
Accepted: 27 June 1999

A.S.De Vriese ()) ´ R. C.Vanholder ´ N. H.Lameire
Renal Division of the Department of Medicine,
University Hospital, De Pintelaan, 185, B-9000 Gent,
Belgium
e-mail: an.devriese@rug.ac.be
Tel.: + 32-9-2404524
Fax: + 32-9-2 4045 99

M. Pascual
Renal Unit, Massachussetts General Hospital,
Boston, USA

F.A.Colardyn
Intensive Care Unit, University Hospital,
De Pintelaan 185, B-9000 Gent, Belgium

Introduction

The host response to invasive infection and other forms
of tissue injury has been termed the systemic inflamma-
tory response syndrome (SIRS) [1]. A complex defence
network, with inflammatory cytokines as key mediators,
is generated to restore normal homeostasis [2]. In cer-
tain circumstances, excessive amounts of pro-inflamma-
tory mediators are released into the systemic circulation,
leading to a generalized and uncontrolled host response
that overwhelms the natural inhibitors of inflammation
[3]. In recent years, several new therapies designed to
block the synthesis or toxicity of a particular component
of the SIRS cascade have been proposed, including anti-
tumour necrosis factor a (TNFa) monoclonal antibod-
ies, interleukin-1 (IL-1) receptor antagonists and plate-
let activating factor (PAF) antagonists. Although pre-
liminary studies were encouraging, large multi-centre
trials have failed to show clear benefits [4, 5].

Numerous reasons have been proposed to explain
the failure of these mediator-directed therapies, includ-

ing the over-optimistic expectation that targeting a sin-
gle inflammatory factor would be sufficient to modulate
the complex host systemic inflammatory response. This
has led to the rationale for non-specific elimination of
circulating cytokines and other inflammatory mediators
by continuous renal replacement therapies (CRRT) [6].
Ever since it was first proposed, the concept of cytokine
removal with CRRT has been the subject of controver-
sy. For example, it has been suggested that the high en-
dogenous turnover of cytokines may limit meaningful
extracorporeal clearance by routine methods of CRRT
[7]. The current review aims to address whether and
how cytokines and other inflammatory mediators can
be removed efficiently by CRRT. Extracorporeal re-
moval mechanisms and physicochemical characteristics
of membranes affecting the elimination of inflammatory
mediators are described, as are in vitro and in vivo stud-
ies on mediator induction and removal. The potential
value of modifying routine CRRT techniques, e.g. high
volume haemofiltration and the use of adsorptive devic-
es, which aim to increase the efficiency of mediator re-
moval, are also discussed. Finally, the concept of non-
specific mediator removal is analysed in the light of the
complex biological function of cytokines and the intri-
cate interactions between pro- and anti-inflammatory
networks.

The influence of CRRT on haemodynamic status, re-
spiratory function and outcome in animal models and
clinical studies has been reviewed elsewhere and lies be-
yond the scope of the present paper [8, 9].

Extracorporeal removal mechanisms and physicochemical
characteristics of membranes

Several variants of CRRT have been developed, differ-
ing in terms of driving forces and clearance mechanisms.
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use convection as the main clearance mechanism,
whereas continuous arterio-venous haemodialysis
(CAVHD) and continuous veno-venous haemodialysis
(CVVHD) also use diffusion to remove solutes.

Haemodialysis is achieved by diffusive clearance
along a concentration gradient from blood to dialysate
through a semi-permeable membrane. Small molecules
diffuse rapidly and are efficiently removed, whereas
larger solutes that diffuse poorly are cleared slowly.
Haemofiltration is based on convective mass transport:
a transmembrane pressure drives both fluid and solutes
through a membrane selected for its high hydraulic per-
meability. The currently available membranes that
have sufficient hydraulic permeability for haemofiltra-
tion are mainly synthetic: polysulphone (PS), polyamide
(PA), polyacrylonitrile (PAN), polymethylmethacrylate
(PMMA) and a copolymer of acrylonitrile and sodium
methallylsulphonate (AN69). Cellulose triacetate, a cel-
lulosic membrane, can also be used. The extent of con-
vective clearance is governed by the cut-off value of
the membrane, as well as by the molecular weight, phys-
icochemical characteristics and structure of the solute
[10]. Molecules in the middle-to-large molecular weight
range, such as many inflammatory mediators, are more
efficiently cleared by convection than by diffusion.

