
Introduction

Today most of our bedside decisions are based on sub-
jective judgment and experience, rather than on hard
data analysis. Most of the changes of a variable over

time are more important than one pathological value
at the time of observation. Over the past three decades
mathematical methods have been developed that allow
the assessment of single or multiple variables over
time.
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Abstract Objectives: To determine
how different mathematical time
series approaches can be imple-
mented for the detection of qualita-
tive patterns in physiologic monitor-
ing data, and which of these approa-
ches could be suitable as a basis for
future bedside time series analysis.
Design: Off-line time series analysis.
Setting: Surgical intensive care unit
of a teaching hospital.
Patients: 19 patients requiring he-
modynamic monitoring with a pul-
monary artery catheter.
Interventions: None.
Measurements and results: Hemody-
namic data were acquired in 1-min
intervals from a clinical information
system and exported into statistical
software for further analysis. Alto-
gether, 134 time series for heart rate,
mean arterial pressure, and mean
pulmonary artery pressure were vi-
sually classified by a senior intensi-
vist into five patterns: no change,
outlier, temporary level change,
permanent level change, and trend.
The same series were analyzed with
low-order autoregressive (AR)
models and with phase space (PS)
models. The resulting classifications
from both models were compared to

the initial classification. Outliers
and level changes were detected in
most instances with both methods.
Trend detection could only be done
indirectly. Both methods were more
sensitive to pattern changes than
they were clinically relevant. Espe-
cially with outlier detection, 95%
confidence intervals were too close.
AR models require direct user in-
teraction, whereas PS models offer
opportunities for fully automated
time series analysis in this context.
Conclusion: Statistical patterns in
univariate intensive care time series
can reliably be detected with AR
models and with PS models. For
most bedside problems both meth-
ods are too sensitive. AR models are
highly interactive, and both methods
require that users have an explicit
knowledge of statistics. While AR
models and PS models can be extre-
mely useful in the scientific off-line
analysis, routine bedside clinical use
cannot yet be recommended.
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There are various approaches to describe time-de-
pendent data generated from dynamical systems reflect-
ing the different natures of the underlying processes.
Time-dependent data are either generated in controlled
scientific and engineering experiments or observed in
medical, biological, environmental, and econometric
studies. Although in neighboring sciences that deal with
dynamical systems some of the same phenomenona are
investigated, different terminologies and interpretations
of the data-generating mechanism are applied. This also
leads to the use of a different calculus for data analysis.

Methods used for describing these systems assume
that the process under consideration is deterministic or
stochastic or a combination of the two. In mathematics
and theoretical physics, methods from the theory of dy-
namical systems [1] are often used to describe determi-
nistic processes, whereas in physical and engineering ap-
plications approaches from the fields of systems theory
[2] and digital signal processing are frequently applied
[3]. Most of this work deals with fully deterministic pro-
cesses as well as deterministic processes and additive
noise. In that context, noise is seen as measurement er-
rors or additive random effects, which are superimposed
on the deterministic signal. By contrast, in statistical
time series analysis the models are constructed in a way
that random effects also drive the processes themselves.
This approach is suitable to model medical, biological,
environmental, and econometric variables like blood
pressure or stock prices, because many of these proces-
ses can be regarded as stochastic processes [4±10]. We,
therefore, concentrate here on time series analysis tech-
niques for analyzing intensive care data.

Only a few investigations have employed this metho-
dology in the field of intensive care medicine. In general
it has been shown that time series analysis techniques
are suitable for retrospective analysis of physiologic
variables [8±10]. A statistically similar, but methodolo-
gically more challenging task is the on-line analysis of
intensive care monitoring data. Statistically, approaches
to this problem are rare and not readily available for ap-
plication in clinical practice [11±13].

For this study, two entirely different statistical meth-
ods were used to describe critical care time series: auto-
regressive models, which have been used in numerous
applications since their introduction in the 1970 s, and
phase space models, which represent a new approach
to time series data. In autoregressive models the current
value of a process is expressed as a finite, linear aggre-
gate of previous values of the process and a stochastic
term [14, 15]. In phase space models, after a transforma-
tion, the time series data are regarded as a multivariate
sample with dependent observations [16].

Several authors have applied autoregressive models
in the field of critical care [8], in longitudinal physiologic
experiments [10], as well as in studies of laboratory data
of the chronically ill [9]. Autoregressive models have

also been successfully used to describe on-line time se-
ries from intensive care bedside monitors [8]. Clinical
investigations with autoregressive models into thera-
peutic effects have recently been reported from the
fields of cardiology [10] rheumatology [17] neurology
[18], psychiatry [19], and nursing research [20].

