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Introduction

Critical illness is generally associated with an increase in
metabolic rate, and hence increased demand for both
oxygen and metabolic substrates. The attempt to meet
higher substrate demands requires an increase in deliv-
ery. Delivery to the cell may increase through elevated
extraction as well as increased delivery to the microcir-
culation itself [1]. Amongst surgical patients, an in-
crease in oxygen demand is initially met by increased
extraction, and then by increased delivery using `cardiac
reserve' [2]. Cardiac reserve is defined as the difference
between basal and maximal cardiac work. Both the
magnitude of this reserve and its responsiveness to re-
cruitment may have profound impact on the outcome
of critical illness: failure to meet the increased metabolic
demands of the tissues will result in (potentially delete-
rious) metabolic deficit.

This article will focus on the factors which regulate
and limit cardiac reserve. A novel approach to improve
the balance between substrate demand and delivery
will be presented.

Normal cardiac physiology

During normal myocardial contraction, electrical depo-
larisation initiates, through the interactions of calcium,
troponin and tropomyosin, the cross-bridging of actin
with the two heads of the myosin molecule. This results
in sarcomere shortening. The myosin heads also contain
ATPase that is activated by contact with actin, releasing
the energy for contraction. This myosin-bound ATPase

may be an important regulator of contractile function ±
particularly of contraction velocity (reviewed in [3]).
Genesis of ATP is therefore crucial, in order to enable
contraction, but also to maintain electrical integrity
(through a Na + /K + -ATPase).

This myocardial contractile process is metabolically
`expensive' and its metabolic rate is thus extremely
high. The human heart will utilise oxygen at a rate of
8 ml/100 g/min at rest and 50 ml/100 g/min during in-
tense exercise or illness compared to 0.2 ml/min/100 g
for resting skeletal muscle or just 0.4 ml/100 g/min for
the whole human body [4]. The heart of an 80 kg resting
man will thus use 5 % of the total body oxygen con-
sumed ± 80 % of which is used for the contractile process
[5].

This oxygen is delivered through the coronary circu-
lation.

In vivo, coronary autoregulation maintains constant
flow over perfusion pressures of 60±140 mmHg so long
as O2 demand is constant. The amplitude of this plateau
is increased when myocardial oxygen use (MVO2) is
higher [6]. The initial inflection point at the origin of
the plateau is at higher pressure for subendocardial tis-
sues, and coronary autoregulation capacity is also lower
in the right than the left ventricles [7].

In vivo, of course, this autoregulatory capacity is
masked. MVO2 is intensely supply dependent, because
changes in substrate delivery (blood pressure and cardi-
ac output) are inextricably linked to changes in cardiac
loading conditions and work, and hence substrate de-
mand.

This linkage of oxygen demand to supply has to be
very tight indeed. The human myocardium is totally de-
pendent on this oxygen supply, as it relies exclusively on
aerobic metabolism and cannot incur significant oxygen
debt. Myocardial tissue oxygen extraction (MEO2) can-
not increase significantly from its basal level of < 70%
(compared to 25 % in most organs), and coronary va-
sodilatation is thus the only real way to allow for in-
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creased myocardial oxygen utilisation (MVO2). Indeed,
MVO2 and CBF are linearly-related [8]. Coronary re-
sistance is equally divided between the vast myocardial
capillary bed (500 cm2 per gram of tissue: 4 times that
of skeletal muscle) [9] and arterioles of < 100 microns
diameter.

All of these vessels are under vasomotor control [10].
The difference between basal coronary flow (80 ml/min/
100 g) and the maximum which can be pharmacological-
ly induced is termed `coronary flow reserve' and is very
large: flows can increase through vasodilatation by an
order of 4±6-fold.

With increasing cardiac work, coronary flow increas-
es up to a maximum. Beyond this point, cardiac work
becomes supply-dependent. At this point, contractility
falls in order to maintain cardiac output at a sustainable
level for a given level of oxygen consumption [4]. This
situation may arise in conditions such as sepsis, especial-
ly if coronary disease is also present.

