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Abstract. Tracking, classification and visual analysis of ar-
ticulated motion is challenging because of the difficulties in-
volved in separating noise and variabilities caused by appear-
ance, size and viewpoint fluctuations from task-relevant varia-
tions. By incorporating powerful domain knowledge, model-
based approaches are able to overcome these problem to a
great extent and are actively explored by many researchers.
However, model acquisition, initialization and adaptation are
still relatively under-investigated problems, especially for the
case of single-camera systems.

In this paper, we address the problem of automatic acqui-
sition and initialization of articulated models from monocular
video without any prior knowledge of shape and kinematic
structure. The framework is applied in a human–computer in-
teraction context where articulated shape models have to be
acquired from unknown users for subsequent limb tracking.
Bayesian motion segmentation is used to extract and initial-
ize articulated models from visual data. Image sequences are
decomposed into rigid components that can undergo paramet-
ric motion. The relative motion of these components is used to
obtain joint information. The resulting components are assem-
bled into an articulated kinematic model which is then used for
visual tracking, eliminating the need for manual initialization
or adaptation. The efficacy of the method is demonstrated on
synthetic as well as natural image sequences. The accuracy of
the joint estimation stage is verified on ground truth data.

Key words: Model assembly – Model-based visual tracking
– Joint detection – Model acquisition – Articulated motion

1 Introduction

Important capabilities of vision-based human–computer in-
teraction (HCI) systems are the detection, capture, analysis
and synthesis of human motion. However, the processing of
human motion is extremely challenging due to (i) non-rigid
motion patterns caused by the inherent nature of the artic-
ulated human body and clothes, (ii) self-occlusion and (iii)
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lack of visual texture. Furthermore, the extraction of features
that are suitable for view-invariant recognition and classifi-
cation (e.g., hand-gestures or human actions and activity in
general) is challenging due to the strong viewpoint dependent
variabilities of the visual motion patterns. The use of explicit
articulated models is promising for overcoming these chal-
lenges because it allows directly encoding much of the avail-
able domain knowledge and potentially offers a wider degree
of generality and task independence than existing approaches.

Remaining challenges that model-based approaches face
are model acquisition, initialization and adaptation (Gavrila
1999). Model acquisition is the process of constructing the ar-
ticulated model that encodes the information about the limbs
and the interconnecting joints. Articulated models come in
many different flavors with varying number of links and joints
and are commonly handcrafted. Since the size and shape of
people varies across the population, it is usually not possible to
develop universal models. Models, especially the limb-shape
parameters, have to be adapted to the dimensions and the ap-
pearance of the target. Finally, most model-based tracking ap-
proaches assume that the model is registered to the target in the
first frame. This problem of model initialization is commonly
reported to be performed manually by the user. In summary,
the use of model-based motion capture systems in many do-
mains (e.g., surveillance, HCI, automatic video indexing) will
in general only become feasible once the above challenges
have been tackled.

This work is motivated by and aimed at the domain of HCI
and gesture recognition applications (Kettebekov et al. 2000;
Poddar et al. 1998; Schapira and Sharma 2001) where the goal
is to robustly track a user over time without any manual ini-
tialization. We propose to eliminate the need for initialization
and adaptation by automatically building articulated models
from visual data directly. Our approach assembles articulated
models from single-view video, assuming only the concept
of articulated motion as prior knowledge. We assume that the
input data can be viewed as a collection of rigid elements that
are potentially connected by joints and leave it to the algo-
rithm to extract segment and joint information automatically
from an image sequence. More specifically, we use a para-
metric motion-segmentation approach (Vasconcelos and Lipp-
man 2001; Ayer and Sawhney 1995; Wang and Adelson 1994)
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to decompose simultaneously a set of images into rigid seg-
ments, together with their corresponding motion parameters.
The motion models of the layers are subsequently examined
to infer joint locations. The combination of the extracted seg-
ments, their motion parameters and joint locations constitute a
complete articulated model with joints, links and appearance
information. We show how the acquired and initialized artic-
ulated models can be used for tracking and motion capture.
Furthermore, we quantitatively evaluate the accuracy of the
approach by using models extracted from synthetic image se-
quences generated with professional character animation tools
for which precise knowledge about joint locations is available.

This paper is organized as follows: We review related work
in Sect. 2. Following this, we present our approach to extract
the rigid components of the input sequence that form the link
candidates in Sect. 3. Section 4 describes the model extraction
stage which is responsible for detecting and locating joints
and for inferring which of the extracted motion segments are
part of the observed target. To evaluate the extracted model,
we implemented a model-based tracking algorithm, which is
briefly described in Sect. 5. Experiments on real and synthetic
data are presented in Sect. 6, followed by a discussion of these
results in Sect. 7. Finally, Sect. 8 concludes the paper.

2 Related work

2.1 Analysis of articulated motion

With respect to the visual analysis of articulated motion, much
research has been conducted on the analysis of feature-point
models where the visual information is reduced to a set of
points attached to the rigid body. This type of data can arise
from moving light displays (MLDs), and passive or active
markers, or be extracted from image sequences using feature
trackers.