The phase space approach originally came from the
theory of nonlinear systems and is used for analysis of
complex, deterministic, and especially chaotic systems.
Several authors have applied measures which are based
on phase space embeddings to judge the complexity of
heart rate dynamics [21±23]. The application of these
methods to heart rate dynamics is only feasible when
data are recorded with high sampling frequency (e. g.,
50 ms [21]). In clinical information systems data are of-
ten recorded in longer time intervals (e.g., 1 min) and,
therefore, a different approach for analysis has to be se-
lected. A new application of phase space models was re-
cently introduced in the context of intensive care data,
where phase space models are formulated in the statisti-
cal framework of linear stochastic systems [16]. This al-
lows a meaningful application of these models to differ-
ent physiologic variables, even with small sample sizes.

The detection of qualitative patterns in physiologic
monitoring data (e. g., outliers, level changes, trends) is
one of the basic applications of medical time series anal-
ysis. Traditional statistical methods for pattern identifi-
cation like cluster or discriminant analysis are appropri-
ate for time-independent data [24] but cannot be used
for identifying and discriminating time series patterns.
One possible statistical approach to the identification
of patterns in time series are state space models, first
used in the engineering sciences [25]. Several applica-
tions of Kalman Filter techniques to intensive care data
exist [12, 26]. But these procedures are not very reliable
in the identification of patterns and they require signifi-
cant computational power [26, 27].

Recently, neural networks have been used for de-
scribing and controlling dynamical systems [28, 29].
The transfer of neural networks to pattern recognition
in intensive care data is difficult: every patient has to
be controlled individually, and it is not clear how to con-
struct training phases. It is also difficult to decide with
the help of neural networks whether or not the state of
a critically ill patient is improving, because too little in-
formation about the health of the patient is available
for the training phase [30, 31].

In the following investigation we chose autoregres-
sive and phase space models, because they are suitable
to model the underlying dynamic processes of intensive
care variables and seem to be promising for the identifi-
cation of patterns [8, 9, 16]. This study evaluates two as-
pects of the application of time series analysis to on-line
monitoring data: (a) can all patterns be correctly identi-
fied with the applied statistical methods? (b) are the ap-
plied methods adequate for clinical use?
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Patients and methods

On a 16-bed surgical intensive care unit in a 2000-bed teaching hos-
pital, on-line monitoring data were acquired from 19 consecutive
critically ill patients (8 females, 11 males, mean age 65 years),
who had pulmonary artery catheters for extended hemodynamic
monitoring, in 1-min intervals from a standard clinical information
system. These data were transferred into a secondary SQL data-
base and exported into standard statistical software for further
analysis. The system configuration was comprised of the following:
(a) Clinical Information System (CIS): Emtek Continuum 2000,
Version 4.1M3, (b) Decision Support System (DSS): Sybase SQL
server 4.9.2, (c) Statistical Software: SPSS version 6.1, SAS version
6.12 with additional programs in SAS/IML, and (d) System plat-
form: Sun Sparc, Sun Solaris 1.1.2 (CIS, DSS) and 2.5 (statistical
software).

From a total of 550000 single observations of seven variables
(heart rate and invasive pressures), segments of 150 to 500 observa-
tions for each variable were visually classified by a senior intensivist
into five medically relevant patterns: no change, outlier, temporary
level change, permanent level change, and trend. The intensivist
did not have to define objective criteria to explain why he chose a
specific classification. A total of 134 time series were included in
the study. The classifications are listed in Table 1. All these a priori
classifications were done by one senior intensivist. After all time
series were classified, they were presented again in a different order
for reclassification by the same intensivist. There were no differen-
ces in the classification, which was attributable to the obviousness
of the patterns as shown in the examples in Figs. 2 to 6.

The same segments were analyzed with second order auto-
regressive [AR(2)] models and with phase space (PS) models.

Each series of autoregressive models was split into a model es-
timation period, and a prediction period, where the pattern should
be diagnosed. The average length of the estimation period was
173 min, that of the prediction period 123 min (Table 1). The ac-
tual measurements were compared to the confidence intervals
(CI) for the prediction period. According to the percentage of
values outside the CI, the variation was classified into the different
patterns. Values outside the CI were classified as an outlier, if less
than five consecutive observations (= minutes) were outside the
CI. A level change was identified by five or more consecutive ob-

servations outside the CI, and was called a temporary level change
with less than 50% of the prediction period outside the CI, and a
permanent level change with 50% or more of the prediction period
outside the CI.

