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Abstract 

Over the past decades, electroencephalography (EEG) has become a widely applied and highly sophisticated brain 
monitoring tool in a variety of intensive care unit (ICU) settings. The most common indication for EEG monitoring cur-
rently is the management of refractory status epilepticus. In addition, a number of studies have associated frequent 
seizures, including nonconvulsive status epilepticus (NCSE), with worsening secondary brain injury and with worse 
outcomes. With the widespread utilization of EEG (spot and continuous EEG), rhythmic and periodic patterns that 
do not fulfill strict seizure criteria have been identified, epidemiologically quantified, and linked to pathophysiologi-
cal events across a wide spectrum of critical and acute illnesses, including acute brain injury. Increasingly, EEG is not 
just qualitatively described, but also quantitatively analyzed together with other modalities to generate innovative 
measurements with possible clinical relevance. In this review, we discuss the current knowledge and emerging appli-
cations of EEG in the ICU, including seizure detection, ischemia monitoring, detection of cortical spreading depolari-
zations, assessment of consciousness and prognostication. We also review some technical aspects and challenges of 
using EEG in the ICU including the logistics of setting up ICU EEG monitoring in resource-limited settings.

Keywords: Electroencephalogram, Intensive care unit, Nonconvulsive seizures, Ischemia, Disorders of consciousness, 
Cortical spreading depolarization, Status epilepticus

Introduction

Electroencephalography (EEG) displays brain activity by 
detecting electrical potential differences between elec-
trodes over time to help diagnose, manage and prog-
nosticate cerebral pathology. Differences in electrical 

potentials recorded between two or more electrodes 
result in upward and downward waveforms (polar-
ity) with different frequencies and scale (amplitude). 
By reflecting the summation of excitatory and inhibi-
tory postsynaptic potentials generated by neurons in the 
immediately underlying cortex, electrical signals display 
neural oscillations and other dynamic features of cortical 
and subcortical activity (for electrode placement see Sup-
plemental Fig.  1) [1]. In clinical practice, non-invasive, 
surface electrodes are primarily used but other technolo-
gies are emerging, such as subdural-strip electrodes to 
detect cortical spreading depolarization (SD) and intra-
parenchymal electrodes as part of multimodal brain 
monitoring for comatose patients [2, 3].
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EEG analysis traditionally relies on visual inspec-
tion by trained electroencephalographers, a time and 
labor-intensive process. At most centres, EEGs are only 
reviewed remotely a few times daily. Frontline bedside 
personnel with variable proficiencies in EEG inter-
pretation play an important role in EEG monitoring, 
stretching from acquisition quality control to advanced 
EEG interpretation. Computational analysis also known 
as quantitative EEG (qEEG) allows rapid screening and 
display of large amounts of digitally recorded EEG. 
QEEG analyzes the frequency, amplitude, and time 
domains of the raw EEG signal using mathematical 
algorithms. Several qEEG packages are commercially 
available and generate a number of different graphs 
(also known as trends) that allow bedside physicians to 
rapidly screen long periods of EEG and detect gradual 
changes over time. QEEG is able to detect and quantify 
seizures, monitor for ischemia, bleeding, hydrocepha-
lus, and brain swelling or herniation (Fig. 1). The time 
base of qEEG displayed on a screen can be adjusted 
allowing detection of subtle changes over longer epochs 
(hours to days) or to "zoom-into” clinically relevant 
events [2]. Commonly used trends include compressed 
spectral array, density spectral array, asymmetry rela-
tive spectrogram, fast Fourier transform spectrogram, 
rhythmicity spectrogram, amplitude EEG, alpha/delta 
ratio, suppression ratio, and seizure detection panel. 
Bispectral index (BIS) is a tool for quantitative EEG 
processing developed to monitor sedation in the oper-
ating room and while controversial has found some use 
in the intensive care unit (ICU) [4, 5]. The BIS monitor 
utilizes gel electrodes placed on the forehead to gener-
ate the signal [6] and has major limitations particularly 
in patients that do not receive neuromuscular blockade 
[7, 8].