Means of increasing cardiac performance

The classically-described `Starling Curves' relating ven-
tricular end-diastolic pressures with stroke work have
been replaced in the human by the concept of a `family'
of such curves, whose relative position and gradient is
determined by the contractile state of the ventricle
[11]. Studies by Braunwald in humans suggest that, un-
der normal circumstances, the heart functions near the
top of a Sarnoff curve [12, 13]. Nonetheless, in principle,
stroke output is determined by preload, afterload, and
myocardial contractility.

Limits to cardiac reserve

Exhaustion of cardiac reserve may be profoundly dele-
terious. Cardiac reserve will depend on:

a. The slope of the Sarnoff Curve and the ability to
move up it (partly determined by ventricular compli-
ance)

b. Which Sarnoff curve one is on and the capacity to
move to a different curve (current compared to max-
imal inotropic response)

c. Where on the curve one already is (determined by
loading conditions and compliance)

Each of these factors will also depend on a number of
other factors including the balance between oxygen sup-
ply and delivery to the heart. Hence coronary reserve
may play a crucial role, as may alterations in the meta-
bolic efficiency of the myocardium.

Cardiac reserve in cardiac disease

Extravascular compressive forces proportional to after-
load comprise 40% of coronary vascular resistance.
These compressive forces (and hence coronary flow)
are phasic: 80% of LV flow occurs in diastole. MVO2
is 20±40% higher in the subendo- than subepi-cardium,
due to increased cell shortening and wall tension here.
With increasing heart rate and afterload, time in diasto-
le reduces and wall tension rises, thus reducing suben-
docardial flow at a time when metabolic demands are
rising. The subendocardium thus reaches supply-depen-
dency earlier than other regions of the ventricular wall.

In left and right ventricular (LV and RV) hypertro-
phy, capillary bed size is not increased. Thus, although
flow per unit weight is normal at rest, there is already a
degree of vasodilatation at work, and coronary flow re-
serve is less. In the normal thin-walled RV, compressive
forces are minimal and coronary flow is little influenced
by cardiac cycle. In RV hypertrophy, as well as in the
normal LV, subendocardial flow is phasic, and the sub-
endocardium again vulnerable to ischaemia [14]. In-
creased collagen matrix in cardiac hypertrophy reduces
diastolic compliance and hence preload reserve (the re-
cruitment of contractile reserve by changes in LVEDP
mediated through sarcomere stretch). Thus, the hyper-
trophied ventricle is associated with limited preload re-
serve, lower coronary flow reserve (especially in the
subendocardium) a `flatter' Starling/Sarnoff curve, and
reduced cardiac reserve.

Tension generated in the myocardium is inversely
proportional to ventricular radius: big ventricles require
greater tension to generate a given pressure, and con-
sume more oxygen. The dilated LV therefore has lower
cardiac reserve due to higher basal consumption.

The need for increased cardiac work to maintain ade-
quate oxygen delivery in anaemic states leads to in-
creased basal MVO2. At low haematocrits (approxi-
mately 12%, or a Hb of 3.5 g/dl) coronary flow reserve
is exhausted. For similar reasons, hypoxaemia will also
use up coronary flow reserve and cardiac `work reserve',
with a critical limit being an FiO2 of 12 % acutely in
dogs [15].

Finally, coronary arterial narrowing (due in general
to coronary atherosclerosis) will also reduce coronary
reserve, even to the point where flow-dependency of
function is reached.

Cardiac reserve in sepsis

Myocardial dysfunction occurs early in sepsis [16]. LV
ejection fraction often falls even in the absence of shock
[17], although stroke volume may be maintained
through an increase in end-diastolic volume [18]. Septic
patients generally increase cardiac output with fluid
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challenge, but through varied means: if end-diastolic
volumes is initially low, Starlings Law operates, whilst
if EDV is initially high, stroke volume increases through
a reduction in afterload. Calvin found that fluid chal-
lenge had little effect on LVEDV or output in 30% of
patients, an effect ascribed to altered RV dynamics act-
ing through ventricular interdependence [19]. In some
patients, therefore, the Starling curve is depressed (be-
ing moved downwards and to the right) with reduced
slope. In others, compliance is reduced in the ventricle.
Thus, fluid challenges may increase LVEDP without in-
creasing preload, or may increase preload without sig-
nificant increase in cardiac work [20]. Such impaired
cardiac reserve is associated with a poorer outcome
[21, 22].

