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Abstract 

Immunocompromised patients account for an increasing proportion of the typical intensive care unit (ICU) case‑mix. 
Because of the increased availability of new drugs for cancer and auto‑immune diseases, and improvement in the 
care of the most severely immunocompromised ICU patients (including those with hematologic malignancies), criti‑
cally ill immunocompromised patients form a highly heterogeneous patient population. Furthermore, a large number 
of ICU patients with no apparent immunosuppression also harbor underlying conditions altering their immune 
response, or develop ICU‑acquired immune deficiencies as a result of sepsis, trauma or major surgery. While infections 
are associated with significant morbidity and mortality in immunocompromised critically ill patients, little specific 
data are available on the incidence, microbiology, management and outcomes of ICU‑acquired infections in this 
population. As a result, immunocompromised patients are usually excluded from trials and guidelines on the man‑
agement of ICU‑acquired infections. The most common ICU‑acquired infections in immunocompromised patients 
are ventilator‑associated lower respiratory tract infections (which include ventilator‑associated pneumonia and 
tracheobronchitis) and bloodstream infections. Recently, several large observational studies have shed light on some 
of the epidemiological specificities of these infections—as well as on the dynamics of colonization and infection with 
multidrug‑resistant bacteria—in these patients, and these will be discussed in this review. Immunocompromised 
patients are also at higher risk than non‑immunocompromised hosts of fungal and viral infections, and the diagnostic 
and therapeutic management of these infections will be covered. Finally, we will suggest some important areas of 
future investigation.
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Introduction
The last decades have seen a striking increase in the avail-
ability of effective therapeutic interventions for cancer, 
hematologic malignancies, solid organ transplantation 
and auto-immune diseases. In parallel, the survival of 
patients with these conditions as well as other immuno-
deficiencies has improved significantly [1]. Consequently, 
recent studies evaluating the use of intensive care have 

shown that immunocompromised patients account for 
a significant percentage of the typical intensive care unit 
(ICU) case-mix. It is estimated that around one-third of 
ICU patients present at least one risk factor for immu-
nosuppression, and cancer patients currently represent 
approximately one in six ICU admissions [2, 3].

Immunocompromised patients may require ICU 
admission for several reasons, including the treatment 
of severe infections, immune-mediated organ dysfunc-
tion, acute bleeding and complications associated with 
therapies that target their disease. However, their out-
comes are only partially explained by their background 
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medical history and the conditions leading to critical 
care [2–5]. As a result of baseline immune abnormalities, 
exposure to broad-spectrum antibiotics, invasive devices 
and/or additional immune-modulating therapies during 
their ICU stay, immunocompromised patients may be at 
higher risk of acquiring new infections in the ICU.

Among ICU-acquired infections occurring in immu-
nocompromised patients, the most prevalent include 
ventilator-associated lower respiratory tract infections 
(VA-LRTI), which are divided into ventilator-associ-
ated pneumonia (VAP) and ventilator-associated tra-
cheobronchitis (VAT), and bloodstream infections (BSI) 
[6–10]. Importantly, these patients might also be more 
susceptible than non-immunocompromised counter-
parts to a specific range of pathogens—often described 
as ‘opportunistic’—such as some bacteria of lower viru-
lence, but also fungi and viruses. Finally, a special area 
of concern is related to the prevalence of antimicrobial 
resistance (AMR) in this population.

Different definitions of immunosuppression have been 
used across studies, which explains the important vari-
ability in reports on the incidence, microbiology and 
outcomes of ICU-acquired infections in this population. 
Furthermore, data on the infectious complications asso-
ciated with the newest immunosuppressive and anti-can-
cer drugs are scarce. In this article, we will discuss how 
immunosuppression is usually defined in the critical care 
literature, cover the mechanisms associated with ICU-
acquired infections, describe the epidemiology, diagno-
sis and management of the most common ICU-acquired 
infections in immunocompromised patients, and suggest 
areas of further study.

Methods
We searched the MEDLINE and PubMed databases for 
articles in English published between 2003 and 2023, 
using associations of search queries related to the con-
cepts of immunosuppression (’neoplasm’, ’cancer’, ’hema-
tologic neoplasms’, ’HIV’, ’immunocompromised host’, 
’immunosuppression’, ’transplantation’, ‘leukopenia’), 
intensive care medicine (’intensive care unit’, ’critical 
care’), infections (’cross infection’, ’bacteremia’, ’blood-
stream infection’, ’pneumonia’, ’invasive fungal infections’, 
’virus diseases’) and antimicrobial resistance (‘drug resist-
ance, microbial’). Further references were added through 
hand-searching in the relevant literature and verifying 
references of key papers. We screened titles and abstracts 
of papers identified by our search, and assessed the full 
text of potentially relevant articles. The inclusion of 
papers in the final manuscript was based on consensus 
among all coauthors.

Definitions of immunosuppression
From the immunological perspective, immunosuppres-
sion is defined as immune dysfunctions associated with 
an increased susceptibility to recurrent infections by 
common or ordinary pathogens, and also by opportunis-
tic microorganisms considered innocuous for non-immu-
nocompromised hosts. Immunosuppressive conditions 
classically include primary inherited immunodeficien-
cies [11] and acquired immunodeficiencies related to 
cancer, hematologic malignancies and their treatment, 
solid organ transplantation, long-term exposure to corti-
costeroids and other immunosuppressive drugs, neutro-
penia or HIV infection. In the critical care literature, the 
term ‘immunocompromised patients’ generally refers to 
patients presenting with at least one of these conditions 
at ICU admission [8, 12]. Conversely, patients without 
clinical or biological evidence of immunosuppression are 
often, by default, and sometimes improperly, considered 
‘immunocompetent.’ However, the assumption that all 
patients deemed ‘immunocompetent’ at ICU admission 
indeed have a normal immune system appears question-
able, especially among those with sepsis, whose severity 
of infection often results from ineffective anti-infective 
responses [13]. Indeed, multiple conditions likely to 
impact immuno-inflammatory responses underlie a ‘hid-
den’ state of immunosuppression (Table  1). However, 
there is no validated diagnostic test to assess the actual 
‘net state of immunosuppression’ in critically ill patients. 
In this review, we have used the term ‘immunocompro-
mised patients’ to refer to the group of patients pre-
senting with known risk factors of immunosuppression 
at ICU admission (‘overt’ immunosuppression), while 
acknowledging both the large phenotypic heterogeneity 
within this population and the fact that some features of 
ICU-acquired infections discussed here might also apply 
to patients falling outside of this definition (those with 
‘covert’ immunosuppression).