Definitions of EEG terminology are summarized in 
Table 1 [9, 10]. Normal EEG is infrequently seen in ICU 
patients. These patients frequently have dramatic sleep–
wake disruption and various EEG abnormalities that have 
been inconsistently given a number of different labels and 
definitions [9]. Since 2012, the American Clinical Neu-
rophysiology Society (ACNS) has published guidelines 
on critical care EEG terminology, most recently revised 
in 2021, in an effort to standardize descriptions of these 
complex patterns facilitating clinical communication and 
allowing meaningful scientific research [9, 11]. Based on 
this widely accepted terminology, training modules and 
self-assessment tools have been developed.

While the most frequent indication of EEG monitor-
ing remains the detection of nonconvulsive seizures, 
EEG also carries potentially important information about 
underlying pathophysiologic processes, making it attrac-
tive for additional ICU indications such as behavioral 
assessments, prognostication, and ischemia detection 
[12–16].

We performed a PubMed literature search using the 
search terms “ICU” or “critical care” or “intensive care 
unit” and “EEG” for the most relevant articles related to 
ICU EEG monitoring in patients with acute brain injury 
(ABI). We limited the search to articles describing human 
subjects in English. We subsequently reviewed abstracts 

Take‑home message 

Electroencephalography allows continuous monitoring of brain 
function in critically ill patients. In addition to assisting seizure 
detection and management, great potential lies in supporting the 
detection of secondary injury and aiding critical care management 
(e.g. ischemia, cortical spreading depolarizations), consciousness 
assessments, and neuroprognostication.

Fig. 1 In a term infant undergoing extracorporeal membrane oxygenation, there is a gradual loss of power of frequencies in the 1–12 Hz range 
over the left hemisphere observed on the color dense spectral array (top panel), with an increase in power over the right hemisphere (red) as evi-
denced by the relative asymmetry spectrogram. Subsequent neuroimaging demonstrates a left posterior circulation infarction with cerebral edema
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and included articles based on their relevance to ICU 
EEG monitoring for ABI.

Commonly encountered EEG findings in the 
intensive care unit
Seizures, status epilepticus, and the ictal‑interictal 
continuum
Seizures are commonly encountered in adult, pediat-
ric, and neonatal ICUs [17]. Seizures in critical care are 
mostly electrographic without clinical correlate and 
would go unnoticed without EEG. Management of sei-
zures and status epilepticus relies on EEG as recur-
rent seizures during ICU management are mostly 
electrographic. Definitions of electrographic seizures 
(ESz), electroclinical seizures (ECSz), electrographic sta-
tus epilepticus (ESE), and ictal-interictal continuum (IIC) 
are summarized in Table 1 [9, 18, 19]. A number of qEEG 
panels have been explored to quantify seizure frequency, 
with spectrograms and amplitude-integrated EEG being 
the most widely available. Spectrograms utilize a compu-
tational algorithm called fast Fourier transform to pro-
cess raw EEG signal to display the full range of recorded 
frequencies (often on the Y-axis) and power of the EEG 
signal (in different colors, the Z-axis) over time (often on 
the X-axis), with power representing the area under the 
curve of frequency and amplitude of the EEG signal [20]. 
The “solid flame” qEEG pattern represents a paroxysmal, 
abrupt onset of higher EEG power with a smooth edge 
similar to candlelight, and has been demonstrated to 
carry high accuracy for seizure detection (Fig. 2, Supple-
mental Fig. 2); however, corresponding raw EEG should 
always be reviewed for confirmation [21]. Amplitude-
integrated EEG (aEEG) represents a qEEG method for 
seizure detection (widely used in neonates) based on the 
typical sudden increase in voltage that occurs with most 
seizures (Fig.  3) [22]. QEEG trends can be reviewed at 
the bedside by ICU clinicians (intensivists and trained 
nurses) for seizure identification with fairly high sensi-
tivity but fairly low specificity.[23–25]. This low speci-
ficity necessitates a review of raw EEG to assure those 
false positive events detected by qEEG do not result in 
overtreatment.