Specific factors influencing cardiac reserve in sepsis

Reductions in myocardial reserve may partly relate to:

(i) Downregulation of myocardial beta- adrenorecep-
tor activity, thus limiting inotropic and chronotropic
responses and producing a downward shift of the
Sarnoff curve [23, 24].

(ii) Production of myocardial depressant factors. Hu-
man blood from septic patients contains elements
which depress myocardial performance [25]. Cyto-
kines may play a key role, possibly through nitric
oxide (NO). NO has a depressant action on cardio-
myocytes [26] and is synthesised in cardiomyocytes
by both a constitutive and inducible nitric oxide
synthase (cNOS and iNOS respectively). Cytokines
such as interleukin-6 (IL-6), IL-1, and TNF-alpha
induce nitric oxide synthase in cardiac myocytes,
causing a marked reduction in systolic performance
[26, 27] through a cGMP-mediated mechanism
[28]. In humans, a synergistic combination of IL-
1beta and TNF-alpha may be especially important
[29].

(iii) Alterations in coronary blood flow (CBF) may con-
tribute to the myocardial dysfunction of sepsis.
Coronary flow is higher in sepsis at any given work
load [4] due possibly to inappropriate vasodilator
release or reduced myocardial metabolic efficiency
[30, 31]. Alternatively, oxygen extraction ratios
may be reduced in sepsis in the coronary circula-
tion, just as they may be in the systemic circulation
[20]. This may reflect `shunting', or impaired cellu-
lar O2 use. Whatever the cause, the ability to in-
crease myocardial oxygen extraction is depressed
[32] and coronary flow may be insufficient for the
metabolic demands of the tissues, leading to de-
pressed myocardial function.

(iv) Altered cardiac metabolism. Energy for cardiac
contraction is mainly derived from oxidative phos-

phorylation. Lipid substrates are competitively
preferred to glucose in the beating human heart
[33]. In sepsis, metabolic alterations may impair
myocardial performance through diverse mecha-
nisms:
a. The heart may rely increasingly on endogenous

metabolic substrates, whose depletion might
therefore lead to impaired contractility [31]:

b. When myocardial oxygen delivery is reduced,
glucose uptake initially increases dramatically.
Glyceraldehyde-3-P dehydrogenase activity
falls, however, limiting ATP formation from
this source, and the generation of high levels of
NADH and lactate cause further inhibition. An
early increase in glycolysis is therefore followed
by a fall. Increased sympathetic action, mean-
while, enhances free fatty acid production.
These are used preferentially for metabolism ±
and yet require more oxygen for their metabo-
lism than does glucose. They also further inhibit
glycolytic flux. Thus, hypoxia (or reduced oxy-
gen delivery) is detrimental to the metabolic ef-
ficiency of the heart.

c. Loading conditions alter metabolic efficiency.
For a given external work, the heart pumps a lar-
ger volume at lower pressure more efficiently
that a smaller volume at higher pressure [4]. In-
creased ventricular volumes (as seen in sepsis)
also impair myocardial contractility.

d. Myocardial contractility influences MVO2 for
any given external work: an increase in contracti-
le state increases energy use during that contrac-
tion, and not at rest between contractions [34].

e. Cellular metabolic efficiency can be modulated
in health and disease [35], a mechanism which
may rely upon the use of nitric oxide as a second
messenger [36, 37, 38]. This is true not only of
peripheral tissues, but also of the myocardium
[39]. Impaired metabolic efficiency might ex-
plain some of the abnormalities of cardiac func-
tion seen in sepsis [40].

Novel strategies

In the septic state, there may be defects not only in oxy-
gen and substrate delivery by the heart, but also in their
utilisation by peripheral tissues. Non-survival is associ-
ated with an impaired ability to increase oxygen deliv-
ery and an inability to increase oxygen extraction [22].
Accumulation of lactate in body tissues despite high ox-
ygen deliveries may be due to shunting or extraction
failure, or a failure of cellular utilisation (metabolic fail-
ure).

