends, the upper-lip center of
mouth – are labeled believable features, indicated by the un-
filled circles. The remaining feature points, which are either
vulnerable to the occlusion or difficult to detect stably, are la-
beled detectable features, indicated by the diamond shape. In
order to conduct the warping-based process, two prime line
segments connected by most believable or believable points
are assigned within each local graph, denoted by the bold white
lines in Fig. 5. The line segments that run from the upper-lip
center of the mouth to each nose end form the prime lines in
the lower face graph. The line segments running from the pupil
to the inner corner of the eye, and from the pupil to the inner
end of the eyebrow, form the prime lines in each eye graph.

Although each feature can perform independent movement
during facial expression, we assume that all features belonging
to the same local graph follow the similar interframe warping
transformation within two consecutive frames. Since inter-
frame correspondence of features and line segments has auto-
matically been established by tracking, each detectable feature
can be verified by the line-based warping. Specifically, the en-
tire verification is conducted graph by graph and through two
levels, shown in Fig. 7. In the first level, the prime lines in
each local graph are used to create warping positions for the
detectable features, which can be stably detected, except for
occlusion. These features include the outer corners of eyes,
nasal roots, the lower-lip centers of the mouth, the outer cor-
ners of the mouth, and the tip of the nose. In the second level,
the verified detectable features in the first level are integrated
to make new line segments. A more comprehensive weighting
warping is used to verify very unstable features, such as the
outer corners of the eyebrow, the middle points of the lower
lip, and the middle points of the upper lip. In this way, reliably
extracted features impose spatial constraints on the recovery
of other unstable features. The constraint strength is ordered
according to the feature’s confidence level. The spatial rela-
tionship of each local graph dominated by the reliable features
is propagated to unstable positions.

For the verification process, the warping position and
tracked position of each Detectable feature are used to detect
the tracking failure and determine the optimal position accord-
ing to the steps in Fig. 8. First, the displacement between the
warping position and tracked position is calculated. If the dis-
placement is very large, the tracking failure of the feature due
to the occlusion is detected. The warping position is adopted
as the current position and the position of occluded feature is
recovered. If the displacement is small, the Gabor similarities
of the feature in the previous frame with the warping posi-
tion and tracked position in the current frame are calculated,
respectively. If the intensity profile at the warping position is
more similar to one of the previous features, the warping po-
sition is assigned as the current position and the tracking error
is corrected. Otherwise, the tracked position is preserved.
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Fig. 7. Verification strategy with reliability propa-
gation

Fig. 8. Verification flowchart

5 Experimental results

5.1 Conversational sequence

Figure 9 shows a 600-frame sequence that displays the facial
expression in a conversational scene. The facial expressions
include smiling, yawning, talking, and blinking with out-of-
plane head motions. The IR sensor provides the even and odd

Table 1. The result of feature extraction

Pupil-Kalman Total Failures Accuracy
approach features features ratio
Without verification 13200 159 98.8%
With verification 13200 34 99.7%

video sequences, corresponding to bright and dark pupil im-
ages, respectively. The odd sequence with detected pupil posi-
tions are used as input for the information-extraction process.
Blinking is a constant facial event in all facial expression se-
quences. In this sequence, it happened 11 times. Each blink-
ing period lasted about 4 to 6 frames. During these periods,
the eyes closed. Except for the blinking periods, the IR-based
pupil detection provided reliable pupil positions.

Table 1 shows the result for extraction of all the facial fea-
tures. We used the facial-feature position in the initial frame
as the physical position of each facial landmark. The hu-
man operator checked each tracked feature in the upcoming
frames with the physical position on the face to determine
whether or not the feature extraction succeeded. In this se-
quence the head conducted smoothing motions and moderate
out-of-plane head rotations. With the pupil constraints and
Kalman filtering, most of the features were successfully ex-
tracted. The failures mainly occurred on the outer corners of
the eye at the beginning or end of blinking. Because blinking
is a kind of rapid local change, the intensity profile around the

Fig. 9. Conversational sequence with
bright-pupil effect
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a b

Fig. 10. Failure and modification for outer corner of left eye at
frame 500

Fig. 11. A yawning facial expression sequence

outer corners of the eye undergoes rapid changes even within
two consecutive frames.