Early work by Rashid (1980) presents a comprehensive
algorithm for analyzing MLDs. Point features were clustered
into objects using a minimum spanning tree approach together
with a cut criterion for splitting the resulting tree into clusters.
The underlying skeletal structure of the point features was
obtained by calculating the minimum spanning tree on each
group. Rashid stressed the importance of velocity information
in obtaining robust estimates of skeletal structure.

Using magnetic motion capture data obtained with mag-
netic sensors, O’Brien et al. (2000) reconstructed the skeletal
model of articulated objects and humans. Their approach is
based on available time varying 3D marker coordinate sys-
tems. These systems are examined for joint constraints and a
minimum spanning tree is employed to reconstruct the articu-
lated structure. While their method assumes knowledge about
the 3D link coordinate systems, the basis of their approach is
also applicable to projected motion data. Barrón and Kakadi-
aris (2001) present a semi-automatic approach for extracting
human skeletal models from single images. Their method re-
quires the manual selection of a set of landmarks that are used
in combination with human body shape statistics and joint
limit constraints to infer the anthropometry and pose of the
target.

A motion modeling approach not based on the articulated
structure of the human body was developed by Song et al.

(1999, 2000). The front view of the human body is modeled
through a set of point-feature tracks whose locations are mod-
eled through conditional probability densities. The densities
are learned from training data and used for subsequent motion
analysis.

2.2 Human-shape acquisition

The acquisition of precise human body shape models has so
far mostly been investigated for situations in which multiple
camera views are available. Cheung et al. (2000) acquired hu-
man body models without any prior structural assumptions
using a large number of camera views in a customized labora-
tory environment. Kakadiaris and Metaxas (1998) and Hilton
et al. (1998) presented acquisition systems that require the
views of at least three cameras to perform the modeling pro-
cess. The latter work uses a generic body model onto which
the image of a person’s view is mapped. The work presented
in (Plaenkers and Fua 2001) utilizes a stereo setup and uses a
flexible human-shape model to adapt to the shape of a user in
the view of the camera. A manual initialization of the shape
model is necessary for bootstrapping the procedure. In gen-
eral all these efforts are not suitable for environments where
only a single camera view is available, which is especially the
case for video and low-cost HCI applications. Furthermore, a
flexible acquisition procedure should not be restricted to an a
priori given articulated structure.

Ioffe and Forsyth (2001) uses tree-structured probabilistic
models for modeling human motion from monocular video.
While elegant and not based on any structural assumptions,
the approach is based on the ability extract candidate body
parts from static images and only utilizes weak motion mod-
els. Similar to Ioffe’s goals, the work presented in this paper
allows acquiring articulated models consisting of planar im-
age patches connected by joints and thus falls neither into the
category of MLDs nor into the class of algorithms that acquire
“inflated” three-dimensional models. The obtained models re-
semble the cardboard-type articulated models that have been
shown to provide utility in many applications (Ju et al. 1996;
Yacoob and Black 1999).

2.3 Motion segmentation

One significant portion of this work deals with the motion
segmentation of image sequences for extracting the piece-
wise rigid components of the articulated objects. Recent years
have seen a great interest in layered motion segmentation al-
gorithms (Ayer and Sawhney 1995; Vasconcelos and Lipp-
man 2001; Torres et al. 1997; Borshukov et al. 1997; Wang
and Adelson 1994). These algorithms address the problem of
segmentation and flow estimation in a unified framework to
overcome some of the main problems of either method alone.
While the early work of Wang and Adelson (1994) and sub-
sequent improvements (Torres et al. 1997; Borshukov et al.
1997) approached the problem using clustering, the problem
has since been formulated in a Bayesian framework using an
expectation–maximization (EM) algorithm (Dempster et al.
1977).
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2.4 Model-based tracking

The articulated models acquired by our proposed method are to
be used in the context of model-based motion tracking in HCI
applications. The approach of model-based human tracking
has been pioneered by O’Rourke and Badler (1980). In the
context of human (or general articulated) motion tracking, the
target is modeled as a collection of segments connected by
joints or springs. The number of links and joints and associated
parameters used for articulated models vary widely across the
literature (Moeslund and Granum 2001).

Ju et al. (1996) approximate humans with cardboard mod-
els, which are basically 2D models specialized for model-
ing humans seen from the side or front. Each segment of the
model is described by a planar patch that can undergo planar
projective motion. The motion of the patches is determined
through an energy function that uses the brightness constancy
constraint equation and spring-like forces between connected
patches. Tracking is achieved by minimizing the energy func-
tion using gradient descent in a hierarchical framework. Im-
provements utilize joints (Jia-Ching and Moura 1997) and han-
dle occlusion (Howe et al. 1999).

Pavlovic et al. (1999) address the problem of learning dy-
namics from training data in a Bayesian framework. They also
employ a 2D model, but use scaled prismatics (Morris and
Rehg 1998) that are able to handle 3D foreshortening effects
and avoid singularities common in 3D kinematic modeling
approaches.

The resulting models that we acquire from video are also of
the scaled prismatic cardboard type, but future work is aimed
at improving the proposed approach to obtain full 3D models.

Full-body 3D model tracking has been demonstrated by
Gavrila and Davis (1996), who developed a four-camera track-
ing system using a model consisting of tapered super-quadrics.
The system was able to successfully track two people dancing
close together in the presence of strong occlusion. Pose esti-
mation was performed using search-space decomposition and
best-first search.