A new therapeutic strategy for the critically ill might
aim to increase coronary flow, improve cardiac function,
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and improve substrate uptake and metabolic efficiency
in all tissues. Such an intervention might improve cardi-
ac reserve and performance (aiding substrate delivery)
as well as peripheral tissue metabolism.

Renin-angiotensin systems (RAS)

The circulating human renin-angiotensin system (RAS)
plays an important role in circulatory homeostasis. An-
giotensinogen produced by the liver is acted upon by re-
nin (produced by the kidney) to produce angiotensin I
(Ang I). This is cleaved by angiotensin converting en-
zyme (ACE), to generate the vasoconstrictor angio-
tensin II (Ang II). Ang II also stimulates adrenal aldos-
terone release (leading to salt and water retention),
and degrades vasodilator kinins. In this way, increasing
RAS activity raises blood pressure. However, local re-
nin-angiotensin systems exist in diverse tissues including
human myocardium [41], adipose tissue [42], and skele-
tal muscle [43].

RAS, coronary flow and diastolic function

ACE inhibition improves endothelium-dependent va-
sodilator responsiveness through a nitric oxide-mediat-
ed effect. It also reduce Ang II-induced oxidant stress
within the vessels wall, and protect local nitric oxide
from oxidative inactivation [44, 45]. ACE inhibition im-
proves coronary flow through both stenotic and normal
coronary arteries through a kinin-dependent mecha-
nism [46]. These beneficial effects are likely to be medi-
ated through local ACE inhibition rather than effects on
circulating ACE [45]. In the hypertrophied heart, local
(and not systemic) ACE inhibition may improve ven-
tricular diastolic function and coronary flow reserve
[45, 47, 48]. The effects of ACE inhibitors on reducing
LV end-diastolic volumes may also be beneficial. Since
myocardial wall tension is proportional to systolic ven-
tricular pressure and inversely proportional to ventricu-
lar radius, vasodilatation and reduction in LVEDD
through ACE inhibition may reduce myocardial work.

Metabolic effects of tissue RAS

Local RAS may influence tissue metabolic responses
[43]. We have investigated this using a polymorphism
of the human ACE gene in which the absence (Dele-
tion, D allele) rather than the presence (Insertion, I al-
lele) of a 287 base pair fragment is associated with high-
er tissue ACE activity [49].

Cardiac growth responses to exercise training were
shown to be associated with the D allele [50]. Unpub-
lished data suggested that this might be related to geno-

type-dependent differences in cardiac work for any giv-
en external work, with those of DD genotype perform-
ing more cardiac work per unit external work. The asso-
ciation of low ACE levels with improved biomechanical
performance have since been substantiated [51]. The
maximum time (seconds) for which 78 male recruits
(mean � SEM age 19.0 � 0.2 years, height 176.6 �
0.7 cm, body mass index 22.2 � 0.2 kg/m2) could per-
form repetitive elbow flexion whilst holding a 15 kg bar-
bell was assessed both before and after the training peri-
od. Pretraining performance was independent of geno-
type (mean 119.8 � 6.2 s). Duration of exercise im-
proved significantly for those of II and ID genotype
(79.4 � 25.2 and 24.7 � 8.8 s: p 0.005 and 0.007 respec-
tively), but not for the 12 of DD genotype (7.1 � 14.9 s:
p 0.642). Improvement was thus eleven-fold greater (p
0.001) for those of II than DD genotype.

If these changes were due to enhanced efficiency of
muscle metabolism, we might expect to see an allele
skew amongst elite endurance athletes exercising at
very high altitude ± where calorie intake is low, calorie
expenditure high, and oxygen supply low. 25 elite unre-
lated male British mountaineers with a history of as-
cents beyond 7000 m without the use of supplemental
inspired oxygen were thus studied. Genotype distribu-
tion was compared to that of 1906 healthy British males.
Mean (SD) age was 40.6 (6.5) years in the 25 subjects,
and 55.6 (3.2) years amongst the 1906 controls. Both
genotype distribution and allele frequency differed sig-
nificantly between climbers and controls (p 0.02 and
0.003 respectively), with a relative excess of II genotype
and deficiency of DD genotype [51].

