
Digital Object Identifier (DOI) 10.1007/s00138-004-0145-6
Machine Vision and Applications (2004) 16: 6–12 Machine Vision and

Applications

Dynamically reconfigurable vision-based user interfaces

Rick Kjeldsen, Anthony Levas, Claudio Pinhanez

IBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, NY 10598, USA
(e-mail: {fcmk,levas,pinhanez}@us.ibm.com)

Published online: 13 July 2004 – c© Springer-Verlag 2004

Abstract. We describe a system that supports practical,
vision-based user interfaces, addressing the issues of a usable
interaction paradigm, support for application developers, and
support for application deployment in real-world environ-
ments. Interfaces are defined as configurations of predefined
interactive widgets that can be moved from one surface to
another. Complex interfaces can be dynamically reconfig-
ured, changing both form and location on the fly, because the
functional definition of the interface is decoupled from the
specification of its location in the environment. We illustrate
the power of such an architecture in the context of projected
interactive displays.

Keywords: Vision-based interaction – Perceptual user inter-
faces

1 Introduction

Vision-based user interfaces (VB–UI) are an emerging area
of user interface technology where the user’s intentional ges-
tures are detected visually, interpreted, and used to control an
application. Although the recognition of human gesture and
action has been the topic of many workshops and conferences
[13,11,1] and the focus of much of our previous work [3,8],
the issues surrounding making such systems practical and effi-
cient have received far less attention. In this paper we examine
the important characteristics in a practical VB–UI system and
describe a system architecture that addresses some of the is-
sues involved.

To be practical, a VB–UI system must meet the needs of
both end users and application builders. For the user, the in-
terface must be powerful enough to perform his task, intuitive
enough that it does not distract, and efficient enough to leave
machine resources available for other applications. For the
application builder the system must be flexible enough to sup-
port a range of applications, and interfaces must be easy to
create. To support deployment the system must easily adapt to

different environments. In most current vision interface sys-
tems many of these issues have not been addressed. The visual
recognition often performs well, but the system as a whole
is hard-coded to perform a fixed task under limited circum-
stances. The remainder of this section will discuss in more
detail these issues and how we address them.

As a user interface device, vision systems can be used in
two distinct ways. One is to detect a user’s “natural” state
and behavior in an effort to make the computer respond to the
user’s needs more effectively. The user should not have to do
anything outside his normal routine. We refer to these as “im-
plicit” interactions. This paper addresses the other approach,
“explicit” interactions, where there are specific commands in
some gestural language that the user can perform to control
an application.

Explicit control languages present two interesting prob-
lems. First, in the absence of some memory aid, even mod-
erately complex gesture interfaces can be difficult to both
learn and remember [3]. Second, the user can be subjected
to the “Midas Touch problem” where incidental gestures may
be misinterpreted as commands. Put another way, the system
needs some way of knowing when to attend to user actions.

We can address both these problems at once by associating
gestural actions with a target, meaning some visible entity in
the environment where, and in relation to which, gestures are
performed. A target may be an icon projected by the system,
some physical object, or a distinctive location that is made
“responsive” by the vision system [2]. A target provides both
a memory aid and a location where the interaction is to be per-
formed. This helps constrain the visual recognition problem,
reducing both the computational load and the chance of false
positive responses.

Up till now most vision-based interfaces have been built
by vision experts, but as we go forward it is likely that visual
gesture recognition will need to become a service that is easily
used by application designers and programmers having little
knowledge of computer vision. To address that issue, we pro-
vide a consistent and extensible high level of abstraction for
the application programmer to use in designing vision-based
interfaces. To create an interface, an application builds a con-
figuration of widgets (describing what the interface is). Each
widget responds to gestures in its vicinity, and the widgets are
generally positioned so that they overlay some visible object



R. Kjeldsen et al.: Dynamically reconfigurable vision-based user interfaces 7

in the environment, thus creating a target for an interaction. A
similar idea, referred to as VIcons, was put forward in [14].