Bregler and Malik (1998) developed an articulated motion
capture framework that parameterizes the kinematic chain of
the human body in an exponential twist formulation pioneered
in robotics (Murray et al. 1994). The authors take a variational
approach that relies on matching the appearance of limbs with
the image content. The formulation is ultimately based on the
brightness constancy assumption and linear approximations of
the twists. They were able to report good tracking results on
monocular and multi-view image sequences. Other research
that utilizes the twist-formulation was presented by Ude and
Riley (1999) and Covell et al. (2000).

HCI applications often only require the modeling of the
upper body, or one or both arms (Schapira and Sharma 2001).
Model-based arm tracking is particularly promising in HCI
application and has been addressed in (Wu et al. 2000; Moes-
lund and Granum 2000; Filova et al. 1998; Goncalves et al.
1995). In all cases, two-link models were used.

To verify the utility of the articulated models acquired
by our proposed work, we implemented a simple sequential
Monte Carlo filter (Doucet et al. 2001; Isard and Blake 1998)
as described in Sect. 5. Sequential Monte Carlo methods are
gaining popularity due to their simplicity and robustness to-
wards noise and clutter.

Using a particle filtering approach, Sidenbladh et al.
(2000) perform 3D reconstruction of human motion observed
with a single camera using models consisting of ten cylinders
under perspective projection connected by joints. Appearance
information of the cylinders is adapted incrementally from
the image sequences. The authors encouraged the use of more
persistent appearance models. Sidenbladh and Black (2001)
also showed that the performance of the approach could be
improved further by learning the parameters for the edge and
ridge filters used in the likelihood model. These works show
the benefit of finely tuned models that are learned or acquired
from data and motivate the work proposed in this paper.

3 Link extraction

The acquisition of articulated models from visual data involves
three main steps: the detection and extraction of the links that
are assumed to give rise to piecewise rigid motion patterns in
the video, the detection and localization of joint constraints
and joint centers between the links, and the final assembly of
the model.

3.1 Motion segmentation

The link extraction is achieved by performing motion segmen-
tation on a sequence of video images. Motion segmentation al-
gorithms take two images as input and perform a segmentation
into non-overlapping regions that move according to indepen-
dent parameterized motion models. Every pixel in the refer-
ence image is assigned to one of K layers Li, i = 1, . . . , K, or
designated as an outlier. For every layer, the motion parameters
are estimated.The extraction of layer segmentation and motion
parameters is performed using the EM algorithm (Dempster
et al. 1977).

In this approach, motion segmentation is performed itera-
tively in two stages until convergence: expectation and maxi-
mization. In the expectation stage, the motion parameters are
assumed to be known and the layer assignments are estimated
for every pixel. In the maximization stage, the assignments
are assumed known and the motion parameters are estimated.
The EM approach maximizes the overall likelihood of layer
assignments and motion parameters and leads to very good
results if the algorithm starts with reasonable initial values.
The extraction of good initial values is performed during the
initialization stage and discussed in detail in Sect. 3.2.

Our approach to performing the motion segmentation is an
extension of the works of Vasconcelos and Lippman (2001),
andAyer and Sawhney (1995), which are both two-frame algo-
rithms. In order to obtain a decomposition of the articulated
target into segments that correspond to limbs based on mo-
tion information, it is necessary that each segment undergoes
sufficient motion that distinguishes itself from the motion of
all other segments as far as motion parameters are concerned.
If two limbs perform the same or very similar motion in a
considered time interval, they cannot be distinguished from
each other and will be viewed as one part. Therefore, a two-
frame approach provides a too small observation frame for
the video data considered in this work. In order to increase
the chance of observing distinguishable motion patterns for
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Fig. 1. Summary of the initialization and motion segmentation pro-
cedure. The motion segmentation that is performed after an initial
feature-tracking and track-clustering stage for bootstrapping leads to
segmentation information for a central frame and motion informa-
tion for each obtained segment and each frame used for the motion
segmentation

pairs of segments, our algorithm therefore performs the mo-
tion segmentation on one frame, like existing approaches, but
draws motion information from several frames. Furthermore,
we incorporate appearance and shape information into the es-
timation procedure.

Since the result of the EM algorithm tends to be only as
good as the initial estimate, the initialization approach is an
important part of this work. For initialization we use a sparse
flow clustering method to obtain initial estimates of the motion
parameters. Our method is outlined as follows (see Fig. 1): The
motion segmentation is performed for a reference frame I0
based on a set of NF previous and subsequent frames INF

=
I+
NF

∪ I−
NF

with I±
NF

= {I±1, . . . , I±NF
}. To obtain good

segmentations, the value of NF has to be choosen such that
sufficient segment motion occurs during the considered image
sequence. Values between 2 and 6 were found to be sufficient
for the considered sequences. The algorithm estimates motion
parameters θif that map the ith layer Li from image If to
I0 and layer assignment probabilities λi(x) that denote the
probability of pixel x in I0 belonging to layer Li. In order to
handle effects caused by occlusion, the motion segmentation
is performed separately in forward and backward directions
and the results are combined in a final stage. Only the forward
case is outlined below.