If due to enhanced metabolic efficiency, we might
also anticipate a relative conservation of energy stores
to be associated with II genotype. We have demonstrat-
ed this to be the case [52]. At the start and end of train-
ing, assessment was made in 123 male army recruits of
body composition using bioelectrical impedance, Mag-
netic Resonance Imaging of the mid-thigh, and multiple
skinfold thickness measurements. Changes in body
composition with training were strongly influenced by
the presence of a D allele, and the relationship between
changes in body composition in those with and without a
D allele was similar across all three methods of assess-
ment (Table 1).

Our observed genotype-dependent improvements in
performance might in theory derive from increases in
oxygen delivery (including cardiac output and muscle
capillary density): conversion of type 2 to type 1 fibres
of high oxidative capacity: and increases in mitochondri-
al numbers and density [53, 54]. They may also relate to
a differential change in metabolic substrate: raised
stress-hormone concentrations increase the availability
of exogenous (carbohydrate and fatty acids from liver
and adipose tissue) or endogenous (muscle triglyceride
and glycogen stores) oxidative fuel [55], and endur-
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ance-trained individuals rely more heavily upon fatty
acids as an energy source [56]. However, the association
of increased body fat stores with improved physical per-
formance might suggest an influence of ACE genotype
on energy balance, and in the nature and efficiency of
use of oxidative fuel for metabolism.

Such effects of ACE genotype on energy balance
might be mediated through a number of different mech-
anisms.

Firstly, a local adipose RAS may alter substrate mo-
bilisation. Angiotensinogen gene expression is high in
fat and is influenced by nutritional state [57]. Both Ang
II [57] and kinins [58] may exert a metabolic regulatory
role. Kinins increase insulin-stimulated hexose trans-
port in adipocytes [59], and ACE inhibition increases in-
sulin suppression of nonesterified fatty acid flux [60].

Secondly, local RAS [43] may modify substrate utili-
sation. Skeletal muscle cells contain a complete kal-
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n Mean (SEM)
change

p value
(paired t test)

Adjusted mean
change (± SEM)

Bioimpedance
mass (kg)
II 19 1.97 (0.57) 0.003 2.14
D + 61 ±0.10 (0.60) 0.54 ±0.1

p value 0.001

Skinfold assessment:
mass (kg)
II 14 1.88 (0.69) 0.01 1.78
D + 13 ±0.57 (0.51) 0.28 ±0.47

p value 0.01

MRI
volume (cm3)
II 16 9.86 (2.51) 0.001 9.27
D + 14 0.15 (2.11) 0.98 0.83

p value 0.01

FAT
Bioimpedance
fat mass (kg)
II 19 0.73 (0.39) 0.07 0.55
D + 57 ±0.26 (0.20) 0.21 ±0.20

p value 0.04

Skinfold assessment:
fat mass (kg)
II 14 ±0.13 (0.33) 0.67 ±0.36
D + 13 ±1.66 (0.45) 0.004 ±1.35

p value 0.05

MRI
fat volume (cm3)
II 16 0.59 (1.57) 0.70 0.16
D + 14 ±3.34 (1.80) 0.08 ±2.86

p value 0.20

Bioimpedance
non-fat mass (kg)
II 19 1.09 (0.37) 0.007 1.31
D + 57 ±0.08 (0.35) 0.82 ±0.15

p value 0.01

Skinfold assessment:
non-fat mass (kg)
II 14 2.01 (0.49) 0.002 2.00
D + 13 1.03 (0.34) 0.01 1.03

p value 0.1

MRI
muscle volume (cm3)
II 16 9.57 (1.80) 0.0001 9.32
D + 14 3.61 (1.25) 0.01 3.88