Based on the description of the configurations, the vision
system assembles a set of image processing components that
implement the interface. To change the interaction, a new con-
figuration can be sent to the system at any time. When a widget
detects a user interaction, it returns an event to the application.
The simplicity and similarity of this design to existing user in-
terface programming methods make it relatively simple for a
nonvision expert to use.

An important issue in taking VB–UI beyond the lab is ease
of deployment in different environments. Some environmen-
tal variation, such as lighting, requires careful design of the
image processing algorithms. Other variation, such as camera
geometry, can be addressed at the architectural level and ab-
stracted so as to make the application designer’s job as simple
as possible.

Because we are using targets for our interactions, one prob-
lem that arises is the relative geometry of the camera, the user,
and the targets. We provide for the deployment of an interface
onto arbitrary planar surfaces viewed from arbitrary camera
angles. The parameters of the surfaces where the interface can
be realized are defined and stored independently of the defi-
nition of the interface itself.

By explicitly decoupling the information describing what
capabilities an interface provides (its semantic components
and spatial layout) from where it appears in an environ-
ment/camera image, we provide a straightforward level of
abstraction for the interface designer while facilitating (1) the
porting of an application to a new environment where the imag-
ing geometry and interaction surfaces are different, (2) the use
of one surface for multiple applications, and (3) the use of the
same interface on multiple surfaces.

The decoupling of what and where helps vision-based ap-
plications adapt to different environments, but it is equally
important when an interface can be steered around the envi-
ronment dynamically to respond to the current situation [7] or
to follow the user [6]. The framework presented in this paper
is also appropriate for situations where the interface surface
is not static, for instance in the cardboard interface described
in [15], or when the camera moves with the user in augmented
reality or wearable computing [9].

The main contribution of this paper is the system archi-
tecture for the support of these dynamically reconfigurable
vision-based user interfaces, which efficiently address the
needs of the user and the application programmer.

2 Basic elements of dynamically reconfigurable VB–UIs

We start the discussion of our framework by describing three
primitive concepts that form the base of our system: configu-
rations, widgets, and surfaces.

2.1 Configurations and widgets

In our framework, a VB–UI is composed of a set of indi-
vidual interaction dialogs referred to as configurations. Each

configuration is a collection of interactive widgets, in a struc-
ture similar to that of traditional window-based applications,
which are defined as a set of dialog windows, each containing
elements such as scroll bars, buttons, and menus. Each widget
performs a specific task for the application, such as trigger-
ing an event or generating a parameter value. In the case of
VB–UI, a widget responds to specific gestures performed in
relationship to it, such as a touch. Some of our earlier work
describes the individual widget types we use and how they
are implemented [4,5]. Here we will focus on how they are
dynamically combined to create a user interface.

In addition to defining the widgets, a configuration speci-
fies a boundary area that defines the configuration coordinate
system. The boundary is used during the process of mapping
a configuration onto a particular surface, as described later.

2.2 Surfaces

An application needs to be able to define the spatial layout of
widgets with respect to each other and the physical environ-
ment, as that information is relevant to the user experience. It
should not be concerned with details of the recognition pro-
cess, such as where these widgets lie in the video stream.
To provide this abstraction, we use the concept of interaction
surfaces. A surface is essentially the camera’s view of a plane
in 3D space. Applications refer to surfaces by name and are
typically not concerned with finer-grained details.

When a configuration is defined, its widgets are laid out
using the coordinate system defined by the boundary area. A
configuration is mapped to a surface by warping that coordi-
nate system into the image with a perspective transformation
(homography). When the configuration is activated, the region
of the image corresponding to each widget is identified and
examined for the appropriate activity, which in turn will trig-
ger events to be returned to the application. Figure 1 shows
a configuration with three buttons and a tracking area being
mapped onto different surfaces. The process of determining
the homography and establishing other local surface parame-
ters is described in Sect. 3.3.