Trend patterns were indirectly identified by deviations of the
autocorrelation function (ACF) of the residuals and the Durbin-
Watson statistics. In this case, the ACF of the original series was
analyzed for trend typical patterns. Typically, the ACF plot of a
time series without a trend declines exponentially (Fig.1). In the
case of a trend (i. e., a nonstationary series) the ACF plot fades
only slowly over a larger number of lags (Fig.1). In these cases, an
AR(2) model of the first derivative of the time series was calculat-
ed. If this model showed sufficient goodness of fit, a significant
trend of the time series was assumed.

Because the correct CI width was unknown before the study, a
posteriori adjustment of the CI was done and the analysis rerun
with this CI. This was done in cases where an inexplicable differ-
ence between the visual classification and the percentage of out-
liers occurred. The margin of the CI determines the ªsensitivityº
of the model. In this study an autoregressive or phase space model
was considered too sensitive if at least one outlier was detected by
the model that was not described in the initial visual classification.

In order to compare the CIs between different time series as
one measure of the sensitivity of the predicted model, the relative
confidence interval (CIrel) was calculated as the difference be-
tween the upper (UCL) and lower confidence limits (LCL) in rela-
tion to the fitted model (FIT) for the entire prediction period ex-
pressed in percent:

CIrel [%] = 100 × UCLÿLCL
FIT

For PS models, the first 60 observations were taken and retrospec-
tively analyzed (i. e., outlying regions were estimated and patterns
in this time interval identified). After this, a time window of length
60 was moved through the data. That means, that at time point 61 it
was determined if the phase space vector y 61 was in a distant re-
gion. If not, then no pattern was present, and the estimated outly-
ing region was replaced by a new one that was estimated from the
last 60 observations y 2, . . ., y 61. This was repeated for every new
observation as long as for the time point t the phase space vector
yÔt was in a distant region. Then the system was not in a steady state,
and after analyzing the consecutive observations yt + 1, yt + 2, . . ., it
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Variables and patterns

No change Outlier Level change Trend Total

Temporary Permanent

Variable
Heart rate 8 6 7 11 8 40
Arterial pressure (mean) 5 24 5 7 0 41
Pulmonary artery pressure
(mean)

10 5 12 24 2 53

Total 23 35 24 42 10 134

Estimation period for AR models
Mean 208 163 144 177 184 173
Maximum 501 481 334 451 410 501
Minimum 81 51 41 50 80 41

Prediction period for AR models
Mean 98 94 152 150 94 123
Maximum 299 270 470 337 150 470
Minimum 20 20 40 50 50 20

Table 1 Physiological time se-
ries included in the study: vari-
ables and patterns, as identified
a priori by an intensivist.
Length of estimation and pre-
diction periods for autoregres-
sive models



was decided if a pattern was present similar to the retrospective
analysis.

A detailed description of the concepts of autoregressive and
phase space models and the underlying statistics is given in appen-
dix 1.

Results

With autoregressive models, both outliers and level
changes could always be identified. All series that were
classified as ªwithout changeº were also correctly iden-
tified by autoregressive models. Phase space models al-
lowed the identification of series without any change
and with outliers in every instance, too. Temporary level
changes were correctly identified in 20 of 24 series, and
permanent level changes in 37 of 42. In the instances
where identification failed, the level changes were
marked by a very slow decrease or increase of the ob-
served values.

Figures 2 to 6 display typical examples of each pat-
tern analyzed by the two different methods. Figure 2
shows the same series for mean pulmonary artery pres-

sure, which was clinically classified as ªno changeº,
while in the AR model the confidence interval was ad-
justed to 99% to allow the correct classification. The
graphic representation of the series without a change is
obvious in the PS model and is confirmed by the phase
space procedure.

Typical graphs for outliers are shown in a time series
for heart rate in Fig. 3. As before, the 95% CI for the
AR model was too close for the clinical situation. With
a 99.9 % CI, two outliers could be identified that ex-
trude from the CI. The same outliers are graphically re-
presented by two vectors in the PS model that protrude
from the imaginary ellipsoid of the vector cloud.