Using Bayes rule we have (cf. Vasconcelos and Lippman
(2001)):

λi(x) = P (x ∈ Li|I0(x), I+
NF

,Θi, Ψi)

= cP (I0(x)|x ∈ Li, I+
NF

,Θi, Ψi)

·P (x ∈ Li|I+
NF

,Θi), (1)

with Θi = {θif , f = 1, . . . , NF } and Ψi denoting additional
shape and color parameters to be specified shortly and c a
normalization factor. The first term on the right-hand side of
Eq. (1) expresses the likelihood of the observed image given
the current segmentation and motion parameters. In the pro-
posed motion segmentation implementation, this term draws

its information from three sources:

P (I0(x)|x ∈ Li, I+
NF

Θi, Ψi) = Pr(I0(x)|x ∈ Li, I+
NF

,Θi)

·Ps(x|x ∈ Li, Ψi)
·Pc(I0(x)|x ∈ Li, Ψi). (2)

In Eq. (2), Pr(.) models the residuals arising from the match
between I0 and the following images given the motion pa-
rameters, and Ps(.) and Pc(.) express the conformance to the
shape and color model of the ith layer respectively. The resid-
ual term Pr(.) on the right-hand side of Eq. (2) is assumed to
be normally distributed in the residuals originating from the
match of the layers at their location in I0 and in the frames
I+
NF

,

Pr(I0(x)|x ∈ Li, I+
NF

Θi) =
NF∏

f=1

N (rif (x); σi), (3)

with residuals

rif (x) = I0(x) − If (F(x; θif )). (4)

The function F(x; θ) denotes a warp function that maps pixels
from images in I+

NF
to their location in the reference frame.

The matching residuals can be viewed as the errors associated
with a backward prediction of frame I0 by subsequent frames.
The second term Ps(.) in Eq. (2) assumes that the pixels in
each layer are normally distributed around a center location
µi with empirical shape covariance matrix Σi and is written
as

Ps(x|x ∈ Li, I+
NF

Θi) =
1

2π|Σi| 1
2
e− 1

2 (x−µi)T Σ−1
i (x−µi).

(5)

This effectively leads to a blob-like clustering of pixels and
helps to obtain compact layer supports for the link shapes. It
also helps to resolve ambiguous assignments such as pixels
from textureless regions for which any motion model would
locally describe the visual data correctly.

The third term Pc(.) in Eq. (2) expresses the conformance
between pixels in a given layer. We assume that pixel values
are normally distributed in RGB color space according to the
following relationship:

Pc(I0(x)|x ∈ Li, I+
NF

Θi) =
1

(2π)
3
2 |ΣC

i | 1
2
e− 1

2 (I0(x)−µC
i )T ΣC

i
−1(I0(x)−µC

i ). (6)

This term helps to improve the assignment of pixels to layers,
especially at the boundaries of layer regions and in texture-
less areas. The parameters of these residual, shape and color
models,

Ψ = (Ψ1, . . . , ΨK) with Ψi = (σi, µi, Σi, µ
C
i , ΣC

i ), (7)

are estimated after the maximization stage of the EM algorithm
before the layer assignment calculation.

For the motion model, a six-parameter 2D affine transform
is used

F(x; θ) = Ax + t, (8)
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with parameters

θ = (A11, A12, A21, A22, t1, t2). (9)

The second term in Eq. (1) is the assignment prior which can
be chosen to be independent of x (Ayer and Sawhney 1995)
or used to impose smoothness on the layers (Vasconcelos and
Lippman 2001). We follow the latter option and use a MRF
prior (Vasconcelos and Lippman 2001) that effectively en-
forces a spatial coherence in the layer assignments and leads
to smoother results.

At each E-step, the calculation of Eq. (1) and the MRF
prior has to be iterated to obtain the posterior layer assignment
estimates.

The M-step assumes known λi(x) and minimizes the pre-
diction error

h(Θ) =
∑

f,i,x

λi(x)
rif (x)2

σ2
i

. (10)

This step can be interpreted as a simple simultaneous regis-
tration of image I0 to the NF frames with the support re-
stricted according to the layer assignments. Note that Eq. (10)
separates into a sum of independent terms. Equation (10) is
minimized using Gauss–Newton optimization with line search
(Nocedal and Wright 1999), with analytically calculated gra-
dients and Hessians. The EM iteration has to be repeated until
convergence.

3.2 Initialization

The EM algorithm is guaranteed to maximize the likelihood
of the solution but can get stuck in local maxima. A good
initialization of the motion parameters is hence crucial for
the success of the algorithm. We initialize the procedure by
first performing sparse motion estimation (Lucas and Kanade
1981; Shi and Tomasi 1994) across a time interval of images
with indices [N1, N2] that includes the images from which
the motion segmentation is performed (i.e., N1 ≤ −NF and
N2 ≥ NF ). The sparse motion estimation yields a set of NT

feature tracks yt
i with i ∈ 1, . . . , NT and t ∈ [N1, N2]. Each

feature track is assumed to move with one of the K regions in
the image. Motion parameter estimates can thus be obtained
from the motion of the feature tracks if the assignment of
features to regions is known. This assignment can be obtained
through simple K-means feature track clustering with a track
distance function defined as follows:

d(yi,yj) =
N2∑

t=N1

(∆(yt
i ,y

t
j) − ∆̄ij)2

+α

N2−1∑

t=N1

||vt
i − vt

j ||2, (11)

with ∆(a,b) = ||a − b||, ∆̄ij the mean of ∆(yt
i ,y

t
j) over

all t and vt
i = yt+1

i − yt
i . This distance function expresses

the fact that two feature tracks are considered to move with
the same layer if their relative distance varies little across time
and their velocity is similar. After the K-means clustering,

affine motion models are estimated from the grouped feature
tracks using a standard least-squares method. These estimates
are used to bootstrap the EM procedure for the motion seg-
mentation. In practice, the feature-track initialization method
leads to very good initial estimates, reducing the burden on
the motion estimation step in the motion segmentation stage
considerably, leading to a rapid convergence.