The epidemiology of sepsis in Western countries is 
characterized by the significant predisposing role of age 

Take‑home message 

Immunocompromised patients account for an increasing propor‑
tion of intensive care unit (ICU) patients and form a highly hetero‑
geneous patient population. Recent data have challenged the com‑
mon assumption that immunocompromised patients are at higher 
risk of ICU‑acquired infections in general, and with multidrug‑resist‑
ant bacteria in particular. However, these patients remain prone to 
opportunistic infections in the ICU, including viral and fungal infec‑
tions. Future research efforts should focus on the epidemiology of 
ICU‑acquired infections among immunocompromised patients, the 
role of the normal microbiota, improved tools for microbiological 
diagnosis and for the assessment of immune function at the bed‑
side, and immunomodulating agents to prevent ICU‑acquired infec‑
tions in this population.
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and comorbid conditions [14–16]. Beside aging-related 
immune cell alterations, a physiological process called 
immunosenescence, several patients with sepsis also 
harbor non-immune comorbid conditions that are likely 
to modulate systemic and/or organ-specific anti-infec-
tive defenses. For instance, diabetes is associated with 
defective phagocytic functions of neutrophils, cirrhosis 
impairs the essential filter functions of the liver (which 
is an important reservoir of macrophages, known as 
Kupffer cells), and chronic obstructive pulmonary disease 
(COPD) modulates lung immunity toward bacteria. It is 
illustrative that critically ill patients from the first wave 
of coronavirus disease 2019 (COVID-19) were generally 
deemed ’immunocompetent’ because they lacked the 
classical criteria for immunosuppression. However, most 
of them harbored chronic non-immune comorbidities 
such as obesity, diabetes and arterial hypertension [17]. 
Further investigations revealed inappropriate antiviral 
responses in some of them, ascribed to immune dysfunc-
tions (e.g., the presence of anti-interferon [IFN] antibod-
ies) [18, 19].

Furthermore, there is now firm evidence that critically 
ill patients labeled as ‘immunocompetent’ at ICU admis-
sion are prone to further ICU-acquired infections related 
to opportunistic pathogens, including bacteria with lim-
ited virulence in non-immunocompromised patients 
(e.g., Pseudomonas spp., enterococci) and fungi (both 
yeasts and molds), as well as to the reactivation of latent 
herpesviruses [16, 22, 23]. The significance of viral reacti-
vation is unclear, as direct organ involvement is uncom-
monly encountered. Interestingly, viral reactivation may 
not only be a consequence of immunosuppression, but 
may also have immunomodulatory consequences by 
increasing the risk of ICU-acquired bacterial and fungal 
infections [20]. This  increased susceptibility to oppor-
tunistic infections argues for ICU-acquired profound and 

sustained immunosuppression, which involves quantita-
tive and/or functional alterations in all innate and adap-
tive immune cells [21]. Several clinical studies have shed 
light on the pathophysiological mechanisms of these 
alterations, which have been described in the setting of 
various acute illnesses, including bacterial sepsis, viral 
infections (e.g., flu), major surgery and trauma [21–23]. 
Several immune biomarkers have emerged to stratify 
the risk of ICU-acquired infections beyond the classical 
clinical risk factors, including lymphopenia [24], mono-
cyte expression of human leukocyte antigen (HLA) class 
II histocompatibility DR molecules (HLA-DR) [25] and 
immune functional tests [26]. However, these biomarkers 
only reflect the functionality of individual components of 
the immune system, have limited diagnostic and prog-
nostic performance, and might display limited availabil-
ity at the bedside. Furthermore, they have mostly been 
assessed in non-immunocompromised patients [27, 28]. 
Such acquired immune dysfunctions primarily result 
from the primary insult leading to ICU admission (sepsis, 
trauma, major surgery, etc.). Still, it is noteworthy that 
many interventions in the ICU also have potent immu-
nomodulatory properties, including invasive proce-
dures (intravascular catheters, endotracheal intubation, 
mechanical ventilation), drugs (corticosteroids, seda-
tives, catecholamines and some antibiotics, which could 
alter immune responses through mitochondrial toxicity 
[29, 30]), and blood products (including red blood cells, 
platelet concentrates and fresh-frozen plasma) [31–33]. 
Several pre-clinical studies have also documented that 
the normal microbiota influences the development and 
function of critical mediators of the immune system 
[34, 35]. Still, the relevance of these findings to criti-
cally ill patients is yet unclear. Thus, the primary insult 
and related medical interventions may mitigate the anti-
infective capacities toward ICU-acquired infections and 

Table 1 Conditions associated with immunosuppression in critically ill patients

*Simplified functional classification. The reference molecular classification is regularly updated

COPD chronic obstructive pulmonary disease, HIV human immunodeficiency virus, HSCT hematopoietic stem cell transplantation, SARS‑CoV‑2 Severe acute respiratory 
syndrome coronavirus 2

Overt immunosuppressive conditions Covert immunosuppressive conditions

Primary immunodeficiencies* Chronic acquired  
immunodeficiencies

Acute acquired  
immunodeficiencies

Non-immune conditions

‑ Antibody deficiency
‑ Cellular deficiency
‑ Combined antibody and cellular 

immune deficiency
‑ Phagocytic defects
‑ Complement defects

‑ Hematological malignancies
‑ Solid tumors (especially if 

metastatic and/or under chemo‑
therapy)

‑ Solid organ transplantation
‑ Corticosteroids and other immu‑

nosuppressive therapies
‑ HSCT
‑ HIV (especially if CD4 + T‑cell 

count < 200/μL)

‑ Sepsis
‑ Viral pneumonia (flu, SARS‑CoV‑2)
‑ Major trauma
‑ Major surgery
‑ Subarachnoid hemorrhage
‑ Cardiac arrest
‑ Malaria

‑ Diabetes
‑ Chronic pulmonary conditions (e.g., 

COPD)
‑ Cirrhosis
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smooth out some differences across immunocompro-
mised and non-immunocompromised patients.