In addition to diffusion and convection, adsorption
has been found to be an important clearance mechanism
with some dialysis membranes [11]. Protein adsorption
onto polymers is mainly determined by hydrophobic in-
teractions, by electrostatic interactions between zones
with different polarities (Van der Waals), and by ionic
bindings between dissociated chemical groups with op-
posite charges. Membranes with dense negative charg-
es, such as the AN69 membrane, have a strong capacity
to adsorb proteins. The accessibility of the polymeric
chains also plays a major role in the adsorption process.
In the case of the asymmetric microporous synthetic
membranes (PS, PA, PAN, PMMA), adsorption is limit-
ed to the surface area of the pores. The AN69 mem-
brane has the consistency of a hydrogel due to its dense
and symmetrical structure and its high hydrophilicity.
This characteristic favours contact of the blood com-
partment with all polymeric chains over the entire
breadth of the membrane, thus making a larger surface
area available for adsorption [12].

In vitro studies

Induction, adsorption and mass transfer of inflammato-
ry mediators by biomaterials have been studied in vari-
ous in vitro models.

Leukocytes produced modest quantities of IL-1
when cultured in the presence of PS, PAN or PMMA,
but not in the presence of cuprophane (CU) [13].
When lipopolysaccharide (LPS) was added to the cul-

ture medium, the synthetic membranes induced the pro-
duction of large amounts of IL-1 [13]. Interestingly,
when incubated with monocytes, AN69 membrane fi-
bres not only induced, but also bound, more IL-1 than
CU [14]. In another study, AN69 fragments were incu-
bated with radiolabelled IL-1b and TNFa; substantial
amounts of both cytokines bound to the AN69 mem-
brane [15]. In an in vitro closed-loop dialysis circuit,
the AN69 membrane cleared IL-1 by both dialysis and,
primarily, adsorption; however, TNFa was less efficient-
ly adsorbed and only minimally dialysed. In contrast,
during CU haemodialysis the mass of both cytokines
did not decline appreciably [14, 15]. Similarly, in an in
vitro haemofiltration model, removal of TNFa was
higher with AN69 than with PS and PA and was mainly
due to adsorption. A subsequent partial release from
the membrane was suggested by a negative blood clear-
ance after 60±120 min [16]. The kinetics of TNFa and
IL-1 were also studied in a single pass circuit with differ-
ent dialysers (PS, PA, AN69 and cellulose acetate):
there were modest convective losses of TNFa and IL-1
with the PS membrane, and of IL-1 with the
AN69 membrane. In addition, there was substantial
binding of TNFa and IL-1 to both AN69 and PA mem-
branes. After 10 min, some of the previously bound
TNFa was released from the PA membrane, suggesting
that this was rapidly saturated [17].

Platelet activating factor (PAF) was effectively re-
moved by convection through and by adsorption onto a
PS membrane [18]. The AN69 membrane has a large
adsorptive capacity for inactivated complement C3 and
C5 [19], and for C3 a [20]. Factor D, the rate-limiting en-
zyme of the alternative complement pathway, was effi-
ciently adsorbed by AN69 [21] and PMMA [22], but
not by cellulosic membranes. Some synthetic mem-
branes may also adsorb endotoxins [23]; their perme-
ability for endotoxins, however, remains a matter of de-
bate [23, 24, 25].

In conclusion, several strands of evidence indicate
that the synthetic membranes have a high adsorptive ca-
pacity for cytokines and complement components. In
particular, the AN69 membrane appears to have a large
capacity to adsorb, thus confirming the theoretical ex-
pectations based upon its physicochemical structure. In
vitro convective removal of cytokines by synthetic
membranes is modest, while diffusive clearance is mini-
mal. It should be noted that any blood-membrane inter-
action also has the capacity to generate cytokines and
activate complements, especially in the presence of
LPS. However, the great propensity of synthetic mem-
branes to subsequently adsorb these components com-
pensates for this phenomenon. Saturation of the mem-
brane and partial release of cytokines from their binding
sites occurs after a certain time period.