3.3 Refinement of motion estimates

Because the motion segmentation procedure does not utilize or
estimate any depth ordering of the regions, artifacts can occur
in assignments at the layer boundaries where pixels in the im-
age become occluded in subsequent frames. The occurrence of
these ambiguities increases with the displacement of the lay-
ers and the number of frames used for the estimation, but only
in the direction of the layer movement. It can hence be can-
celed out by performing motion segmentation in both forward
and backward directions with respect to the reference frame.
The final layers are then given by the intersection between
the forward and backward estimated layers, which improves
the quality of the support regions substantially. Figure 1 sum-
marizes the flow of information during the initialization and
segmentation procedure.

The final link regions are obtained by labeling the con-
nected components of the layer assignment mask and sub-
sequent extraction of the largest connected component. This
obtains a single connected region of support for each link.
A tight bounding box is calculated for each resulting support
region and the image content is extracted together with its
alpha map. This image information constitutes the size and
appearance information for each link. With this information,
the motion estimation stage of the motion segmentation al-
gorithm is restarted with the layer assignments fixed accord-
ing to the thus extracted link regions. The number of images
for which the motion parameters of the layers are estimated
is increased to an interval [1, . . . , NJ ] in order to obtain ex-
tended estimates of the motion of the links in order to im-
prove the extraction of joint information in the next stage. For
time instances [NF+1, . . . ,min{NJ , N2}], the motion esti-
mates from the feature-track initialization stage can again be
used to initialize the motion estimation procedure.

4 Model extraction

The motion segmentation stage decomposes the reference im-
age I0 into a set of connected, rigidly moving regions and
yields the parameters of the transformations that maps these
regions to the images {I1, . . . , INJ

}. Each individual region
may or may not be a link of the target subject. The goal of the
model extraction stage is to decide which regions in the image
are components of the model and to detect and locate joint
connections between these components. Each of the regions
extracted in the motion segmentation stage is considered to be
a potential link of the articulated model.

In the following, we denote with Ti the transformation
that maps a point xw from world coordinates to the ith link
coordinate system xi = Ti(xw) at time t = 0. With Ff

i
we denote the transformation that maps a world coordinate at
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time t = 0 to the world coordinate system at time t under the
assumption that it moved according to the motion of the ith
link, xt

wi = Ft
i(xw).

In general, if the relative pose of two coordinate systems
Ci, Cj is constrained by the existence of a rotational joint
between them, there must exist two points xi ∈ C1 and
xj ∈ C2 that always map to the same world coordinates,
Ft

i(Ti
−1(xi)) = Ft

j(Tj
−1(xj)), for all t. The points xi and

xj are the link coordinates of the joint center. In a strict sense,
the converse is not true. The existence of two such points does
not guarantee the existence of a joint, especially if the motion
of these objects is only observed in an image plane projection.

However, if two such points exist between two objects that
move non-uniformly with respect to each other over extended
periods of time, it is reasonable to assume that this indicates
the existence of a joint. More specifically, if the average link
coincidence

d2
ij = min

(xi,xj)
d(xi,xj)

= min
(xi,xj)

1
NJ

NJ∑

t=1

(xt
wi(xi) − xt

wj(xj))2, (12)

with xt
wi(x) = Ft

i(Ti
−1(x)), is zero, then it is assumed that

there exists a joint between i and j with coordinates

(x∗
i ,x

∗
j ) = arg min

(xi,xj)
d(xi,xj). (13)

Of course, due to noise, this value will never truly be zero.
The deviation from zero can be incorporated into a confidence
measure of the existence of a joint between links i and j.

As an alternative to determining the coordinates xi and xj

one can assume that the joint centers map to the same world
coordinate location at t = 0 and solve for

x∗ = arg min
x

1
NJ

NJ∑

t=1

(Ft
i(x) − Ft

j(x))2. (14)

Ideally one would use the Euclidean 3D world coordinate
transforms F(x) = Rx + t and determine joint locations in
3D (cf. O’Brien et al. (2000)); however, we can only observe
the projected motion of body parts in the image plane. Hence
we use the general 2D affine transform as obtained from the
motion segmentation stage Ft

i(x) = At
ix+tt

i with At
i a 2×2

matrix and x, tt
i ∈ R2 and obtain

x∗
ij = arg min

x
dij(x)

= arg min
x

1
NJ

NJ∑

t=1

(At
ix + tt

i − At
jx − tt

j)
2. (15)

The sum achieves its minimum at

x∗
ij = −(

∑

t

(At
ij)

T At
ij)

−1
∑

t

(At
ij)