Fig. 1. Mapping a configuration onto two different surfaces



8 R. Kjeldsen et al.: Dynamically reconfigurable vision-based user interfaces

3 Architecture of a dynamically reconfigurable
vision system

In order to efficiently support the dynamic reconfiguration of
vision-based interfaces, a flexible internal architecture is re-
quired in the vision system. In addition, the vision system must
support operations that are not visible to the application, such
as calibration, testing, and tuning. This section will describe
this internal architecture.

In our system, each widget is represented internally as a
tree of components. Each component performs one step in
the widget’s operation. For example the component tree of a
“touch button” widget is circled in Fig. 2. There are compo-
nents for image processing tasks such as finding the moving
pixels in an image and tracking fingertips in the motion data,
for analysis tasks such as looking for touchlike motions in the
fingertip paths, and for system activities such as generating the
events, storing widget parameters, and managing the surface
homography.

Information is passed into the trunk of this tree and prop-
agates from parent to child. During image processing, images
are passed in. In this example, the Motion Detection com-
ponent takes in a raw camera image and generates a motion
mask image for its child components. Fingertip Tracking takes
the motion mask and generates a path for the best fingertip
hypothesis. Touch Motion Detection examines the fingertip
path for a motion resembling a touch inside the image region
of this button. When it detects such a motion, it triggers the
Event Generation component. A similar structure is used by
the “tracking area” widget, also circled in Fig. 2. Because of
the structured communication between components, they can
easily be reused and rearranged to create new widget types
with different behavior.

3.1 Shared components

When an application activates a configuration of widgets, the
vision system adds the components of each widget to the ex-
isting tree of active components. If high-level components are
common between multiple widgets, they may either be shared
or duplicated. For example, if there are multiple Touch Button

Fig. 2. Tree of components implementing three widgets

components, they can share the motion Detection and Finger-
tip Tracking components, or each may have its own copy. The
advantage of shared components is that expensive processing
steps need not be repeated for each widget. Unfortunately, this
can sometimes lead to undesirable interactions between wid-
gets, so a widget designer has the option of specifying that
these components be shared or not as needed.

A good example of the tradeoffs of shared components
is when using touch-sensitive buttons. If multiple buttons are
active at one time, these buttons always share the Motion De-
tection component. When the Fingertip Tracking component
is shared, however, the behavior of the widgets can change.
Recall that the Fingertip Tracker component tracks fingertip
hypotheses within a region of the image. If this component is
shared by more than one button, these widgets will both use
the same fingertip hypothesis, meaning that only one of them
can generate an event at a time. This may be desirable in some
circumstances, say, when implementing a grid of buttons, such
as a telephone keypad. In other circumstances, such as when
interacting with both hands, however, the application may not
want activity in one button to prevent operation of another, so
the widgets should each have their own fingertip tracker.

3.2 Communication and control

When components are combined in a tree, widgets lose their
individuality. However, it is still necessary to have a mecha-
nism able to send information to and from widgets both indi-
vidually and in groups (e.g., all widgets in a configuration).
Information is propagated down the tree by posting typed data
to the root nodes. Data is retrieved from components in the
tree by querying for some data type. Both Post and Query use
a fully qualified address including Configuration Name and
Widget Name, either of which can be “all”. As Post and Query
data structures flow through a component, the address and data
type of the structure are examined to determine if it should be
handled or ignored by that component.

For example, during operation, image data addressed to
all widgets is posted to the root components of the tree. As
the data flow from parent to child, some components, such as
the Motion Detector, may choose to modify the image before
they post it to their children. Others, like the Fingertip Tracker,
may create a new type of data (in this case a fingertip path)
and post that to their children instead of, or in addition to, the
original image.

3.3 Surface calibration

Applications identify surfaces by name, but each surface must
be calibrated to determine where it lies in the video image. A
surface is calibrated by identifying four points in the image
coordinate system that correspond to the corners of a config-
uration’s boundary.