The analysis of a time series for heart rate with a tem-
porary level change is shown in Fig. 4. In the PS model
the temporary level change is represented by a small
secondary ellipsoid of vectors that extrude from and
fall back into the main ellipsoid, when the series returns
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Fig.1 Top Plot of the autocorrelation function for the first 16 lags
of a series without a trend (prediction period of the series from
Fig.4). Rapid decline of the coefficients for the ACF. Bottom Plot
of the autocorrelation function for the first 16 lags of a series with a
trend (prediction period of the series from Fig. 7). Slow decline of
the coefficients for the ACF. Solid bars coefficients of the ACF or
PACF, solid lines 95% confidence limit for the ACF or PACF

Fig.2 Top Autoregressive model for a time series without signifi-
cant change: AR model for pulmonary artery pressure PAPm. All
data points for the prediction period are within the 99 % CI. Solid
line Measured series of PAPm; dashed line fitted AR(2) model of
PAPm; dotted lines 99% confidence interval for AR(2) model of
PAPm; time time after start of first measure in minutes. Bottom
Phase space model for the same time series: PS model for PAPm.
All vectors of the PS model are within an imaginary elippsoid.
d_n value for PAPm at time ªnº; d_(n � 1) value for PAPm at
time ªn � 1º (i.e., one observation prior to d_n)



to baseline values. Similarly, the time series lies outside
the 95% CI of the AR for the time of the temporary
level change. In the PS model of a permanent level
change the vectors from the secondary ellipsoid do not
fall back into the main ellipsoid, as the time series in
the AR model will not return to the baseline within the
prediction period (Fig. 5).

The detection of trend cannot be done directly by ei-
ther method. Trend detection required complete model
diagnosis with AR models, as described in the methods
section. After first order differentiation, the AR model
was fitted to the time series in the estimation period.
As shown in Fig. 6, due to the differentiation of the se-
ries the 95% CI widens rapidly after the start of the pre-
diction period. This phenomenon precludes sensitive
detection of changes during the prediction period (Ta-
ble 2). With PS models a trend can only be detected by
the oblong shape of the vector ellipsoid, which is a rela-

tively insensitive method to distinguish between series
without a trend and with a slight trend (Fig. 6).

Both methods were more sensitive to pattern chan-
ges than clinically relevant. Especially with outlier de-
tection, 95% confidence intervals for autoregressive
models were too close. In a second run, the confidence
intervals were adjusted until clinically relevant results
were found. This problem was most pronounced when
the series had a very small variance during the estima-
tion period. For those series where the CI was adjusted
after initial analysis, the 95% CI was as close as an aver-
age of 9.7 % on both sides of the fitted model with mini-
mum values as low as 1.2 % (Table 2). Although these
small values are statistically significant, clinically they
are not meaningful, as the small confidence intervals
do not reflect therapeutically important changes and
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Fig.3 Top Autoregressive model for a time series with an outlier:
AR model for mean AP. Three data points (outliers) are outside
the 99.9% CI. Solid line Measured series of heart rate HR; dashed
line fitted AR(2) model of HR; dotted lines 99.9% confidence in-
terval for AR(2) model of HR; time time after start of first measure
in minutes. Bottom Phase space model for the same time series
with an outlier: PS model for mean AP. Few vectors extrude from
the imaginary ellipsoid. Each vector representing an outlier. d_n
value for HR at time ªnº; d_(n � 1) value for HR at time ªn � 1º
(i. e., one observation prior to d_n)

Fig.4 Top Autoregressive model for a time series with a tempo-
rary level change: AR model for heart rate HR. A series of values
is outside the 95% CI. Quantification with additional regressor.
Solid line Measured series of HR; dashed line fitted AR(2) model
of HR; dotted lines 99.9% confidence interval for AR(2) model of
HR; time time after start of first measure in minutes. Bottom
Phase space model for the same time series: PS model for HR. Sev-
eral vectors extrude from the imaginary ellipsoid and form an addi-
tional ellipsoid, which falls back to the main ellipsoid. Changes
cannot be quantified. d_n value for HR at time ªnº; d_(n � 1)
value for HR at time ªn � 1º (i. e., one observation prior to d_n)



may even be smaller than the overall error of the meth-
od of measurement.

In five cases of outlier detection, the confidence in-
tervals were adjusted to 99.99 %. For a very sensitive de-
tection of outliers, in some instances the CI was reduced
to 90% (Table 3). In PS models, a level of 99.99 % was
chosen as well for all series.