T (tt
ij), (16)

with At
ij = At

i − At
j and tt

ij = tt
i − tt

j . The average joint
coincidence can be expressed as

d2
ij =

1
NJ

NJ∑

t=1

(At
ijx

∗ − tt
ij)

2. (17)

The values of x∗
ij and dij denote for pairs of possible links i

and j, the location and average coincidence of a possible joint.
To obtain a reliable confidence measure cij for the existence
of a joint between i and j, we denote aij = 1 to be the event
that there exists a joint between i and j, and correspondingly
with aij = 0 we denote that there is no joint. We assume that
the joint coincidence is a random variable with p(dij |aij = 1)
exponentially decreasing in dij

p(dij |aij = 1) = ad · e−addij . (18)

In addition, the distance of the joint location x∗
ij from the re-

spective segments i and j is incorporated into the confidence
measure where the distance is expressed in terms of the Ma-
halanobis distance from the respective segment masks in the
reference frame. More specifically, the distance of a joint cen-
ter x from the ith link is given as

si(x) =
1
2
(x − µi)T Σ−1

i (x − µi), (19)

with µi the center and Σi the moment matrix of the pixel
mask in the reference frame that constitutes the ith segment.
This distance is also assumed to be a random variable that is
distributed exponentially. We hence get

p(x∗
ij |aij = 1) =

1
a2

s

e−as(si(x∗
ij)+sj(x∗

ij)). (20)

The parameters ad and as from Eqs. (18) and (20) should
ideally be estimated from training data. For convenience we
chose these values manually to be a−1

d = 1.5pixel and as =
1.5. The confidence measure cij hence relies on two factors:
the average coincidence of links, dij , and the distance from
the respective link segments in the image plane. Assuming
uniform priors we can use Bayes law to obtain

cij = p(aij = 1|x∗
ij , dij)

∝ p(dij |aij = 1)p(x∗
ij |aij = 1). (21)

The problem of determining the true joints between the visible
links is now to select a subset of edges of a fully connected
undirected weighted graph G = (V, E), where V = {Ci} is
the set of all links, and E is the set of edges with weights cij .

If all segments that were extracted during the motion seg-
mentation stage would constitute links in one single model, the
search for the true joints is solved by calculating the maximum
spanning tree of G (O’Brien et al. 2000). However, spurious
segments such as the background segment can be observed
and have to be pruned from G. This problem is similar to
the clustering of MLDs in (Rashid 1980) where a cut thresh-
old was used to remove spurious connections in maximum
spanning trees. We remove spurious links from the maximum
spanning tree of the link connectivity graph G by comparing
the confidences of all edges of the tree with the median of all
confidences of the tree. However, if the number of observed
candidate links is small, the median approach becomes unre-
liable, and we employ simple thresholding.

5 Model assembly and tracking

From the collected information a kinematic chain model is
built as follows: For the sake of simplicity we assume a two-
link kinematic chain as depicted in Fig. 2. A transformation
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Fig. 2. Definition of the coordinate systems and transformation for
the extracted kinematic chain

needs to be defined that maps points from each link coordinate
system into the image plane. A point x̂i is mapped from the
coordinate system of the ith link into the image plane through
the transformation

f(x̂i, ϕ; ξ) = G0(ϕ0)G(ϕi; ξi)Tjix̂i, (22)

where Tji maps a point from the coordinate system of link i
to the system of link j in its initial configuration.

The transformation G(ϕi, ξi) then performs the joint
transformation in the coordinate system of link j, where ϕi

denotes the variable parameters of the transformation (e.g.,
joint angle) and ξi the invariant parameters (e.g., location of
joint i in the link j system). Additional links lead to added
terms of the form G(ϕk; ξk)Tlk in Eq. (22). The transforma-
tion G0(ϕ0) is the final transformation of the kinematic chain
into the image plane with parameters ϕ0. For this work we al-
lowed translation, rotation and scaling of the complete model,
rotation around each joint and scaling in a single direction
for each link. The scaling direction of a link was chosen as
the direction that connects the parent joint (i.e., the incoming
joint) with the center of mass of the link. Hence in Fig. 2, link
i can rotate around the joint that connects it with link j and
scale along the indicated direction. The combined system of
link i and j can rotate, translate and scale with respect to the
reference (image plane) coordinate system. The allowed scal-
ing along a given direction resembles the concept of scaled
prismatic link shapes (Morris and Rehg 1998).

Equation (22) describes the full transformation of the
kinematic model into the image plane, allowing model-based
tracking. Other formulations are possible, such as product of
exponentials (Bregler and Malik 1998) in which all links re-
side in a global body frames. Our approach resembles more
the Denavit–Hartenberg formulation (Murray et al. 1994) in
that it defines relative transformations between the link frames.
This approach has the advantage of being able to define local
link coordinate systems that align with the images encoding
the link appearance information, allowing a fast evaluation of
the matching function. The points in the ith link coordinate
system x̂i are the actual pixel coordinates of the texture image
Ji that encodes the link appearance. The transformed coor-
dinate f(x̂i, Φ;Ξ) on the other hand is now given as image
plane pixel coordinates which allows efficiently obtaining the
image-matching residuals

r̂i(x̂i, Φ;Ξ) = Ji(x̂i) − It(f(x̂i, Φ;Ξ)), (23)

Fig. 3. Sequence showing the leg portion of a synthetic walker regis-
tered into the world coordinates of actual video footage. The top right
image shows the extracted layers with black pixels denoting outliers.
The second row shows two sample frames from the resulting tracking
sequence with the extracted articulated model. The detected joint is
indicated by the white circle

with Φ = {ϕi} and Ξ = {ξi}, the set of all variant and invari-
ant chain parameters respectively. The number of estimated
motion parameters depends on the structure of the model (i.e.,
number of joints and links) and includes global location, pose
and scale of the model, in addition to one joint parameter and
prismatic link scale parameter for each joint.