Haemofiltration (CAVH or CVVH) with a synthetic
membrane would appear to be the optimal strategy if
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elimination of inflammatory mediators is sought. The
addition of a diffusive component (CAVHD or
CVVHD) is probably not useful for inflammatory medi-
ator removal. However, considerations based on theo-
retical principles and on in vitro findings may not reli-
ably predict clinical findings.

Animal experiments

Data on mediator removal in animal models are scarce,
probably because no reliable cytokine assays are avail-
able for animals. Heideman et al. demonstrated clear-
ance of thromboxane-B2 (TXB2) and 6-keto-prostag-
landin-F1a (6-ketoPGF1a) by CAVH in rats with endo-
toxic shock. TXB2 levels fell significantly in the
CAVH-treated group [26]. Staubach et al. found a de-
crease of both mediators in endotoxaemic pigs that un-
derwent CVVH [27]. CAVH has also been shown to
have an immunomodulatory effect by attenuating poly-
morphonuclear phagocytosis during intra-abdominal
sepsis in pigs [28].

Clinical studies

Studies examining the potential removal of inflammato-
ry mediators by CRRT in critically ill patients are pre-
sented in Table 1 [29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55]. Most cytokines and complement components have
a molecular weight below the cut-off value of the syn-
thetic haemofiltration membranes. These mediators
were detected in the ultrafiltrate of almost all haemofil-
ters, although sieving coefficients were usually low.
When simultaneous measurements of concentrations in
pre-and post-filter plasma and in ultrafiltrate were per-
formed, the quantities removed were substantially high-
er than could be explained by convective loss alone, sug-
gesting other mechanisms of clearance [34, 53]. Our
group has performed a detailed and quantitative analy-
sis of the relative contribution of convection and ad-
sorption to removal of selected cytokines with CVVH
[55]. Adsorption appeared to be the most important
clearance mechanism, especially immediately after the
start of haemofiltration (Fig1). The longer the blood-
membrane contact, the less clearance by adsorption oc-
curred. Replacement of the haemofilter after 12 h of
CVVH again increased adsorptive removal, indicating
that saturation of the membrane was responsible for
the rapid diminution of adsorption.

Even though most studies have shown evidence for
convective and/or adsorptive removal of inflammatory
mediators, few have demonstrated a significant de-
crease in plasma concentrations. We found a fall in plas-
ma concentrations of all the cytokines measured 1 h af-

ter the start of CVVH and 1 h after the change of the
membrane [55]. These effects were not sustained, how-
ever, corresponding with a rapidly diminishing removal
rate. Millar et al. [39], Journois et al. [40] and Braun
et al. [46] randomised patients to receive either haemo-
filtration or conservative treatment; a decrease of cyto-
kine and complement levels was only demonstrated in
the haemofiltration group.

Missing information and variability in study design
make comparison of the in vivo performance of the dif-
ferent membrane types difficult. Only one study has
analysed the effects of two membranes in the same pa-
tient group [49]. The plasma concentration of factor D
fell with AN69 (mainly due to adsorption onto the
membrane) but not when a PA membrane was used.
Whether the proposed differences in adsorptive charac-
teristics provide any clinical benefit remains open to dis-
cussion.