Comparison between precisely diagnosed AR mod-
els and overdetermined models (AR order higher than
necessary) showed that overdetermined models allow a
ªsemiºautomatic pattern detection without any trade-
off in clinical sensitivity. AR models require direct user
interaction, while PS models offer opportunities for
fully automated time series analysis in this context.
Moreover, AR models require a priori assumptions

about the approximate location of the disturbance of in-
terest within the time series.

Discussion

In our study patterns of univariate physiologic time se-
ries could reliably be identified both with low order au-
toregressive models and phase space models. The only
exception was trend patterns where both approaches
have methodological shortcomings.

With on-line monitoring data that are sampled at
very short time intervals, the number of available obser-
vations should not pose a problem for the application of
time series analysis. But with on-line monitoring data,
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Fig.5 Top Autoregressive model for a time series with a perma-
nent level change: AR model for mean pulmonary artery pressure
PAPm. All observations for the prediction period are outside the
95% CI. Quantification with additional regressor. Solid line Mea-
sured series of PAPm; dashed line fitted AR(2) model of PAPm;
dotted lines 99% confidence interval for AR(2) model of PAPm;
time time after start of first measure in minutes. Bottom Phase
space model for the same time series: PS model for mean PAP. Nu-
merous vectors extrude from the imaginary ellipsoid and form an
additional ellipsoid, which does not fall back. Changes cannot be
quantified. d_n value for PAPm at time ªnº; d_(n � 1) value for
PAPm at time ªn � 1º (i. e., one observation prior to d_n)

Fig.6 Top Autoregressive model for a time series with a trend: AR
model for mean pulmonary artery pressure PAPm. The trend can
only be described indirectly by first order differentiation. The re-
sulting model is an ARIMA(2 1 0) model. 95% CI very wide for
prediction period due to differentiation. Solid line Measured series
of PAPm; dashed line fitted AR(2) model of PAPm; dotted lines
99% confidence interval for AR(2) model of PAPm; time time
after start of first measure in minutes. Bottom Phase space model
for the same time series: PS model for PAPm. Vectors form a dis-
torted ellipsoid without significant outliers. Trend can be diag-
nosed indirectly from the shape of the ellipsoid. d_n value for
PAPm at time ªnº; d_(n � 1) value for PAPm at time ªn � 1º (i. e.,
one observation prior to d_n)



reliable algorithms for artifact rejection have to be em-
ployed before the series can be subjected to statistical
analysis. Robustness against artifacts and outliers is still
a major problem with most time series methods [16, 32,
33]. For most bedside problems both methods are too
sensitive. AR models seem to be better in this regard
than PS models (Table 3). But a direct comparison is dif-
ficult because, in the estimation period of AR models,
no pattern detection is performed. Thus, there is no pos-
sibility of misclassifying patterns in this period, whereas
PS models look for patterns from the onset.

A possible task for further research is to replace the
assumption of the normal distribution by probability
distributions with more weight in the tails for the ob-
served variables. This would reduce the sensitivity of
the procedures. A disadvantage would be that estima-
tion procedures are more complicated and would de-
mand more computational effort. Another way to re-
duce the sensitivity is to use an automatically adjusted
level. A low level should be chosen (i. e., less sensitive),
if the variability of the process is small and vice versa.

Further research has to be done with multivariate
time series analysis. The underlying processes for inten-
sive care variables are probably multivariate or even
high dimensional, because of the multitude of depen-
dencies between physiologic variables. This could allow

statements about the overall state of a patient or about
an organ system. Automatic pattern detection in any
situation and on-line application are not feasible at the
moment. Moreover, AR models are especially highly in-
teractive and both methods require a deep statistical
knowledge in the user. On the other hand, autoregres-
sive models and phase space models can be very helpful
in the scientific off-line analysis of univariate intensive
care monitoring data. They may support a more analyti-
cal and reproducible approach toward the evaluation of
pathologic changes and therapeutic effects in the indivi-
dual patient. The development of automatic methods
for time series analysis would allow an instantaneous
statistical analysis at the bedside. This would offer an
option to the health care professional for a more reli-
able evaluation of the individual treatment.

Some time series analysis methods, such as the Kal-
man Filter, could also be used for on-line analysis of
physiologic monitoring data. The generation of time se-
ries models including confidence intervals could en-
hance trend analysis, for not only could the slope of a
trend be calculated but also outliers, which could repre-
sent clinically significant changes. Moreover, in the long
run these techniques could be employed to generate
smart alarms, that may be more reliable and less error
prone than the simple limit alarms currently used.