To test the extracted model, we implemented a particle
filter that performs the model-based motion capture by itera-
tively propagating pose hypothesis over time. The likelihood
function is based on the matching residuals

w(It, ϕt) ∼ e
− 1

L

∑
i

1
Zi

∑
x̂∈Ji

λ̂i(x̂)(r̂i(x̂,It,ϕt))2 , (24)

with L the number of links in the model and with the nor-
malization factor Zi =

∑
x̂∈Ji

λ̂i(x̂). The λ̂i(x̂) denotes the
alpha mask information of the ith link at the (link) coordinate
x̂. The weighting function simply measures the registration
error of the model in a given configuration and location ϕt

registered to the image It. To allow sub-pixel accuracy, values
at non-integer locations in It are obtained through interpola-
tion.

Particle filters are good at avoiding local maxima dur-
ing the tracking process, especially in situations where link
displacements of magnitude comparable to the link dimen-
sions occur, which may prove very difficult for standard reg-
istration methods based on image gradients. The tracking ap-
proach we employed performs well for moderately long image
sequences. The use of scaled prismatic link transformations
evenly handles foreshortening effects to some degree but can
fail in situations where, for example, the three dimensionality
of the human body causes severe changes in link shape ap-
pearance. However, the simple model employed above proved
sufficient for the purpose of this work, of which the focus is
the extraction of articulated model from visual data. Many
other alternative model-based tracking approaches could be
implemented. One may consider including additional edge or
silhouette information into the tracking framework (Deutscher
et al. 2000), or the use of multi-scale approaches to improve
performance.
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Fig. 4. Arm model acquisition and tracking. Top row: Subject moving with respect to the camera exercising the shoulder joint. Bottom two
rows: Subject exercising elbow and shoulder joint while not moving with respect to the camera. The latter example shows subsequent tracking
while the camera zooms and changes viewing direction

6 Experiments

We applied our method to a set of synthetic and real image
sequences containing articulated motion of various degrees
of complexity. In the first experiment, a synthetic walking
model was generated with Poser 4.0 by Curious Labs Inc.
All body parts but the left leg were removed from the model
in order to eliminate occlusion artifacts. The thus obtained
walking leg was registered with actual video footage. This type
of sequence allows the generation of near-realistic sequences
with the added advantage of being able to control the size,
walking style and appearance of the target. Since the model
walks away from the camera, it undergoes substantial changes
in viewpoint and scale.

The motion segmentation stage extracts three layers in-
cluding the background, with few outliers (see Fig. 3). The
proposed procedure correctly estimates the location of the
knee joint and the resulting assembled articulated model is
used to successfully track the object until it leaves the field of
view after a total of 94 frames.

Figure 4 shows two arm-modeling experiments.Arm mod-
eling is important in HCI applications that require performing
hand and arm tracking for “hand as mouse” interfaces or ges-
ture recognition applications. For both sequences, we again
extracted two-link, one-joint models from the scenes, which
requires segmentation of the sequences into three layers. In
both cases, the resulting model is able to track the arm in sub-
sequent frames. Even substantial changes in zoom and view-
point are handled correctly by the tracker as can be seen in the
bottom row of Fig. 4.

The correctness of the extracted models in terms of its
kinematic structure depends both on the correct detection of
the joints and the precision of their locations. While the correct
detection of the joints, and hence the correctness of the kine-

matic topology of the extracted model, can be verified visually,
the precision of the joint location estimates is hard to assess for
natural sequences. We therefore generated a synthetic upper
body sequence of a user moving both arms using a charac-
ter animation tool (Labs 2001) (see Fig. 5). For this sequence
the precise image coordinates of the joints of the model are
available, allowing the measurement of the accuracy of the
estimated joint locations.

The model extraction algorithm was applied to the se-
quence with the reference frame set to frame t = 10. The
upper body of the synthetic model does not move with respect
to the background and hence the algorithm observes a five
component articulated model with two components for each
arm.

A comparison of the estimated joint locations with the
available ground truth data reveals that the precision is be-
low nine pixels for all four joints with the best location esti-
mate (the right shoulder) having sub-pixel accuracy. The time-
varying location errors of the joints are shown in Fig. 6 and
summarized in Table 1. The joint location error averaged over
all frames of the test sequence and all joints is Mean(∆) = 3.2
pixels with a video resolution of 640 × 480 pixels. The dif-
ference in accuracy between the shoulder and elbow angles
stems from fact that the shoulders are attached to the large
body segment that due to its size registers much better over
time than the smaller arm segments. The difference in accu-
racy between the right and the left arm is coincidential and
stems from the randomness induced by the feature tracker and
clustering during the initialization stage.