Mechanisms of infection in immunocompromised 
patients
The incidence, microbiology and outcomes of ICU-
acquired infections in immunocompromised patients are 
influenced by numerous factors, which can be broadly 
divided into: (1) microbial factors, namely the balance 
between exposure to virulent and opportunistic patho-
gens and the integrity of the normal commensal flora; (2) 
the nature, duration and severity of immunosuppression; 
(3) the disruption of anatomical barriers; and (4) past and 
current antimicrobial exposure for either prophylactic or 
therapeutic purposes (Fig. 1).

Specific data on the microbiology of ICU-acquired 
infections in immunocompromised patients are scarce. 
In the proportion of these infections attributed to what 
could be defined as a set of ‘typical’ bacteria frequently 
encountered in the ICU (including but not limited to 
Staphylococcus aureus, Enterobacterales, non-ferment-
ing Gram-negative bacteria), ICU-acquired colonization 
with virulent strains is believed to play a major role, simi-
larly to what is observed in non-immunocompromised 
hosts. Preclinical data suggest that the disruption of the 
normal flora may facilitate colonization and subsequent 
infection with pathogenic bacteria [36–38], and while 
firm clinical evidence of this is limited, investigations 
targeting the microbiota of critically ill patients are illus-
trative of its potential role in the pathophysiology of ICU-
acquired infections. In humans, randomized controlled 
trials have demonstrated that treatment with pre-/probi-
otics resulted in a lower incidence of VAP [39] and anti-
biotic-associated diarrhea [40]. However, recent reviews 
on their effect are inconclusive [41, 42]. Fecal microbiota 
transplantation (FMT) has been demonstrated to reduce 
the incidence of Clostridium difficile infections [43, 44], 
but not of other ICU-acquired infections. And contrarily 
to attempts at restoring a ‘normal’ flora [45], selective 
digestive tract decontamination (SDD) with broad-spec-
trum antimicrobials has also been shown in high-quality 
studies to reduce the incidence of VAP [46, 47] and ICU-
acquired bacteremia [47, 48]. Importantly, the evidence 
on these interventions among immunocompromised 
patients is limited [49].

Immunocompromised patients are also prone to ICU-
acquired infections with viruses, fungi and ‘atypical’ bac-
teria [8]. This can be linked to the reactivation of latent 

pathogens, e.g., viruses of the Herpesviridae family (such 
as herpes simplex virus [HSV], cytomegalovirus [CMV]) 
or mycobacteria; or to environmental exposure in the 
ICU, e.g., to opportunistic fungi (such as Aspergillus and 
Pneumocystis jirovecii) or respiratory viruses (such as 
influenza, respiratory syncytial virus [RSV] and others).

The nature, duration and severity of immunosuppres-
sion also influence the microbiology of ICU-acquired 
infections: prolonged neutropenia is a risk factor for 
invasive fungal infections [50], patients with B-cell 
defects are prone to infections with encapsulated bac-
teria [51], Pneumocystis pneumonia is classically seen 
in patients affected by acquired immunodeficiency syn-
drome (AIDS), and increasingly in patients with T-cell 
defects or on long-term steroids [52]. However, there is 
significant overlap in the list of potential pathogens typi-
cally implicated in different types of immunosuppres-
sion. Furthermore, these classical observations are made 
less relevant by the facts that: 1) critically ill immuno-
compromised patients often present multiple factors of 
immunosuppression simultaneously [9]; 2) as we have 
discussed,  critically ill patients with no obvious base-
line immunosuppression often develop ICU-acquired 
immune defects that make them prone to various 
opportunistic infections [22, 23, 53]; and 3) biomark-
ers or assays to assess the ‘net state of immunosuppres-
sion’ of individual critically ill patients  have important 
limitations.

The disruption of anatomical barriers by vascular cath-
eters, endotracheal tubes and other devices also plays an 
important role in the occurrence of ICU-acquired infec-
tions, essentially related to ‘typical’ bacterial pathogens. 
However, there are little data on the way immunosup-
pression modulates this risk, and recent investigations 
have challenged the common assumption that immu-
nocompromised patients are at higher risk of ‘device-
associated’ ICU-acquired infections. For instance (and 
as will be discussed in more detailed below), in an ancil-
lary analysis of a prospective multicenter observational 
study, the incidence of VA-LRTI was significantly lower 
among immunocompromised than among non-immuno-
compromised patients [7], and in a retrospective multi-
center analysis focusing only on immunocompromised 
patients, the incidence of VA-LRTI was lower among 
patients with hematologic malignancies than among 
patients with other types of immunosuppression [54]. 
Further, in a single-center prospective cohort study, the 
incidence of ICU-acquired bloodstream infections was 

(See figure on next page.)
Fig. 1 Mechanisms of ICU‑acquired infections in immunocompromised patients. Figure created with BioRender
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Fig. 1 (See legend on previous page.)
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not statistically different between immunocompromised 
and non-immunocompromised patients [55].

Finally, the occurrence of ICU-acquired infections is 
influenced by past and ongoing exposure to antimicrobi-
als. First, antifungal prophylaxis is effective at prevent-
ing Pneumocystis pneumonia in HIV-positive [56] and 
HIV-negative patients [57], and antiviral prophylaxis at 
preventing HSV reactivation in patients with hemato-
logic malignancies [58, 59]. Thus, compliance to these 
regimens should be considered when evaluating immu-
nocompromised patients suspected of ICU-acquired 
infection. SDD seems to be effective at preventing VAP 
[46, 47] and ICU-acquired bacteremia [47, 48], but its 
widespread use has been limited by concerns over poten-
tial negative consequences on AMR, even though imple-
mentation of SDD has not firmly been associated with 
increased rates of multidrug-resistant (MDR) bacteria in 
critically ill patients [48, 60]. Similarly, antibiotic prophy-
laxis in high-risk hematology patients has been evaluated 
in several trials, but has been associated with increased 
resistance rates and is therefore not recommended [61, 
62]. Exposure to broad-spectrum antibiotics is consid-
ered a key driver of AMR, as it has been associated with 
subsequent ICU-acquired colonization and/or infection 
with MDR bacteria in several studies. The association 
between immunosuppression and AMR in the ICU will 
be covered in more detail in a dedicated section below.