It has been suggested that high ultrafiltration rates
are required to obtain significant mediator removal [6].
Blood flow rates (QB) and ultrafiltration rates (UFR)
varied markedly between studies, but incomplete data
again hinder any reliable comparison. The fall in plasma
concentrations of C3 a and C5 a, but not of TNFa and
IL-6, correlated linearly with the amount of withdrawn
ultrafiltrate [40]. In another study [50], children under-
going cardiopulmonary bypass (CPB) were randomised
to receive either standard haemofiltration to remove ex-
cess fluid or an additional period of zero-balance high
volume haemofiltration during rewarming. C3 a and
TNFa levels fell during the high volume haemofiltration
period and, interestingly, a delayed effect was observed
on IL-1b, IL-6 and IL-8 levels. Furthermore, an im-
provement was observed in some clinical variables. The
impact of the high volume per se cannot be properly as-
sessed, as only one flow rate was studied. Our group has
analysed the effect of a change in QB in the same patient
population [55]. A QB of 200 ml/min was associated with
a 75 % increase in ultrafiltration rate as compared to a
QB of 100 ml/min. Cytokine removal increased signifi-
cantly, due to more convective elimination but also to
more membrane adsorption. To explain the latter phe-
nomenon, we speculate that the higher transmembrane
pressure drives solutes deeper into the membrane and
thus increases the effective surface area available for ad-
sorption. The observation that only minimal adsorption
occurs when the ultrafiltrate line is clamped supports
this hypothesis [56]. Kellum et al. compared mediator
removal with CVVH and CVVHD in a crossover design
and found decreased plasma TNFa levels only during
treatment with CVVH [54]. They concluded that con-
vection was the principal clearance mechanism, al-
though only trace amounts of TNFa could be recovered
from the ultrafiltrate. Their findings may, however, sup-
port the contention that a convective driving force is re-
quired for optimal adsorption.
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Table 1 Clinical studies on mediator removal with CRRT

Author
[Ref]