The final experiment was conducted in a realistic HCI ap-
plication environment where a person is standing in front of a
large screen interactive display that is equipped with a set-top
camera. The goal is to model the complete upper body of the
user. The user is performing a short exercise of arm movements
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Fig. 5. Synthetic image sequence of a person moving both arms. The
sequence is modelled with five motion segments shown in the top
right image. White pixels denote outliers. The joint locations that
were estimated for this sequence are compared to the true locations
in Table 1

Table 1. Precision of joint location estimates for the sequence shown
in Fig. 5 compared to ground truth data. The values ∆x and ∆y denote
the deviation in x- and y-direction respectively, while ∆ denotes the
L2 norm of (∆x, ∆y).All values are with respect to a video resolution
of 640 × 480

Left Arm Right Arm
Shoulder Elbow Shoulder Elbow

∆x
−0.97pels
−3.72mm

−4.76pels
−18.3,mm

0.28 pels
1.08 mm

2.23 pels
8.56 mm

∆y
3.30 pels
12.7 mm

−1.08pels
−4.15mm

0.35 pels
1.34 mm

−0.58pels
8.56 mm

∆t|t=0
3.44 pels
13.2 mm

4.88 pels
18.7 mm

0.44 pels
1.69 mm

2.30 pels
8.83 mm

Mean 3.43 pels
13.2 mm

6.17 pels
23.7 mm

0.56 pels
2.15 mm

2.67 pels
10.3 mm

to allow the system to acquire the articulated model. Figure 7
shows a person waving both arms while moving slightly side-
ways with respect to the camera. This type of motion lead
to the detection and extraction of a six-link articulated model
containing two segments for each arm and the torso.A qualita-
tive inspection of the extracted model and comparison with the
joint locations of the synthetic model indicates that the joint
locations are reasonable. The error in the joint locations are,
however, larger than for the synthetic sequence, since there
is an observable asymmetric vertical placement of the shoul-
der joints of approximately 10 pixels. The extracted model is
used successfully for tracking the arms and torso of the user
through the entire image sequence.

7 Discussion

For the development of the proposed model acquisition and
initialization method, a number of simplifying assumptions
have been made that need to be addressed in future work.
In particular, the number of layers, and hence the maximum
number of links that can be seen by the system, is supplied
by the user. Future systems need to estimate the number of
layers from the data. An approach to this can be found in
(Torr et al. 2001). Furthermore, the current system extracts
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Fig. 6. Precision of joint location estimates for the synthetic image
sequence shown in Fig. 5

Fig. 7. Subject with waving arms and swaying torso

a cardboard-type model in which rigid layers rotate around
joints in a plane parallel to the image plane. Such a model is
able to correctly model a large number of situations, especially
if the amount of perspective effects (parallax, movement in z-
direction) are small. For situations in which these conditions
do not hold, more powerful 3D models have to be constructed
or an initial simplified (e.g., cardboard) model has to be ex-
tended and adapted online to accommodate perspective and
three-dimensional effects during the tracking stage.We believe
that three-dimensional models can be acquired from video in a
similar fashion without any prior structural knowledge. Also,
effects due to occlusion are not handled so far. As occlusions
or uncoverings of layers takes place, the system should infer
a depth ordering of the extracted links. One important next
step will be to include contour information into the model-
tracking framework. The link segments yield nicely defined
link boundaries that can be used to easily initialize contour
models for contour-based tracking.

Since all parts of the target to be modeled might not be
visible in the initial reference frame, the model construction
has to be performed over several frames such that all parts are
“seen”. Limbs that do not undergo any motion or move with
the background remain unmodeled. For example, consider the
test sequence in Fig. 4 (bottom) in which the subjects trunk
does not undergo any motion relative to the background. It
hence remains unmodeled by the system. Furthermore, two
limbs that are connected by a joint might not move relative
to each other at every frame in which case a joint extraction
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is infeasible and has to be delayed until relative motion oc-
curs. The system might even decide online that previously
assumed rigid links have to be split up because a joint has
been “discovered”. As an example, consider the test sequence
in Fig. 4 (top) in which the arm is modeled as a rigid segment.
Finally, noise and estimation errors can lead to imprecise joint
locations, which can lead to poor performance of the model.
The presented framework does not assume that the skeletal
structure of the articulated model stems from the precise min-
imum spanning tree of possible link connections and is able to
remove spurious links. Though not attempted, this allows in
general to even model multiple people simultaneously. How-
ever, since the connectivity is based on a graph without cycles,
no articulated models with closed loops can be handled, which
does not occur much in nature anyway.

8 Conclusion

This paper presents a method for acquiring articulated mod-
els from monocular video from the ground up by performing
a combination of multi-frame motion segmentation and joint
constraint detection. It was shown that the proposed system
is able to determine both the kinematic structure and shape of
complex articulated objects and use the obtained information
to build corresponding articulated models. These models were
subsequently used for visual tracking, thus showing how the
general problem of model initialization and adaptation can be
solved for a wide variety of applications. The proposed ap-
proach can be viewed as giving the system knowledge about
the building blocks (limbs and joints) of articulated motion
without giving any assembly instructions. While this approach
is currently not able to compete with detailed handcrafted
models, it offers the potential of gaining further insight into the
domain of articulated motion capture, analysis and synthesis.
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