ICU‑acquired bloodstream infections
Few studies have specifically investigated the association 
between immunosuppression and the incidence of ICU-
acquired BSI. Interestingly, all-cause immunosuppression 
at ICU admission was not a risk factor for ICU-acquired 
BSI in a retrospective analysis of 571 BSI episodes among 
10,734 patients from the Outcomerea database (France) 
[63]. Similar results were obtained in a retrospective 
study on 1306 ICU-acquired BSI episodes among 150,948 
ICU admissions in 85 American ICUs [64], and in a sin-
gle-center retrospective cohort study in France (1313 
patients, including 249 immunocompromised) [55]. In 
a retrospective study on 330 ICU-acquired BSI episodes 
among 6339 patients in Australia, immune deficiency 
and malignancies were more prevalent in patients with 
at least one ICU-acquired BSI than in patients without 
(10.6% vs. 7%, p = 0.02 for immunosuppression and 19.1 
vs. 14.8%, p = 0.04 for malignancies), but immunosup-
pression (not including malignancies) was not an inde-
pendent risk factor for ICU-acquired BSI in multivariate 
analysis [65].

Around 90% of ICU-acquired BSI occurring in unse-
lected critically ill patients are caused by bacteria, and 
there are limited data related specifically to the microbi-
ology of these infections among immunocompromised 

patients [63, 66–68]. Almost all microorganisms can 
cause BSI in these patients, including commensal micro-
organisms of lower virulence (such as coagulase-negative 
staphylococci [CNS]). Independently of immune status, 
the European Centre for Disease Prevention and Control 
has reported that CNS were the most frequently isolated 
microorganisms in ICU-acquired BSI (mostly associ-
ated with catheter-related BSI), followed by Enterococ-
cus spp., Klebsiella spp. and Staphylococcus aureus [69]. 
These data are consistent with those collected in onco-
hematologic patients over 15  years (2006–2020, n = 467 
BSI episodes) by Laporte-Amargos et  al., although 
only < 5% of the cohort was admitted to ICU [9]. How-
ever, in the EUROBACT-2 study (2600 unselected ICU 
patients with BSI), Gram-negative bacteria were pre-
dominant (59%), and recent reports focusing on patients 
with cancer and hematologic malignancies [70, 71] and 
neutropenia [72] have also documented an increase in 
the proportion of Gram-negative bacteria causing BSI 
(although not all ICU-acquired). Differences across stud-
ies might be related to differences in local epidemiology, 
but most importantly to the exclusion in some studies 
of cases related to potential blood culture contaminants 
(e.g., CNS). Around 10% of ICU-acquired BSI are related 
to fungal pathogens, most often to Candida species [63, 
66–68].

There is no specific definition or diagnosis method for 
ICU-acquired BSI in immunocompromised patients: 
according to the 2009 IDSA guidelines, “a BSI is defined 
by positive blood cultures in a patient with systemic 
signs of infection, and may be either secondary to a 
documented source [most often VA-LRTI or catheter-
associated infections] or primary”, and is considered 
ICU-acquired if occurring after ≥ 48  h in the ICU [73]. 
Aerobic and anaerobic blood cultures followed by spe-
cies identification (usually by matrix-assisted laser des-
orption/ionization‐time of flight [MALDI-TOF] mass 
spectrometry) remain the gold standard to identify caus-
ative microorganisms in BSI. Considering the growth 
time requirement for blood culture and the negative 
prognostic impact of a delayed pathogen-adapted anti-
microbial treatment, rapid molecular assays (often based 
on multiplex polymerase chain reaction [mPCR]) have 
recently been developed as rapid alternatives to culture-
based methods [74]. However, most of these syndromic 
mPCR assays do not alleviate the need for prior incuba-
tion, as their diagnostic performance is unacceptably low 
when used directly on whole blood. An inherent limita-
tion of these tools is the limited number of PCR targets 
present in their panels. To this date, a clear demonstra-
tion of the clinical relevance of these molecular methods 
in terms of patient outcomes in the management of BSI 
is lacking.
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The occurrence of ICU-acquired BSI has been associ-
ated with an increased mortality among unselected criti-
cally ill patients, including in Adrie et  al. [63] (adjusted 
HR 1.40, 95% confidence interval [95%CI] 1.16–1.69), 
Prowle et  al. [65] (adjusted HR 2.89, 95%CI 2.41–3.46), 
and in a retrospective study on 232 ICU-acquired BSI 
episodes among 3247 patients in 12 ICUs in France (odds 
ratio [OR] 3.20, 95%CI 2.30–4.43) [75]. Little data have 
been published on the impact of immunosuppression 
on the association between occurrence of ICU-acquired 
BSI and outcomes. However, in the EUROBACT study, 
Tabah et  al. found that among patients with hospital-
acquired BSI (76% of which were acquired in the ICU), 
immunosuppression was associated with an increased 
mortality risk (OR 2.11, 95%CI 1.40–3.19) [67]. Both in 
the general ICU population [63] and among critically ill 
neutropenic patients [72], inappropriate initial antibiotic 
treatment has been associated with an increased mor-
tality; given the rising prevalence of AMR in ICUs, this 
makes the choice of empirical antibiotic regimens par-
ticularly challenging.