The image points can be located either manually or auto-
matically and are then saved with the surface. Manual calibra-
tion consists of showing the user the video image on the screen
and having the user identify the screen points corresponding
to the corners of the configuration boundary. Automatic cal-
ibration consists of holding a rectangular patterned board on



R. Kjeldsen et al.: Dynamically reconfigurable vision-based user interfaces 9

the desired surface. The board is imaged by the camera to
find the calibration points, which correspond to the corners of
the configuration boundary. Finding the calibration points is
straightforward and relies on the OpenCV routines FindChess-
BoardCornerGuesses and FindCornersSubPix. Unfortunately,
due to the short baseline of practical calibration pattern boards,
this technique is rarely accurate enough to use.

When a configuration is mapped to a surface, the corners of
the configuration boundary and the surface calibration points
form 4 point pairs, which are posted to the component tree.
Each widget’s Surface Transformation (ST) component then
computes a homography that converts between the widget’s
configuration coordinates and image coordinates using the
methods described in [12, pp 52–56). Later, during process-
ing, components of the widget can query the ST to determine
what image region to examine.

3.4 Image processing parameters

In order to get the best performance from the vision system,
a number of parameters always seem to need adjusting. We
keep these parameters hidden from the application so that the
developer need not be concerned with the specifics of visual
recognition, and so the internal implementation of the widgets
can change without requiring changes to the application.

The system maintains a local record of all configurations,
widgets, and surfaces that have been defined, and parameters
are maintained independently for each one. These parameters
can be manually adjusted (and tested) from the vision system
on-screen GUI.

Surface parameters include the location and distortion of
the interface within the image and characteristics of the phys-
ical environment around that surface, such as the user’s likely
position while interacting with it.

Most of a widget’s image processing components have
several parameters that can be adjusted to tune performance.
Because widget parameters are saved independently for each
configuration, you can adjust each configuration to behave
somewhat differently. For example, one configuration may
need a higher recognition rate at the expense of a higher false
positive rate, while in another a high false positive rate may
not be acceptable.

4 An XML API
for a dynamically reconfigurable VB–UI system

To create a VB–UI, an application must define the what, when,
and where of each interaction. Defining what and when is sim-
ilar to developing standard non-VB–UI applications. One or
more configurations must be defined, with the spatial layout
of the widgets specified in each. The sequence of configura-
tions (as well as the non-UI aspects of the application) must be
defined as a function of the events returned from the widgets
combined with the application state. Unique to VB–UI inter-
actions, the where of each interaction must also be defined,
meaning on which surface a configuration is to be displayed.

To give the application the needed control, we have de-
fined an API based on a dialect of XML we call VIML (Vision
Interface Markup Language). VIML defines a set of visual

interface objects and methods. Three basic objects are: VIsur-
face for defining attributes of a surface, VIconfiguration for
defining widgets and their spatial relationships and elaborat-
ing their behavior, and VIevent for communicating events such
as a button press back to the application. In this paper we are
concerned only with three methods for VIconfigurations and
VIsurfaces: “Set”, used for setting values of objects, and “Ac-
tivate/Deactivate”, which control when they are operational.

“Set” commands can be issued to adjust the external pa-
rameters of objects, e.g., the location and size of a button, the
resolution of a tracking area, etc. Once an object has been
configured with “Set”, it can be started and stopped as needed
with “Activate” and “Deactivate” commands. Once activated,
visual interface widgets begin to monitor the video stream and
return relevant events to the application.

The following XML string exemplifies a typical VIML-
based command. It directs the VB–UI system to set the param-
eters of theVIconfiguration called “cfg” so that the boundaries
of the internal coordinate frame are 500 units in x and y. It
also sets the parameters of two widgets in the configuration, a
button named “done”, which is located at x = 200, y = 200
and is 50 units large, and a track area which is 100 units in
x and y and located at the origin (0,0) of the configuration
coordinate frame.