p value 0.02

Table 1 Mean changes in body
composition with training, by
ACE genotype



likrein-kinin system [61]. The I allele is associated with
lower kininase II (ACE) activity [49], and physical
stress and hypoxia [62] raise skeletal muscle kinin levels
[63, 64]. These in turn drive increased glucose uptake in
exercise, and stimulate amino acid uptake [62]. Similar-
ly, ACE-inhibition increases skeletal muscle glucose up-
take, insulin sensitivity, glycogen storage, glucose trans-
porter GLUT-4 synthase activity, hexokinase activity,
and thus the adaptation of the enzymes responsible for
glucose catabolism [65, 66]. Postoperatively, bradykinin
increases forearm glucose uptake, and reduces both en-
dogenous hepatic glucose production [67], and protein
catabolism by £ 50 % [68]. Kinin-induced changes in
blood flow [69] also play a role in improving glucose up-
take through vasodilatation [70].

These renin-angiotensin system effects may work to-
gether with other metabolic tissues to influence whole
body energy balance. Adipose and striated muscle
GLUT4 glucose-transporter activity may be RAS-de-
pendent, and can markedly alter whole body glucose
disposal [71]. In rats, kinins may alter relative glucose/
free fatty acid/beta-hydroxybutyrate substrate availabil-
ity [68]. Angiotensin II has both gluconeogenic and gly-
cogenolytic actions [72, 73], stimulates hepatic gluco-
neogenesis and shifts lactate uptake to release [74].

Finally, angiotensin II also causes wasting in rats
partly through a metabolic effect [75], and increases glu-
cose oxidation out of proportion to its uptake [76] sug-
gesting inefficient utilisation. By modulating kinin lev-
els, tissue ACE activity may also influence metabolic ef-
ficiency. Nitric oxide (NO) donors and bradykinin both
reduce renal oxygen consumption, whilst inhibitors of
NO synthesis reduce the metabolic efficiency of sodium
transport [36]. Indeed, NO may be involved in the sig-
nalling processes which regulate muscle respiration [35].

Such effects on the efficiency of muscle mechanical
function and energy utilisation may be of profound im-
portance for the treatment of critically-ill patients. In
the presence of ischaemia/reperfusion, both kinins and
ACE inhibition preserve cardiac function and energy
stores [77, 78]. ACE inhibition has been shown to modu-
late myocardial oxygen consumption [39], possibly
through altering NO production [38].

Pulmonary effects of RAS

It would thus seem that human tissue metabolic perfor-
mance might both be manipulated through local RAS
activity. There may be other additional advantages. As
discussed above, cardiac performance may be en-
hanced, leading per force to improved tissue oxygen de-
livery. Recent work at UCL also suggests that aspects of
pulmonary function may additionally be improved.
Data suggest that local lung RAS may be influencing
ventilation/perfusion matching through the modulation
of the hypoxic pulmonary vascular response. In addi-
tion, central respiratory drive may be under the control
of neuronal RAS, whilst respiratory muscle function
may be under RAS control in the same way as other
skeletal muscle. Thus, RAS manipulation might be
used to enhance both pulmonary and cardiac compo-
nents of oxygen delivery, as well as improving its periph-
eral utilisation.

In conclusion

Impaired cardiac reserve is associated with a poorer
outcome in the critically ill. Cardiac reserve varies with
loading conditions, intrinsic cardiac disease, and inotro-
pic status. It is also influenced by the balance between
energy utilisation and delivery ± in which coronary flow
(and flow reserve) may play an important role.

In addition, metabolic efficiency of myocardial tissue
will also influence cardiac reserve, and may interact
with alterations in metabolic efficiency of peripheral tis-
sues in sepsis to influence outcome: a failure of substrate
delivery coupled with a failure of effective substrate uti-
lisation is associated with a poorer outcome.

Recent data suggest potential novel roles for inhibi-
tors of tissue renin-angiotensin systems in the critically
ill. These may increase coronary flow, improve diastolic
cardiac function, improve ventricular wall tensions and
oxygen utilisation through biomechanical effects, alter
substrate mobilisation, improve substrate uptake and
improve efficiency of metabolic substrate use. These ef-
fects have potential benefit to both myocardial perfor-
mance and peripheral tissue and organ function.
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