Key points for the management of BSI in critically 
ill patients—not specifically in immunocompromised 
patients—have been recently proposed by experts and 
are summarized here [74]. Both in immunocompromised 
and non-immunocompromised patients, empirical anti-
biotic treatment for suspected ICU-acquired BSI will be 
instructed by individual risk factors for MDR bacteria 
(including prior antibiotic exposure), local ecology, clini-
cal severity (septic shock), the net state of immunosup-
pression (especially the presence of neutropenia) and 
suspected or proven candidemia. In most cases, initial 
empirical regimens will include broad-spectrum antibi-
otics. Novel beta-lactams (and associations with beta-
lactam inhibitors) active against certain MDR bacteria 
can be used empirically in critically ill patients, mostly 
following local ecology. Empirical combination antimi-
crobial therapy—usually associating a beta-lactam and an 
aminoglycoside or a fluoroquinolone—is recommended 
until antibiotic susceptibility testing (AST) results 
become available. However, extending the duration of 
dual therapy after culture results become available is con-
troverted, as several meta-analyses have shown that the 
combination of a beta-lactam and an aminoglycoside did 
not reduce mortality in patients with BSI, including neu-
tropenic patients or those with sepsis, compared to the 
same beta-lactam alone, and might increase the risk of 
acute kidney injury [76–78]. Empirical antifungal treat-
ment with an echinocandin for suspected candidemia 
should be considered in patients with prolonged neu-
tropenia (≥ 7  days), non-resolving fever after initiation 
of broad-spectrum antibiotics, no other source of infec-
tion and risk factors for candidemia (including Candida 

colonization and elevated (1–3)-Beta-D-glucan). It 
should be initiated promptly in neutropenic patients with 
septic shock. Preemptive antifungal treatment has been 
defined as a treatment initiated in patients with elevated 
fungal biomarkers, and is not recommended in non-
neutropenic patients [79]. Failure to achieve source con-
trol has been clearly associated with increased mortality 
[67, 68], and removal of central lines should be imme-
diate in patients with septic shock. Therapeutic drug 
monitoring is recommended for vancomycin, aminogly-
cosides and polymyxins, and could be useful for beta-
lactams. Prompt de-escalation should be a cornerstone of 
antibiotic stewardship for all patients [80, 81]. Classically, 
it has been advised to continue antibiotics until evidence 
of bone marrow recovery in febrile high-risk neutropenic 
patients (until the neutrophils count is  > 500 cells/μL) 
[82]; however, recent studies have suggested that it is safe 
to discontinue antibiotics in patients who remain neutro-
penic but have been afebrile for several days (usually 3–7 
days) and in whom no source of infection has been found 
[83, 84].

Ventilator‑associated lower respiratory tract 
infections, including ventilator‑associated 
pneumonia and tracheobronchitis
Recent studies have investigated the incidence of VA-
LRTI in immunocompromised patients. In an ancillary 
analysis of an international prospective cohort study 
(2960 patients, including 662 immunocompromised 
in 114 ICUs), the 28-day cumulative incidence of VA-
LRTI was significantly lower in immunocompromised 
than in non-immunocompromised patients (16.6% vs. 
24.2%, sub-hazard ratio [sHR] 0.65, 95%CI 0.53–0.80) 
[7]. Similar results were obtained when considering VAT 
(7.3% vs. 11.6%) and VAP (9.3% vs. 12.7%) separately, 
and these estimates are in line with previous reports on 
lung and liver transplant patients [85, 86]. Furthermore, 
in a recent retrospective analysis of two large cohorts 
(n = 854 immunocompromised patients), Bayon et  al. 
have shown that patients with hematologic malignancies 
(n = 162) had a lower 28-day cumulative incidence of VA-
LRTI than patients with other types of immunosuppres-
sion (13.6% vs. 20.1%, adjusted cause-specific HR [cHR] 
0.61, 95%CI 0.37–0.97), mostly due to a lower incidence 
of VAP (9.3% vs. 13.9%) [54].

Most cases of VAP and VAT are attributed to bacterial 
pathogens [87], both in the general non-immunocompro-
mised population [88] and among immunocompromised 
patients [7, 54, 85, 86]. Most cases (50–80%) of bacterial 
VA-LRTI in immunocompromised patients are caused by 
Gram-negative bacteria, including non-fermenting bacilli 
(Pseudomonas aeruginosa, Acinetobacter baumannii) and 
Enterobacterales (Escherichia coli, Klebsiella pneumonia 



339

and other less common species), which is concerning 
because the resistance rate of these bacteria has been 
rising. In the study by Moreau et al., the proportion VA-
LRTI cases attributed to MDR bacteria was significantly 
higher among immunocompromised than among non-
immunocompromised patients (72% vs. 59% of VA-LRTI 
episodes, OR 1.75, 95%CI 1.13–2.71), but in view of the 
lower incidence of VA-LRTI in immunocompromised 
patients, the cumulative incidence of VA-LRTI related 
to MDR bacteria was in fact comparable between groups 
(12.5% vs. 14.7%) [7]. Staphylococcus aureus is the most 
frequently encountered Gram-positive pathogen respon-
sible for VAP [88], but the proportion of cases attributed 
to methicillin-resistant strains (MRSA) is low (~ 2%) [66, 
89]. Immunocompromised patients are at higher risk 
of VAP related to fungi and viruses (described below). 
Invasive pulmonary aspergillosis is a special concern in 
this population, but its exact prevalence is difficult to 
ascertain, because formal diagnostic criteria are lacking. 
Candida spp. is not usually considered pathogenic when 
isolated in respiratory secretions.

There are no specific diagnostic criteria for VAP and 
VAT in immunocompromised patients [10]. The diagno-
sis of VAP is based on the association of signs and symp-
toms of respiratory tract infection in patients who have 
been on invasive mechanical ventilation for ≥ 48 h, have 
a positive semi-quantitative  result from a lower respira-
tory microbiological sample  (above specific thresholds) 
and a new infiltrate on chest imaging [90, 91]. The diag-
nosis of VAT is based on the same clinical and micro-
biological criteria in the absence of a new radiologic 
infiltrate. One of the main challenges of VAP diagnosis in 
immunocompromised patients lies in confirming infec-
tion and ruling out a large set of  differential diagnoses, 
including neoplastic infiltration of the lung, pulmonary 
toxicities of anti-cancer treatments, fluid overload or 
intra-alveolar hemorrhage [2, 8]. European guidelines 
advocate for the use of fiber optic bronchoscopy (FOB) 
with bronchoalveolar lavage (BAL) to obtain high-quality 
microbiological samples [91], while American guidelines 
support obtaining endotracheal aspirates (ETA) [90]. Of 
note, a randomized controlled trial on 219 critically ill 
cancer patients with acute respiratory failure (ARF) did 
not find differences in the rate of adverse events and 
successful microbiological documentation (except for 
Pneumocystis pneumonia) when comparing these two 
diagnostic modalities [92]. Rapid mPCR-based syndro-
mic panels have been endorsed by recent guidelines on 
severe community-acquired pneumonia (CAP)[93], but 
not on hospital‐acquired pneumonia (HAP)/VAP. A 
recent trial conducted on 208 inpatients with pneumonia 
(including 48 HAP cases and 51 patients with immuno-
suppression) found that an mPCR test run on BAL was 

effective at reducing the duration of inappropriate anti-
biotic therapy [94]. As mentioned, an inherent limitation 
of mPCR panels is their limited number of targets, mak-
ing them probably less useful for ICU-acquired than for 
community-acquired infections. Further trials on HAP 
and VAP are ongoing to evaluate their impact on antibi-
otic prescribing [95].