<set id="uniqueID1001">
<VIconfiguration name="cfg" left="0"
right="0" top="500" bottom="500">

<VIbutton name="done" x="200" y="200"
size="50" />

<VItrackArea name="T1" left="0"
right="0" top="50" bottom="50" />

</VIconfiguration>
</set>

When a widget detects a user interaction, it returns aVIML
event that identifies the event type, configuration, and widget
by name. VIML events are XML valid strings that can be
parsed by the application. These events are interpreted and
handled by the application to control the flow of execution.
The following XML string is a typical example of a VIML
event sent by the vision system to the application:

<event id="002" >
<VIconfiguration name="selector" >

<VIbutton name="showWhere" >
<VIeventTouch />

</VIbutton>
</VIconfiguration>

</event>.

The full syntax of VIML, which includes other objects and
methods, is beyond the scope of this paper. The complete API
will be formally published in the future, but a draft is currently
available from the authors on request.

5 Example application:
Projected information access in a retail environment

One example of the experimental applications developed with
this framework uses a device called an Everywhere Display



10 R. Kjeldsen et al.: Dynamically reconfigurable vision-based user interfaces

projector to provide information access in retail spaces. This
application provides a good example of how our dynamically
reconfigurable vision system is used in practice.A full account
of details of this application, as well as its design process, can
be found in [10].

5.1 The Everywhere Display

The Everywhere Display (ED) (Fig. 3) is a device that com-
bines a steerable projector/camera system, dynamic correc-
tion for oblique distortion, and the VB–UI system described
here in order to project an interactive interface onto virtually
any planar surface. Static cameras and software allow person
tracking and geometric reasoning. ED allows visual informa-
tion and interaction capabilities to be directed to a user when
and where they are needed, without requiring the user to carry
any device or for the physical environment to be wired (see [7]
for a more detailed description). Software assists with coor-
dination of the various modules and provides an environment
where complete applications can be built with comparative
ease.

Fig. 3. Prototype ED projector

5.2 The Product Finder application

The goal of this application is to allow a customer to look
up products in a store directory and then guide her to where
the product is located. This Product Finder is accessed in two
forms. At the entrance to the store is a table dedicated to this
purpose, much like the directory often found at the entrance to
a mall. Built into the table is a physical slider bar in a slot that

a b c

Fig. 4. The Product Finder application mapped onto different surfaces

Fig. 5. Widgets mapped onto the surface of a wall sign

the user manipulates to scroll the projected index (Fig. 4a).
Note that the slider has no physical sensors; its motion is de-
tected by the vision system using the Physical Slider widget.
Elsewhere in the store the Product Finder can be accessed us-
ing wall signs that look like the table at the entrance, with a
red stripe on the left instead of a moving slider. When a sign
is touched (Fig. 4b), the projector image is steered towards it,
the store index is projected, and the product search is accom-
plished in the same way as on the table, except that moving
the physical slider is replaced by the user sliding her finger on
the red stripe (Fig. 4c). Again, there are no physical sensors
on these signs.

This application uses two vision interface configurations:
a “Call” configuration to request the Product Finder to be dis-
played on a particular surface and a “Select” configuration to
perform the product search. The Call configuration consists of
a touch button that covers the whole sign or table. The Selec-
tion configuration consists of three widgets (Fig. 5). On the
left of the configuration are both a widget designed to track the
physical slider and a widget designed to track the user’s finger-
tip. These are overlayed, and only one will be active at a time.
On the right is a touch button for the user to request directions
to the selected item. The widgets are located with respect to
the configuration boundary. The corners of the boundary are
mapped to the corners of the surface quadrilateral in the im-
age. For the wall sign surfaces, these correspond to the corners
of the wall signs themselves as shown in Fig. 5. For the table
these correspond to marks on the slider table.

During operation ED is directed to track the customer,
aiming the camera and placing the Call configuration on the
nearest sign (or table) (the current prototype is set up for a
single shopper at a time). When the user touches a call button,
it sends an event to the application, which then projects the
“Selection” graphics on the sign, while activating the Select
configuration on the sign’s surface. The Select Button widget,
along with either the Physical Slider widget or the Fingertip
Tracker widget, is activated as appropriate.