Study
Population

Treatment Mem-
brane

QB
c

ml/m
QD

e

l/h
UFRf

l/h
Mediator Assay UFk PCl

Gotloib [29] 24 sepsis, ARDS CAVH CU 300 TXB2 RIAh +

Coraim [30] 36 respiratory
failure post
cardiac surgery

CAVH PS 0.85 Myocardial
Depressant
Factor

Bioassay + +

Staubach [31] 15 shock CAVH PA 6-ketoPGF1a
TXB2

RIA +
+

McDonald [32] 12 sepsis, acute
renal
failure

CAVHD AN69 116 0.6 TNFa
TNFa
IL-1b

Bioassay
EIAi

RIA

+
±
+

±
±
±

Kierdorf [33] 10 MOF CVVH AN69 1.2 TNFa EIA + ±

Cotrell [34] 5 sepsis, acute
renal
failure

CVVHD AN69 TNFa Bioassay
+ IRMAj

+

Byrick [35] 1 MOF, ARF CAVHD PS 2 0 TNFa RIA ± ±

Tonnesen [36] 9 septic shock,
acute renal failure

CAVH PS 0.4±0.75 TNFa
IL-1b, IL-6

EIA
EIA

+
+

±
±

Bellomo [37] 18 sepsis, acute
renal
failure

CVVHD AN69 150 1 TNFa
IL-1b

Bioassay
EIA

+
+

±
±

Andreasson [38] 9 cardiopulmonary
bypass

HFa PA C3a
C5a
TCCg

RIA
RIA
EIA

+
+

±
+
±

Millar [39] 18 cardiopulmonary
bypass

9 HF
9 no HF

PA TNFa
IL-6, IL-8

Bioassay
EIA

+
+

+
±

Journois [40] 32 cardiopulmonary
bypass

16 HF
16 no HF

PS TNFa, IL-6
IL-8
C3a, C5a

EIA
EIA
RIA

+
±
+

Gueugniaud [41] 4 burns, sepsis,
acute renal failure

CVVHD TNFa
IL-1b, IL-2R
IL-6

EIA
EIA
EIA

±
+
+

±
±
+

Elliott [42] 77 CAVHD/
CVVHD

0.9 0.56 TNFa
IL-1b

+
+

Bellomo [43] 10 sepsis, ARF CVVHD AN69 150 1 IL-6
IL-8

EIA
EIA

+
+

±
±

Sfyras [44] 20 sepsis, acute
renal failure

CVVH TNFa
IL-6

EIA
EIA

+
+

±
±

Hoffmann [45] 16 MOF CVVH PA 150 2 TNFa, IL-6
IL-1b, IL-8, C5a, C3
C3a
TCC

Bioassay
EIA
EIA
EIA

±
+
+
±

±
±
+
±

Braun [46] 30 SIRS 15 CVVHD
15 conser-
vative

PA/
AN69

100±
120

TNFa, C3a
IL-6, TCC

EIA
EIA

±
+

Boldt [47] 14 SIRS, acute
renal failure

CVVH PS 120±
150

sELAM-1,
sICAM-1
sVCAM-1,
sGMP-140

EIA
EIA
EIA
EIA

±
±
±
±

Wakabayashi [48] 6 SIRS CVVH IL-6
IL-8

+
+

Gasche [49] 7 critically ill,
acute renal
failure

CVVH AN69
PA

250
250

1±1.5
1±1.5

Factor D
Factor D

±/+ +
±

Journois [50] 20 cardiopulmonary
bypass

10 ZHVHF
+HFb

10 HF

AN69 200d TNFa, IL-1b,
IL-6, IL-8
IL-10, C3a

EIA
EIA
EIA

+
+
+

Heering [51] 33 acute renal
failure (septic/
cardiovascular)

CVVH PS 150±
200

1 TNF-a, IL-1b, IL-6, IL-8
IL-2, IL-10
TNF-RII, IL-1ra
IL-2R, IL-6R

EIA
EIA
EIA

+
+
+

±
±
±



Whereas it may be desirable to increase transmem-
brane pressure to a certain extent, the value of true
high-volume haemofiltration, with ultrafiltration rates
up to 6 l/h, remains to be determined. In animal models
of sepsis, high-volume haemofiltration has been shown
to improve haemodynamic and respiratory variables [8,
9], although no correlation was made with mediator re-
moval. The application of this technique to the human
situation raises substantial technical, organisational and
financial obstacles. Although preliminary promising re-
sults have been presented [57], this approach still re-
mains in the realm of experimental treatment.

Sorbent adsorption of endotoxin and cytokines

An alternative approach, which is only applicable to
gram-negative sepsis, is extracorporeal removal of en-
dotoxins with specific adsorption devices. Activated
charcoal [58], polyethylenimine [59] and polymyxin B
[59, 60] avidly bind endotoxin in vitro. Haemoperfusion
using columns with immobilised polymyxin B efficiently
removed endotoxins and decreased mortality in dogs af-
ter the injection of live Escherichia coli [60]. Preliminary
clinical investigation in patients with endotoxic shock
and multiple organ failure demonstrated that these de-
vices may lower plasma endotoxin levels and improve
haemodynamic status [61].

Plasma filtration coupled with sorbent adsorption is a
recently developed technique whereby a plasmafilter is
placed in series with a cartridge containing a sorbent con-
sisting of charcoal and hydrophobic resin. The plasmafil-
trate is circulated through the cartridge and re-infused
back into the extracorporeal circuit. In vitro studies dem-
onstrated substantial removal of both inflammatory and
anti-inflammatory mediators [62]. A preliminary study

reported a beneficial effect on haemodynamic status
when compared to ªclassicalº CVVH [63].

Several other adsorptive devices, primarily devel-
oped for use in chronic renal failure, are currently being
investigated for their potential to adsorb inflammatory
mediators [64].

The concept of non-specific removal of circulating
cytokines questioned

Since solute removal with CRRT is non-specific, simulta-
neous elimination of inhibitors of inflammation may nul-
lify any potential benefits of these therapies. Few studies
have investigated the removal of anti-inflammatory me-
diators. Van Bommel et al. found an increase in the ratio
of soluble TNF receptors to TNFa upon commencement
of continuous haemofiltration [53]. In another study no
change was seen in plasma levels of either pro- or anti-in-
flammatory cytokines [51]. We have found equivalent re-
moval rates of inhibitors of inflammation and inflamma-
tory cytokines [55]. In particular, we found no change in
the ratios of soluble TNF receptors to TNFa, and of IL-
1ra to IL-1b during CVVH. However, simple ratios be-
tween selected cytokines and their inhibitors probably
do not predict the effect of a CRRTon the complex inter-
action between the pro- and anti-inflammatory system.
More work is required to clarify this important issue.