Current European and American guidelines on VAP 
consider immunosuppression as a risk factor for MDR 
bacteria. Even if this likely reflects the role of confound-
ing factors (e.g., previous hospitalization or antibiotic 
exposure) more than a truly causal association, these 
guidelines recommend using a combination of broad-
spectrum antibiotics, including a beta-lactam with 
activity against Pseudomonas aeruginosa, for empirical 
treatment of VAP in immunocompromised patients [90, 
91]. However, solid data on the microbiology and treat-
ment modalities of VAP in this population are lacking. 
The choice of an empirical regimen should be based on 
the criteria that apply to other ICU-acquired bacterial 
infections, including local ecology.

Antibiotic resistance in critically ill 
immunocompromised patients
There is a dominant view in the literature that immuno-
compromised patients might present a high risk of colo-
nization and/or infection with MDR bacteria, and recent 
guidelines or expert reviews on BSI, CAP and HAP/
VAP advocate for the use of broad-spectrum antibiot-
ics as empirical treatment in this population. To move 
away from a strict microbiological definition of resist-
ance, it has been suggested to replace the term ‘MDR’ by 
the more clinically relevant concept of ‘difficult-to-treat’ 
(DTR), as ‘DTR pathogens’ refer to microorganisms that 
are resistant to multiple antimicrobial agents, and thus 
challenging to eradicate with ‘standard’ (first-line) anti-
biotic or antifungal agents. While numerous studies have 
sought to assess the burden of AMR in immunocompro-
mised patients (see reviews in [96, 97]), most have not 
focused on ICU patients, have not included a control 
group of non-immunocompromised patients, and have 
not taken into account important confounding factors in 
statistical analyses.

In a single-center case–control study conducted to 
investigate the independent association of immunosup-
pression with AMR in  the ICU, immunosuppression 
was only associated with ICU-acquired colonization and 
infection with MDR bacteria in univariate analysis, but 
not in multivariate analysis after adjustment for antibiotic 
exposure prior to and during ICU stay [98]. In the CIM-
DREA study, an observational prospective multicenter 
cohort study in France, we found that the incidence of 
ICU-acquired colonization with MDR bacteria was in 
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fact lower in immunocompromised vs. non-immuno-
compromised patients (adjusted sHR 0.56, 95%CI 0.40–
0.79), but the incidence of ICU-acquired infection with 
MDR bacteria was not significantly different between 
groups (adjusted sHR 0.59, 95%CI 0.33–1.05) [9]. This 
was also true when focusing on BSI and VAP related to 
MDR bacteria (28-day cumulative incidence of BSI 16.7% 
vs. 21.3% and VAP 33.3% vs. 38.3% in immunocompro-
mised vs. non-immunocompromised patients, respec-
tively). This is in line with the report by Moreau et  al., 
where the cumulative incidence of VA-LRTI cases attrib-
uted to MDR strains was similar in the two patient popu-
lations [7], and with a retrospective monocentric study 
on ICU-acquired BSI in immunocompromised patients 
[55].

Multiple factors could modulate the risk of ICU-
acquired colonization and infection with MDR bacteria 
in immunocompromised patients—including exposure 
to antibiotics (especially if broad-spectrum), contact 
precautions and isolation measures, and the net state 
of immunosuppression—and further studies are neces-
sary to better understand the dynamics of AMR in this 
population.

Viral infections
ICU-acquired viral infections can be secondary either 
to in-hospital acquisition, or to the reactivation of latent 
viruses [8]. The most common viruses encountered in 
immunocompromised ICU patients are shown in Table 2. 
Among them, influenza and parainfluenza viruses, 
human metapneumovirus, coronaviruses, adenoviruses, 
RSV and rhinoviruses belong to the ‘core’ respiratory viral 
pathogens that may cause CAP and HAP/VAP in immu-
nocompromised patients [99]. For example, rhinoviruses/
enteroviruses are increasingly detected among critically 
ill patients with hematologic malignancies (56%  in ref-
erence [100]), and parainfluenza virus-3 and RSV have 
been reported in 71% and 12% of hematopoietic stem cell 
transplant (HSCT) patients, respectively [101, 102]. The 
Herpesviridae family is responsible for reactivation under 
various conditions associated with immunosuppression, 
and among them, CMV reactivation in respiratory secre-
tions is common in patients under invasive mechanical 
ventilation (IMV). However, randomized controlled tri-
als of CMV treatment have not demonstrated a benefit 
in terms of mortality or ICU length-of-stay in this pop-
ulation [103]. Significant CMV viremia (for which there 
is not established cut-off), presence of retinitis, positive 
tissue pathology or a positive PCR assay from BAL/tis-
sue are indicators of disseminated CMV infection, which 
requires prompt treatment [104].