At this point the Product Finder is ready for use. The track-
ing widget sends events back to the application whenever the
shopper moves her finger on the red stripe or moves the slider,
and the application modifies the display showing the prod-
uct she has selected. When the user touches the Select button,
the application projects arrows on various surfaces to guide



R. Kjeldsen et al.: Dynamically reconfigurable vision-based user interfaces 11

the shopper through the store, while the camera/vision system
returns to monitoring signs.

This example demonstrates how an application can control
a VB–UI by creating configurations with a known widget lay-
out, directing them to different surfaces and modifying them
dynamically (by activating and deactivating widgets) to adapt
to different contexts. The vision system architecture makes
adding additional wall signs as easy as hanging the sign and
defining a new surface for it.

5.3 The touch and track widgets

This section briefly describes the widgets used in the product
finder application. For more details see [5].

Three types of widgets were needed to support the product
finder, a touch button, a finger tracking slider, and a widget
that tracked the physical slider bar.

Both sliders operate essentially the same way. They consist
of a single image processing component that searches down
from the top of the slider region till it finds an abrupt change
in color value. They verify that the color transition is between
the correct background and foreground colors (obtained by
calibration marks on the table, and by using a skin color model
on the other signs) and then generate a return value based on
the location of the transition within the widget.

The major difference between the sliders is that the finger-
tip slider must take into account that the same hand will be
used to select the value on the slider, then moved over to touch
the Select button. Without some compensation, it was difficult
for the user to select a value and have it remain unchanged
when she moved to the Select button. This compensation is
achieved by delaying reporting the transition location when it
begins to drop till either it stops dropping or disappears. If the
transition disappears, it is assumed the fingertip dropped down
out of the widget as the user moved over to the button, and the
drop in value is not reported. If it drops down then stops or
comes back up, it is assumed that the user was just scrolling
down, and the lower value is reported to the application. This
simple heuristic does a very good job of keeping the correct
value when the user withdraws her hand.

The touch button is somewhat more interesting than the
sliders. Because the button is projected, it distorts the color of
the fingertip inside it, making color analysis unreliable. The
fingertip does change the apparent color of the projection,
however, so the touch button first uses the Motion Detection
component to create a mask image from the frame-to-frame
changes in the video stream, morphological smoothing, and a
vibration removal algorithm that ignores constantly changing
pixels.

This motion mask is passed to the Fingertip Tracking com-
ponent, which uses the prior knowledge of the user location to
create a fingertip template of the correct orientation and size.
This template is convolved over the motion mask in the vicin-
ity of the button to locate fingertip hypotheses. The hypotheses
are heuristically evaluated for match quality, distance from the
user, etc. to choose the best candidate, which is tracked over
time.

The recent path of the fingertip is passed to a Touch Detec-
tion component which looks for the characteristic out-pause-
back motion of a touch, where the pause lies within the button.

Fig. 6. A grid of interactive touch buttons

When it finds such a touch motion, it posts a request to the
Event Generation component to send an event to the applica-
tion.

This touch detection algorithm was tested using video of
visitors to a demonstration of ED at SIGGRAPH ’01. Six hun-
dred twenty-one button touch events by 130 different users on
22 surfaces were evaluated. The best-performing surface, with
a 94% success rate over 132 touches, was a grid of 18 buttons
in close proximity (Fig. 6). The average success rate dropped
to 81% by some surfaces that performed poorly due to poor
image quality, frequent occlusion, and awkward ergonomics.

A recent reimplementation of the buttons based on a sim-
pler and more robust algorithm shows better performance on
the same data while reducing complexity, easing calibration,
and reducing the need for parameter tuning. We will publish
a detailed report on these new buttons in the near future.

6 Conclusion

The system described in this paper provides an application
with the ability to create and dynamically reconfigure a vision-
based user interface. Interaction widgets that recognize basic
interaction gestures are combined into configurations to sup-
port more complex user dialogs. Configurations are used in
sequence to create complete applications.