Prevalence of seizures and their association with outcomes
ESz are common in critically ill pediatric and adult 
patients, with prevalence rates ranging from 3 to 47% 
across a variety of conditions including traumatic brain 
injury (TBI), cardiac arrest, aneurysmal subarachnoid 
hemorrhage (aSAH), extracorporeal membrane oxygen 
support, and neonatal cardiopulmonary bypass (Sup-
plemental Table  1). Many studies have linked seizures 
and IIC patterns to worsened outcomes in ABI patients. 

Additionally, the presence of ESz and ESE is associated 
with death or severe disability at hospital discharge in 
primarily non-brain-injured critically ill surgical ICU 
patients [26]. In the adult medical intensive care unit, 
the presence of seizures or IIC was independently associ-
ated with death or severe disability at hospital discharge 
[27]. Multiple pediatric cohort studies across a variety of 
conditions have linked seizure burden with mortality and 
impaired functional outcomes [18, 28].

Physiologic changes associated with seizures and periodic 
discharges
It remains unclear if electrographic seizures and IIC are 
a reflection or cause of ongoing brain injury, likely often 
both are true [17, 29]. Characteristic peri-ictal diffusion 
restriction can be detected in the grey matter on mag-
netic resonance imaging, reflecting excitatory neuronal 
injury; these are most commonly seen in the cortex, hip-
pocampus and pulvinar [30]. Single-photon emission 
computed tomography studies evaluating IIC patterns 
have demonstrated increased cerebral blood flow (CBF) 
in areas in which periodic discharges (PDs) occurred, 
similar to regional increases in BF in patients with sei-
zures [31, 32]. A small prospective study using positron 
emission tomography demonstrated hypermetabolism 
in patients with IIC (some would qualify as seizures with 
current definitions) that is associated with later develop-
ment of status epilepticus [33]. However, generalizations 
from this study should be made with caution as many of 
these patients had an underlying neuroinflammatory dis-
ease and similar positron emission tomography findings 
are seen in patients with a neuroinflammatory disease 
without IIC.

Investigations utilizing multimodality neurologic 
monitoring further support the notion that both sei-
zures and IIC may be associated with physiologic dis-
turbances that can cause or exacerbate brain injury. 
In adult patients with aSAH, ESz were associated with 
tachycardia, tachypnea, and hypertension but only a very 
delayed increase in regional CBF, in addition to trends 
in elevated cerebral perfusion pressure and intracranial 
pressure [34]. Brain oxygenation tended to drop tran-
siently and a brief decrease in jugular brain oxygenation 
suggested a brief global increase in oxygen extraction 
fraction. In adult patients with severe TBI undergoing 
cerebral microdialysis, PDs were associated with elevated 
lactate-pyruvate ratios, indicative of metabolic crisis [35]. 
In adults with aSAH, higher frequency PDs were associ-
ated with increases in regional CBF and cerebral perfu-
sion pressure while brain tissue oxygenation remained 
stable, but at frequencies of 2.0  Hz or above, brain tis-
sue oxygenation dropped [36]. These findings suggest 
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Table 1 Basic EEG terminology relevant for the intensive care unit

General EEG terms
 EEG Differences in electrical potentials recorded between two or more electrodes representing the summation of 

excitatory and inhibitory postsynaptic potentials generated by cortical and subcortical structures

 Montage The arrangement of electrodes on the skull. Recordings can be visualized as one electrode compared to 
another (e.g., longitudinal bipolar, transverse bipolar montage) or one compared to many combined (e.g., 
referential montage). This visualization provides lateralizing and localizing information of the recorded EEG 
signal

 Polarity Upward and downward pointing waveforms (also known as positive and negative polarities). Negative volt-
ages are plotted upward by convention

 Location Refers to the presumed origin of the EEG signal (i.e., frontal, temporal, parietal, central, and occipital cortex)

 Amplitude This relates to how large the waveform is (in microvolt [µV]). Usually range between 10 and 100 µV