The diagnosis of viral infections in immunocompro-
mised hosts relies mostly on PCR-based tests, some of 

them integrated in mPCR assays. In case of suspected 
LRTI, the recommended first-line diagnostic assay is 
an mPCR assay for respiratory viruses performed on a 
nasopharyngeal swab (or another non-invasive sample), 
which should be complemented by a BAL sample in cases 
of high clinical suspicion with a negative first-line test. In 
immunocompromised patients with pneumonia, swabs 
of vesicular or ulcerated skin lesions should be collected 
for viral PCR and cultures, as HSV- or varicella zoster 
virus (VZV)-positivity of skin lesions is highly correlated 
with HSV or VZV pneumonia [99]. Quantitative PCR for 
CMV in plasma should be obtained in high clinical sus-
picion. Of note, a negative plasma PCR does not exclude 
tissue-invasive CMV disease, especially in patients with 
CMV pneumonia, gastrointestinal disease, or retinitis 
[105, 106]. Conversely, a low viral load can be associated 
with non-specific CMV reactivation in the context of any 
acute illness. Quantitative PCR in BAL can differentiate 
between CMV pneumonia (high viral load) and CMV 
reactivation (shedding without pneumonia,  low viral 
load). However, there is no validated diagnostic thresh-
old to distinguish these two conditions. Of note, in lung 
transplant recipients, CMV viral load in BAL provides 
higher diagnostic accuracy compared to plasma CMV 
viral load [104].

Empirical therapy should be extended to cover the 
possibility of VZV pneumonia in patients with bilateral 
reticulonodular infiltrates and an accompanying vesicu-
lar rash (addition of IV acyclovir 10–15  mg/kg IV t.i.d. 
to the initial empirical regimen) [99]. Empirical therapy 
should to be extended to cover CMV pneumonitis in 
patients with bilateral interstitial pneumonia after a 
recent lung transplant or HSCT (ganciclovir 5  mg/kg 
IV b.d., dose adjusted for renal dysfunction) [99]. Corti-
costeroid use in viral syndromes has been controversial 
and should be used only in evidence-based indications 
(i.e., SARS-CoV-2 infection [107]). Lack of response to 
treatment (where specific treatment is available) and/or 
relapsing viral disease should prompt suspicion of lack of 
viral clearance and/or resistance to the treating agent.

Invasive fungal infections
Invasive fungal infections may develop in both immuno-
compromised and non-immunocompromised critically 
ill patients, mainly related to Candida and Aspergillus 
species, whereas alternative yeasts and molds are less 
commonly acquired in the ICU.

Invasive candidiasis is defined by the isolation of 
Candida spp. from sterile sites and encompasses both 
candidemia and deep-seated candidiasis. A number of 
patient- and treatment-related risk factors are associ-
ated with further development of invasive candidiasis in 
critically ill patients. Invasive candidiasis is commonly 
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preceded by multisite colonization. Candidemia results 
from digestive translocation or catheter-related infection, 
and imposes additional investigations by echocardiogra-
phy and fundoscopic eye examination to rule out asso-
ciated endocarditis and endophthalmitis. Deep-seated 
candidiasis is usually related to the disruption of ana-
tomical digestive barriers, resulting in peritonitis (per-
forative sus-mesocolic peritonitis or tertiary peritonitis) 
or infections of pseudocysts complicating pancreatitis. 
Candiduria is usually considered as colonization, but may 
occasionally reflect pyelonephritis in kidney transplant 
recipients. The epidemiology of candidiasis is switching 
toward an increased prevalence of non-albicans strains, 
largely driven by previous exposure to antifungals, as 
observed in patients with hematologic malignancies [108, 
109]. Regardless of the underlying immune status [108, 
110], the overall mortality associated with ICU-acquired 
candidemia is about 50% [109]. The treatment of invasive 
candidiasis relies on antifungal treatment associated with 
source control (surgery, removal of intravascular cath-
eters). Guidelines in neutropenic and non-neutropenic 
patients concur to primary echinocandin treatment, 
with subsequent assessment of de-escalation toward 
azoles antifungals whenever possible [79, 111]. Use of 
echinocandins as first-line agents is justified in high-risk 
immunocompromised patients (especially those with 
hematological malignancies) who receive antifungal 
prophylaxis with azoles, as emergence of Candida strains 
resistant to azoles has been described as a result of these 
prophylactic regimens [112, 113]. Of note, Mucorales 
infections should be considered in patients under azoles 
prophylaxis who develop an invasive mold infection.

Aspergillus is an airborne fungus which primarily 
affects the respiratory tract of patients with defective 
systemic or local antifungal immunity. Extra-pulmonary 
involvement may occasionally occur due to bloodborne 
dissemination. Invasive pulmonary aspergillosis (IPA) 
exhibits two different angio-invasive and airway-inva-
sive clinical presentations, resulting from phagocyto-
sis defects (prolonged neutropenia following intensive 
chemotherapy in acute leukemia or allo-HSCT recipi-
ents) and cellular immunodepression (e.g., solid organ 
transplantation, prolonged corticosteroid treatment, allo-
HSCT with graft-versus-host disease [GVHD]), respec-
tively [114]. Besides, new situations at risk have emerged 
among critically ill patients, including sepsis, COPD and 
the acute respiratory distress syndrome (ARDS), espe-
cially in the setting of corticosteroid treatment prior to or 
during ICU stay [115–117]. Pulmonary aspergillosis has 
been described as a complication of severe viral pneu-
monia, namely influenza-associated pulmonary aspergil-
losis (IAPA) [115] and COVID-19-associated pulmonary 
aspergillosis (CAPA) [116], albeit with a highly variable 

reported incidence. The diagnosis of IPA is based on the 
EORTC/MSG criteria that define proven invasive asper-
gillosis if there is  histologic proof of fungal tissue inva-
sion, or alternatively probable or possible, depending 
on the combination of predisposing immunodeficiency, 
clinical or radiological factors and microbiological find-
ings [118]. The observation that IPA might affect patients 
devoid of classical risk factors led to extending defini-
tions, all derived from the AspICU algorithm in critically 
ill patients [119]. In contrast with the classical EORTC/
MSG criteria, those ICU-adapted diagnostic algorithms 
are initiated when Aspergillus is retrieved from tracheo-
bronchial samples, and include the specific entities of 
IAPA and CAPA [120]. Of note, the AspICU diagnostic 
algorithm requires a positive Aspergillus culture; how-
ever this is not essential in subsequent algorithms. In a 
single-center prospective cohort study on 110 patients, 
Aspergillus BAL culture was only positive in 58% of the 
21 patients with histology-proven IPA [121]. The diag-
nostic performance of mycological biomarkers is highly 
dependent on the clinical situation [122]. The sensitivity 
of serum antigen galactomannan in IPA is about 70% in 
neutropenic patients, but remains below 20% in non-
neutropenic critically ill patients. In critically ill patients, 
the sensitivity is much higher in the BAL fluid [121, 123]. 
(1–3)-Beta-D-glucan is a pan-fungal biomarker with lim-
ited sensitivity and specificity but interesting negative 
predictive value [124]. Regardless of underlying condi-
tions, azoles antifungals active on Aspergillus (voricona-
zole or isavuconazole) are recommended as first-line 
treatment of IPA. Aspergillus resistance to voriconazole 
is emerging, owing to the widespread environmental use 
of pesticides. Preventive measures comprise air filtration 
in ICUs and prophylactic antifungal treatment with posa-
conazole in immunocompromised patients at high-risk of 
IPA, including patients with acute leukemia or allogeneic 
HSCT [125]. For critically ill patients with other types of 
immunosuppression, the demonstration of a clinical ben-
efit of prophylactic antifungal treatments remains elusive.