Configurations can be created on the fly by an application
that has little or no knowledge of computer vision and then
placed onto any calibrated planar surface in the environment.
Surfaces need to be calibrated only once and can then be reused
by different applications and interactions. Each widget can
be tuned for best performance by parameters saved locally
for each configuration and surface. The result is an “input
device” that can be dynamically configured by an application
to support a wide range of novel interaction styles.

The system has been designed for a target-based interac-
tion paradigm, where visible objects or projections in the en-
vironment are made interactive by placing widgets over them.
This provides the user the advantage of a visible entity to help
them remember the interaction and a spatial location for the
interaction to help avoid inadvertently triggering an event.

The underlying architecture of the system, consisting of
a dynamic tree of image processing components, combines
flexibility, efficiency (through shared use of computational re-
sults), and modularity for easy code reuse and upgrading.



12 R. Kjeldsen et al.: Dynamically reconfigurable vision-based user interfaces

An XML protocol is used for communication between an
application and the vision system.

We described a prototype application for customer navi-
gation in a retail environment to demonstrate how the archi-
tecture can be used. We described the widgets used in this
application and summarized the results of a study of their per-
formance.

References

1. Davis L (ed) (2002) In: Proc. of the 5th International Conference
on Automatic Face and Gesture Recognition (FG 2002), IEEE
Computer Society, Washington DC

2. Ishii H, Ullmer B (1997) Tangible Bits: Towards Seamless In-
terfaces between People, Bits, and Atoms. In: Proc. of CHI’97,
Atlanta, GA pp. 234–241

3. Kjeldsen F (1997) Visual Recognition of Hand Gesture as a
Practical Interface Modality. PhD dissertation, Columbia Uni-
versity, New York, NY

4. Kjeldsen F, Hartman J (2001) Design Issues for Vision-based
Computer Interaction Systems. In: Proc. of the Workshop on
Perceptual User Interfaces. Orlando, FL

5. Kjeldsen F et al (2002) Interacting with Steerable Projected
Displays. In: Proc. of the 5th International Conference on Auto-
matic Face and Gesture Recognition (FG’02), Washington DC

6. Pingali G et al (2002) User-Following Displays. In: Proc. of the
IEEE International Conference on Multimedia and Expo 2002
(ICME’02), Lausanne, Switzerland

7. Pinhanez C (2001) The Everywhere Displays Projector: A De-
vice to Create Ubiquitous Graphical Interfaces. In: Proc. of
Ubiquitous Computing 2001 (Ubicomp’01). Atlanta, GA

8. Pinhanez CS, Bobick AF (2002) “It/”: A Theater Play Featuring
an Autonomous Computer Character. In: Presence: Teleopera-
tors and Virtual Environments 11(5):536–548

9. Starner T et al (1997) Augmented Reality through Wearable
Computing. In: Presence: Teleoperators and Virtual Environ-
ments 6(4):386-398

10. Sukaviriya N, Podlaseck M, Kjeldsen R, Levas A, Pingali G,
Pinhanez C (2003) Embedding Interactions in a retail Store En-
vironment: The Design and Lessons Learned. In:Proc. of the
9th IFIP TC13 International Conference on Human-Computer
Interaction (INTERACT03), September 2003

11. Turk M (ed) (2001) Proc. of the Workshop on Percep-
tual/Perceptive User Interfaces. Orlando, FL

12. Wolberg G (1994) Digital Image Warping, IEEE Press, New
York, NY

13. Wu Y, Huang T (1999) Vision-Based Gesture Recognition:
A Review. Lecture Notes in Artificial Intelligence, vol 1739.
Springer, Berlin Heidelberg New York

14. Ye G, Corsco J, Burschka D, Hager G (2003), VICs: A Modular
Vision-Based HCI Framework. In: Proc. of the 3rd International
Conference on Vision Systems, Graz, Austria. pp 257–267

15. Zhang Z et al (2001) Visual Panel: Virtual Mouse, Keyboard,
and 3D Controller with an Ordinary Piece of Paper. In: Proc. of
the ACM Workshop on Perceptual/Perceptive User Interfaces
(PUI’01), Orlando, FL