Therefore, it appears that it may be rewarding to in-
vest further efforts into the development of medical
time series analysis techniques.

Appendix 1
Autoregressive models

A physiologic variable, e. g., heart rate, denoted by xt , is observed
at equidistant time points t = 1, . . ., N. The set of observations
{xt}t Î À = {x 1, . . ., xN} is called a time series. In the following, the
data-generating process is modeled by an autoregressive (AR)
process. An autoregressive process formally resembles a multiple
regression. A stochastic process (Ct) is an autoregressive process
of the order p [indicated by the notation AR(p)] where

Ct = a 1Ct � 1 + . . . + apCt � p + et , t ÎÀ, a 1, . . ., ap Î Â

t are the time points of observation, a 1, . . ., ap are weights measur-
ing the influence of preceding values Ct � 1, . . ., Ct � p on the value
Ct , and et is a white noise process. That means, et is a sequence of un-
correlated variables from a fixed distribution with time dependent
mean, usually assumed to be 0 and time invariant variance. Most ap-
plications of AR models assume et to be normally distributed.

Conceptually, an autoregressive process is one with a ªmem-
oryº, in the sense that each value is correlated with preceding
values. Following this interpretation, each value in an AR(p) pro-
cess is determined by p preceding values, where older values will
have a fading effect. Typically, low order AR processes (p K 2)
are suitable to describe physiologic variables [8±10].

After completion of preliminary tests with classical interactive
model selection [14], which showed that either first or second order
models were statistically appropriate, second order autoregressive
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Table 2 Relative confidence intervals CI for series with readjusted
confidence intervals: initial CI 95%. All figures for prediction per-
iods of AR(2) models. Comparison of final CI after readjustment
for different patterns. Values are % of final model values

Pattern of change Relative CI (CIrel) from fitted
model (%)

No.

Mean Maximum Minimum

Final CI value: 90 %
No change 22.33 26.14 18.51 2
Spike/artifact 5.29 5.29 5.29 1
Temporary level change 3.79 3.79 3.79 1
Permanent level change 13.12 24.63 5.80 6

Final CI value: 95 % (= initial CI value)
No change 12.82 38.18 2.78 16
Spike/artifact 13.47 34.46 3.36 15
Temporary level change 9.56 23.91 2.74 12
Permanent level change 12.54 53.66 2.87 32
Trend 30.42 92.83 6.11 10

Final CI value: 99 %
No change 7.49 14.37 3.47 4
Spike/artifact 9.80 23.59 3.14 4
Temporary level change 12.38 33.76 1.55 10
Permanent level change 10.95 13.08 7.86 4

Final CI value: 99.9%
No change 5.61 5.61 5.61 1
Spike/artifact 15.18 38.65 2.33 20
Temporary level change 4.74 4.74 4.74 1

Final CI value: 99.99 %
Spike/artifact 17.78 23.90 13.58 5



models were chosen for all time series. In cases where an AR(1)
process is sufficient, an AR(2) process overdetermines the model.
This leads to an unnecessary estimation of the parameter a 2, which
will be close to 0. The additional computational effort is low, but it
avoids an extensive model selection process. This model selection
is also supported by earlier studies of time series analysis of inten-
sive care data [9].

Each time series was split into two segments, an estimation per-
iod (observations x 1, . . ., xn ) prior to the observed pattern and a
prediction period including this pattern. A second order AR model
(AR(2) model) was fitted to the data from the estimation period,
for which the weights a 1, . . ., ap had to be estimated. At the esti-
mation stage the weights must be chosen according to some de-
fined criterion. A criterion which requires relatively little compu-
tational effort is the least-squares criterion. Here, the values â1,
. . ., âp that minimize the sum of squaresPn

t� p + 1 [xt � a 1xt � 1 � . . . � apxt � p ]2 =
Pn

t� p + 1 [et ]
2

are defined to be the least squares estimates of a 1, . . ., ap. The
et = xt � â1xt � 1 � . . . � âpxt � p are called estimated residuals. They
can be regarded as the estimates for the et and they denote the de-
viation in the prediction of the actually observed value xt with the
estimated value x̂t = â1xt � 1 + . . . + âpxt � p. Obviously the cumula-
tive deviations should be as low as possible, as expressed in the
above formula. On the basis of the estimated weights, confidence
intervals for the estimation period as well as for the prediction pe-
riod can be constructed [14].