Future lines of research
Important knowledge gaps still exist in the epidemiol-
ogy, pathophysiology, diagnosis and management of 
ICU-acquired infections among immunocompromised 
patients, and we envision that future research efforts will 
focus on the following questions:

1) How can we assess the degree and nature of immu-
nosuppression among critically ill patients in a repro-
ducible, affordable and longitudinal manner? As we 
have discussed, existing biomarkers of immunosup-
pression (e.g., lymphopenia [24], HLA-DR [25]) have 
important limitations, and there is no validated way 
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of assessing the ‘net state of immunosuppression’ of 
individual critically ill patients at the bedside [26]. 
Much effort has been invested to develop transcrip-
tomics tools to better characterize the immune sys-
tem of ICU patients, but solid clinical data on their 
use are lacking [126, 127].

2) Can we gain a more precise understanding of the epi-
demiology of ICU-acquired infections—namely their 
risk factors, incidence, microbiology and associated 
outcomes—among immunocompromised patients?

3) What is the role of the normal microbiota in pre-
venting ICU-acquired infections? This should be dis-
sected mechanistically in pre-clinical models, and the 
potential impact of strategies to modulate this flora 
(pre-/probiotics, FMT, SDD) in immunocompro-
mised patients should be investigated in randomized 
trials. In the same line, more data on the association 
between these strategies and the prevalence of AMR 
should be collected.

4) How can we improve the diagnosis of ICU-acquired 
infections? The classical diagnostic microbiology 
workflow still mostly relies on techniques invented 
in the early twentieth century, and it is likely that 
antimicrobial stewardship could be enhanced if the 
diagnosis of infection was faster, cheaper and more 
accurate. This could in turn lead to improved out-
comes at the individual level, and a lower burden of 
AMR at the community level. New molecular assays 
have demonstrated a positive impact on antibiotic 
exposure among inpatients with pneumonia [94], and 
their clinical utility among immunocompromised 
ICU patients needs to be further evaluated.

5) Can we use ‘immunosuppression biomarkers’ to 
design clinical trials of immune-stimulating therapies 
in a precision medicine framework? Several clini-
cal trials have attempted to reverse ICU-acquired 
immune deficiency using immune agonists (e.g., 
granulocyte macrophage-colony stimulating factor 
[GM-CSF] [128], IFN-gamma [129, 130]), but have 
failed to demonstrate a positive impact on patient-
centered outcomes, which could be related to a fail-
ure to specifically target subpopulations of patients 
with a higher likelihood of response to these drugs. 
We envision that better diagnostic tools could enable 
predictive enrichment of such trials [131], and help 
assess the effectiveness of immunomodulating strat-
egies to prevent the occurrence of ICU-acquired 
infections among critically immunocompromised 
patients [22, 23, 132].

Table 3 offers ten suggestions of studies that could be 
conducted in the upcoming years to enrich the knowl-
edge base in this field.

Conclusion
Immunocompromised patients account for an increasing 
proportion of ICU patients and form a highly heteroge-
neous patient population. Recent data have challenged 
the common assumption that immunocompromised 
patients are at higher risk of ICU-acquired infections in 
general, and with MDR bacteria in particular. However, 
these patients remain prone to opportunistic infections 
in the ICU, including viral and fungal infections. Future 
research efforts should focus on the epidemiology of 

Table 3 Potential future studies on ICU‑acquired infections in immunocompromised patients

Incidence of ICU‑acquired colonization and infection with MDR bacteria in immunocompromised patients (in comparison to non‑immunocompro‑
mised patients) [9]

Incidence, risk factors and outcomes of invasive pulmonary aspergillosis in ventilator‑associated pneumonia (in immunocompromised and non‑immu‑
nocompromised patients) [133]

Impact of novel multiplex PCR‑based assays for the diagnosis of ICU‑acquired invasive fungal infections in immunocompromised patients

Impact of multiplex PCR‑based diagnostic assays on antibiotic stewardship in ICU‑acquired and ventilator‑associated pneumonia in immunocompro‑
mised patients [95]

Microbiological yield of metagenomic sequencing in cases of ICU‑acquired and ventilator‑associated pneumonia with negative microbiology (in immu‑
nocompromised and non‑immunocompromised patients)

Impact of probiotics (or fecal microbiota transplantation) on the incidence of ICU‑acquired colonization and infection with MDR bacteria in immuno‑
compromised patients [134]

Predictive value of gut microbiota perturbations on the risk of ICU‑acquired infections in immunocompromised patients

Prospective evaluation of a PCR‑based assay of an immune‑related transcriptomics signature to predict ICU‑acquired infections in immunocompro‑
mised patients

Impact of immune‑enhancing treatments administered to mechanically ventilated patients stratified on immunosuppression biomarkers (e.g., low 
HLA‑DR expression on monocytes) to prevent or to treat VAP [135]

Evaluation of de‑escalation of empirical antifungal treatment of ICU‑acquired infections with negative microbiology in immunocompromised 
patients (especially neutropenic patients)
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ICU-acquired infections among immunocompromised 
patients, the role of the normal microbiota, improved 
tools for microbiological diagnosis and  for the assess-
ment of immune function at the bedside, and immu-
nomodulating agents to prevent ICU-acquired infections 
in this population.
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