Figure 10a shows the failure on the outer corner of the left
eye (right side in the image plane). With the warping-based
reliability propagation, the reliable neighbor features – pupil,
inner corner of eye, and inner end of eyebrow – were used
to verify the outer corner of the left eye. Since the position
computed from the warping transformation was significantly
different from the detected position, the result was corrected
in Fig. 10b. The failure number of features was reduced by
the reliability propagation, as shown in Table 1. The remain-
ing failure is due mainly to the inconsistency between human
judgment and the thresholds of verification in the reliability
propagation. In the case of out-of-plane head motion, the hu-
man operator is often able to identify the physical position
precisely only with great difficulty because the intensity pro-
file of some features is significantly different from that in the
initial frame.

5.2 Drowsy sequence

Figure 11 shows a typical sequence of a person’s fatigue with
significant facial expression changes and excessive out-of-
plane head rotations. It consists of 449 frames. The person
in the scene yawned from the neutral state, then moved the
head rapidly from the frontal view to the large side view and
back in the opposite direction, raised the head up, and finally
returned to the neutral state. The head motion involved blended
expressions.

Rows 3 and 4 in Table 2 report the results of our track-
ing method without and with reliability propagation, respec-
tively. For comparison, we also show the result from a linear-

Table 2. Comparison of three approaches

Approaches Total Failure Accuracy
features features ratio

Simple tracking 9856 854 91.3 %
Pupil-Kalman
without verification 8960 174 98.0 %
Pupil-Kalman
with verification 8960 64 99.3 %

Table 3. Failures in the simple tracking

Features Failure periods Lost
[Start frame, End frame] features

LP [54,234], [270,343] 253
LB(2) [75,121] 92
MF(8) [400,433] 264
OCR [188,218] 30
RNE [400,433] 33
OCL [75,198],[378,433] 178
LNE [399,403] 4

Table 4. Failures with constraints

Features Failure periods Lost
[Start frame, End frame] features

LB(2) [75,95] 40
OCL [75,110], [373,448] 110
LNE [398,422] 24

Table 5. Failures after refinement

Features Failure periods Lost
[Start frame, End frame] features

LB(2) [75,95] 40
LNE [398,422] 24

motion-model-based tracking approach (called simple track-
ing in row 2). There are 22 facial features in each frame. In
the simple tracking, the pupil looks like a normal tracking fea-
ture. So the total number of features is 9856. There were 854
features incorrectly extracted in the whole sequence. Table 3
shows the details of the failure.

The extraction failure happened on the left pupil (LP), left
eyebrow (2 points) (LB), mouth features (8 points) (MF), outer
corner of right eye (OCR), right nose end (RNE), outer corner
of left eye (OCL), and left nose end (LNE). The main reasons
for the failure are (1) unstable intensity information (LP, LB),
(2) rapid head motion (MF, OCR, RNF), and (3) self-occlusion
(OCL, LNF).

With the constraints from pupil positions and Kalman
filtering, the number of extraction failures decreases signif-
icantly (Table 4). Since most pupil positions were detected by
the IR active sensing, we remove the number of pupils from
the total feature number. The total number is 8960. The ex-
tracting failure due to rapid head motions on MF, RNE, and
OCR were improved.

With the warping-based reliability propagation further im-
provement has been reached (Table 5).
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a b c

Fig. 12. a Occlusion on OCL at frame 70. b Result at frame 87 without verification. c Result at frame 87 with verification

Fig. 13. Final result in form of local graphs

An example of self-occlusion is shown in Fig. 12. Fig-
ure 12a depicts the self-occlusion of the left eye at frame 70.
Figure 12b, c show the tracked OCL at frame 87 without and
with verification, respectively. The tracking failure due to the
occlusion on the outer corner of left eye (OCL) was corrected
by the warping-based verification.

Figure 13 displays the final extracted results in the form
of local graphs.

6 Conclusion

In this paper, we proposed a robust approach to the infor-
mation extraction of real-world facial expressions. The ac-
curate results come from: (1) active sensing to help in the
robust detection of pupils, (2) combination of the Kalman
filtering with the pupil positions to effectively constrain
feature locations, and (3) warping-based reliability propa-
gation to handle occlusion and unstable features so as to
robustly capture spatial relationships among features un-
der excessive out-of-plane head rotations and significant
expression changes. The extracted local graphs and their
spatiotemporal relationships are used to conduct facial ex-
pression classification. Our facial-feature-tracking methods
have been successfully applied to human fatigue moni-
toring [59], human emotion recognition [60], and anima-
tion [58]. Video demos of these applications may be found
at http://www.ecse.rpi.edu/homepages/cvrl/
Demo/demo.html.
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