The estimated model was tested for goodness of fit with the
plot of the autocorrelation function (ACF plot) of its residuals.
The autocorrelation function describes the correlation between
time delayed observations xt and xt � t, t, t ÎÀ:

ACF (t) = Corr (xt, xt � t ) =
PNÿ t

t� 1 (xt ÿ �xt)ÿ(xtÿt ÿ �xt)PN
t� 1 (xt ÿ �xt)

2 , t, t Î À

where x-t =
PN

t� 1 xt is the estimated mean of the time series. Be-
cause the errors et and et + t are assumed to be independent, their
estimators (the residuals) should be independent for all time lags
(ACF(t) = 0). Other tests of autocorrelation in the residuals
(Box±Ljung, Durbin±Watson and the root mean square error)
were also applied [14].

In some cases a difference between the visual classification and
the percentage of observations identified as outliers by the model
occurred if a 95% CI was chosen. One possible reason for this dif-
ference is a temporary violation of model assumptions like statio-
narity or the Gaussian distribution of the observations. The other
important reason is that a fixed level for the CI cannot adapt to
the extent of the process variability. If the level is fixed and the
variability is small, the CI is small as well. Observations outside
such a CI may be clinically irrelevant. To avoid false classifications,
the chosen CI level had to be adjusted from an initial 95% to 99,
99.9, 99.99, or in some cases to 90%. The pattern identification
was rerun with this adjusted CI.

Phase space models

Phase space models are based on a transformation of time series in
a Euclidean space. This transformation is called Phase Space Em-
bedding, a technique derived from the theory of nonlinear dynam-
ic systems. Given a time series (xt) with N observations, Packard
et al. [34] and Takens [35] constructed so-called phase space vec-
tors xt

® , which are defined by:

xt
® = (xt + m � 1, . . ., xt + 1, xt)¢, xt

® Î Â, t = 1, . . ., N � m + 1, m Î À\ 0

Here, m is called embedding dimension. Numerous rules exist for
choosing m in nonlinear models. In most cases the components of
the phase space vectors are not neighboring observations, but
rather then are separated by a time delay [36, 37]. Focusing on
Gaussian processes, m is chosen in analogy to the order of an
AR(p) model. The components of xt

® are chronological observa-
tions with a time delay (lag) always of 1. This improves the identifi-
cation of patterns in Gaussian processes as dependencies between
consecutive observations are taken into consideration.

For the example of m = 2 the set of vectors xt
® = (xt + 1, xt)¢ can be

plotted in a two-dimensional space. This vector cloud is called
Phase Space Reconstruction. With this reconstruction it is possible
to visualize properties of the underlying dynamic. In Fig.2 a two-
dimensional reconstruction of a time series is given. In this case,
the underlying system is in a steady state. Where chronological ob-
servations are combined in order to show the movement through
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Results for autoregressive models

No change Outlier Level change Trend Total

Temporary Permanent

Autoregressive models

Pattern detected
Yes/no 23/0 35/0 24/0 42/0 10/0a 134/0

Sensitivity
Correct 16 27 17 32 10 102
Too high 7 8 7 10 0 32
Total 23 35 24 42 10 134

Phase space models

Pattern detected
Yes/no 23/0 35/0 20/4 37/5 0/10b 134

Sensitivity
Correct 7 12 8 9 3 33
Too high 16 23 16 33 7 101
Total 23 35 24 42 10 134

Table 3 Results for AR and PS
models. Pattern identification:
rate of successful pattern de-
tection. Estimation of sensitiv-
ity compared to clinical find-
ings

a Indirect identification through
analysis of the autocorrelation
function of the residuals of the
AR(2) model
b Mathematical theory does not
allow trend detection (work in
progress). But practical appli-
cation can identify trend by the
shape of the vector cloud



space, the vectors form an elliptic cloud. The geometry of the time
series reflects the dependency structure of the underlying process.
This can be formalized. An ellipse, which is estimated with statisti-
cal methods from the (contaminated) data, is placed around the
vector cloud [16].