Several studies have found correlations between cir-
culating levels of inflammatory cytokines and outcome
of patients with sepsis [2]. However, it remains unclear
to what extent circulating cytokines contribute to the in-
flammatory reactions occurring locally in affected or-
gans during sepsis/SIRS, or whether they are merely indi-
rect markers of the severity of the disease process. As yet,
the clinical benefit of their removal remains to be proven.
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Table 1 Continued

Author
[Ref]

Study
Population

Treatment Mem-
brane

QB
c

ml/m
QD

e

l/h
UFRf

l/h
Mediator Assay UFk PCl

Sander [52] 26 SIRS 13 CVVH
13 conser-
vative

AN69 150 1 TNFa
IL-6

+
+

±
±

van Bommel [53] 9 SIRS, acute
renal failure

CAVHD AN69 1 TNFa,
sTNFR-I/II
IL-1ra

EIA
EIA
EIA

+
+
+

±
±
±

Kellum [54] 13 critically ill,
acute renal failure

CVVH
CVVHD

AN69 150±
200

2 TNFa
IL-6
IL-10, sL-selectin, ET

EIA
EIA
EIA

±
+
±

+m

±
±

De Vriese [55] 15 sepsis, acute
renal failure

CVVH AN69 100±
200

1.5±2.7 TNFa, IL-1b,IL-6
IL-1ra sTNFR-I/II
IL-10

EIA
EIA
EIA

+
+
±

+
+
+

a haemofiltration, b zero-balanced high-volume haemofiltration
during rewarming in addition to standard haemofiltration, c blood
flow rate, d per m2 body surface, e dialysate flow rate, f ultrafiltra-
tion rate, g terminal complement complex, h radioimmunoassay,

i enzyme-immunoassay, j immunoradiometric assay, k detectable in
ultrafiltrate: + = yes, ± = no, blank space = information not avail-
able, l effect on plasma concentration, m only for the CVVH group



An important lesson may be learned from the expe-
rience with haemofiltration during cardiopulmonary by-
pass (CPB), which is known to induce a systemic inflam-
matory response. As discussed previously, a course of
zero-balanced haemofiltration during rewarming from
CPB was shown to have delayed beneficial effects: cyto-
kine levels were lower 24 h after surgery, suggesting the
earlier removal of mediators triggering their release
[50]. Importantly, an improvement was noted in several
clinical variables. It thus appears that, when applied at
a very early stage, haemofiltration may have the poten-
tial to down-regulate a systemic inflammatory response,
possibly by removing early mediators. However, the
trigger to SIRS is usually not predictable and most criti-
cally ill patients have evolved far beyond this early
phase when they are considered for haemofiltration.

Conclusion

Various studies have demonstrated that inflammatory
mediators can be removed during CRRT, by convection,
but mainly by membrane adsorption. In most studies,
removal was not important enough to result in a signifi-

cant and sustained effect on plasma concentrations. An
analysis of in vitro and in vivo data suggests that this
low efficiency may result from rapid saturation of the
easily accessible binding sites on the membrane, and to
inefficient use of less accessible binding sites due to a
low convective driving force. Optimal mediator removal
may thus be obtained by a combination of a high trans-
membrane pressure and frequent membrane changes.
Frequently changing the membrane does appear to be
both expensive and impractical, therefore the use of ad-
sorptive devices could be a valuable alternative. Howev-
er, these devices are still at a developmental stage. The
recently developed technique of continuous plasmafil-
tration coupled with sorbent adsorption has shown
promising preliminary results.

Since the financial implications of these measures are
important, it is crucial to see whether it makes sense to
remove inflammatory mediators non-specifically from
the circulation of patients with established SIRS. The
pathogenetic role of circulating cytokines should be
clarified. Furthermore, it should be established whether
concomitant removal of anti-inflammatory mediators
does not counteract any potential beneficial effects.
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Fig.1 The total amount of
TNFa, IL-1b and IL-6 that was
removed (expressed as a per-
centage of the amount present
in the prefilter plasma) at dif-
ferent time points after the start
of CVVH in 15 patients with
septic shock and acute renal
failure. After 12 h (t = 12) the
haemofilter was replaced. The
removed amount at t = 6 and 18
and at t = 12 and 24 was signifi-
cantly lower than at t = 1 and
t = 13 (*p < 0.05). The relative
contribution of adsorption (%
AD, hatched bars) and ultrafil-
tration (% UF, open bars) is in-
dicated for each value. No sta-
tistical analysis was performed
for IL-1b, since it was detected
in only five patients ([55], with
permission)
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