The estimation of the ellipse is based on the assumption that
the two-dimensional vectors (Ct + 1, Ct)¢, constructed from the pro-
cess variables are bivariate normally distributed

(Ct + 1, Ct)¢ ~ N (m® , S), m® = (m, m)¢,
P � s2 g

g s2

� �
Analogous to the univariate case the bivariate distribution has a
mean vector m®. The parameter matrix S describes the dependency
structure of the process (the elliptic form of the embedding). In
practice, m, s2, and g are unknown and have to be estimated from
the time series data. The most convenient way is to use classical es-
timators

m̂ = x� t, s 2^ = ACF (0), ĝ = ACF (1)

These estimators can be replaced by robust estimators [16], so that
outliers in the data have little influence on the parameter estima-
tion.

It is obvious that the distance of the vector x® t from the mean
vector (the steady state) m® gives information about suspicious ob-

servations. Using the Euclidean norm ½½x® t½½ =
������������������
x2

t� 1 + x2
t

q
is not

adequate here, because it does not consider the orientation of the
observation from the mean vector. Thus a weighted distance, the
Mahalanobis distance (MD) has to be used for identifying suspi-
cious observations at time t and for estimating the ellipse

MDt =
������������������������������������������������
(xt ÿ m)0

Pÿ1 (xt ÿ m)
q

® ®

It is well known in the statistical literature that MD2
t is asymptoti-

cally chi-square distributed with two degrees of freedom
(MD2

t ~ c2
2). The set of vectors x® t given by

{x® t½(x® t � m)¢ S � 1(x® t � m) = c2
2, 1 � a}

forms an imaginary ellipse around the mean vector m®, where c2
2,1 � a

is the 1 � a quantile of a chi-square distribution with two degrees
of freedom for a given level a. In practice, m, s2, and g have to be
replaced by their estimators. All observations inside this ellipse
are in accordance to the steady state, whereas observations extrud-
ing from this ellipse are outliers or affected by level changes.

The size of the ellipse is determined by the given level a. This is
the probability that the procedure falsely identifies one or more
values as outlying observations, if model assumptions are valid.
To ensure that this probability statement is valid, it is necessary to
adjust the level, because every single observation has to be exam-
ined whether it extrudes from the ellipse. The adjusted level aN is

given by aN =
a

2(Nÿm + 1)
, i. e., aN = 0.000085 with a = 0.01 and

N = 60 [16]. If a phase space vector lies outside the estimated el-
lipse the probability that it actually belongs to the steady state is
smaller than 0.00085 » 0.0001.

All observations of the time series of Fig. 2 lie inside such an
estimated ellipse. In this case, it can be determined that the sys-
tem is in a steady state and that no specific pattern is present. If
one or more vectors leave this ellipse, a disturbance of the dy-
namic can be assumed. It is possible to distinguish several distur-
bances by the movements of the affected vectors. Figures 3±6 dis-
play typical examples for the patterns, which were investigated in
this study.

The identification procedure that we developed uses the differ-
enced time series dt, which is dt = gt � gt � 1, t = 1, . . ., N. In a differ-
enced series an abrupt level change will be represented by one out-
lier. The procedure focuses on the identification of these observa-
tions. On the basis of the movement of the phase space vectors,
which contain such observations, a discrimination between differ-
ent patterns is done. The vectors d

®

t, t = 2, . . ., N were analyzed in
consecutive order whether they pointed into a distant region. If a
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Fig.7 Phase Space Embedding of a simulated time series: Top si-
mulated AR(1) process with outlier and level change; middle dif-
ferenced AR(1) process with outlier and level change; Bottom
phase space embedding of the differenced series (O outlier, LC
level change). Plot of d_n versus d_(n � 1). After a change occurr-
ed the phase space vectors fall back into the ellipse describing the
steady state



vector lies in a distant region, i. e., the vector extrudes from the
cloud, it can be discriminated between different patterns after ob-
serving further values (a detailed description of the methodology
is given in Bauer et al. [16]).

A graphic example may show the general approach of this
methodology. In Fig.7a simulated time series following an AR(1)
process, the differenced series, and the two-dimensional embed-
ding of the differenced series with the corresponding estimated el-
lipse are shown. This example discriminates only between the pat-
terns of outlier and abrupt level change. If at the time point t the
vector d

®

t extrudes from the cloud, the decision between outlier

and abrupt level change takes place at the time point t + 1. If the
distance between d

®

t + 1 and the fixed point LC in Fig.7 is smaller
than the distance between d

®

t + 1 and the fixed point O, then a
level change can be diagnosed, otherwise, an outlier is present. If
more patterns are considered, more fixed points have to be deter-
mined and the time point at which the decision takes place is de-
layed.
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