 Frequency Cycles per second, measured in Hertz [Hz]. Activities of primary interest of EEG recorded from the scalp 
range between 0.5 Hz and 30–70 Hz frequencies. These frequencies are stratified into: delta frequencies for 
0.5–4 Hz, theta for 4–8 Hz, alpha for 8–13 Hz, and beta for 13–30 Hz. Gamma frequencies (above 30 Hz) can 
be recorded but in practice it may be difficult to differentiate these signals from muscle artifact

 Morphology Shape of the waveform (i.e., sharp waves, spike-waves)

 Prevalence Intermittent or continuous activity

 Synchrony Whether waves are recorded simultaneously in different locations

 Symmetry Waveform symmetry between both hemispheres

 Continuity Presence or absence of intervening attenuation or suppression (low amplitude)

 Background Underlying EEG signal. Abnormal EEG backgrounds can vary from those that are comprised of continuous but 
slower (theta and delta frequencies) and/or suppressed waveforms, to burst suppression. A range of super-
imposed EEG findings including sporadic epileptiform discharges and rhythmic or periodic patterns (RPPs) 
are seen with cortical irritability and are associated with a higher risk for developing seizures

 Periodicity When patterns are occurring periodically (repeating at a set frequency with an interdischarge interval), they 
are called periodic, which can be focal (specific area), generalized (symmetrically involving both hemi-
spheres simultaneously), bilaterally independent (asynchronously involving both hemispheres simultane-
ously), unilaterally independent (asynchronously involving two regions of the same hemisphere simultane-
ously) or multifocal (asynchronously involving three independent region simultaneously)

Normal EEG patterns
 Normal awake EEG Continuous (no periods of EEG background suppression) and reactive to stimulation with an amplitude in the 

10–50 µV range and frequencies predominant in the alpha and beta range (Fig. 2). In normal, relaxed adults, 
teens, and older children, eye closure elicits an alpha-frequency rhythm over the posterior brain regions 
known as the posterior dominant rhythm [PDR] (Fig. 9)

 Normal sleep Predominance of slow frequencies (mostly delta) except for REM sleep, when patterns more closely resemble 
the awake state. Characteristic EEG patterns called K-complexes and spindles are normal features that define 
stage 2 or non-REM sleep (Fig. 5, Supplement 4)

 Normal neonatal patterns Neonates demonstrate specific features (e.g., frontal sharp transients, delta-beta complexes [also known as 
delta brushes]) and patterns of discontinuity (e.g., tracé alternant, tracé discontinue) that can be normal 
depending upon conceptional age

 Reactivity to stimuli Change in frequency and/or amplitude when a patient is stimulated

 Posterior dominant rhythm (PDR) Electroencephalographic rhythm in the bi-occipital region, often that is sustained and well regulated to eye 
opening in healthy patients. Typically in the alpha range for normal healthy school-age, adolescent and 
adult patients

Abnormal EEG patterns
 Ictal Repetitive EEG abnormalities that electrographically represent ongoing seizure activity

 Electrographic seizures (ESz) Defined as (a) epileptiform discharges averaging > 2.5 Hz and lasting ≥ 10 s, or (b) any pattern with definite 
evolution and lasting ≥ 10 s (Fig. 10)

 Electroclinical seizure (ECSz) Any EEG pattern with either (a) a definite clinical correlate time locked to the pattern (of any duration, and 
even if subtle), or both electroencephalographic and clinical improvement after administration of parenteral 
antiseizure medication

 Electrographic status epilepticus (ESE) Electrographic seizures (ESz) that lasts ≥ 10 continuous minutes or for a total duration of ≥ 20% of any 60-min 
period of recording

 Ictal-interictal continuum (IIC) Electroencephalographic patterns that do not qualify as either ESz or ESE but are considered potentially ictal 
and possibly contributing toward clinical impairment and/or brain injury. These typically involve periodic 
discharges (Fig. 11, Supplement 7) or lateralized rhythmic patterns between 1 and 2.5 Hz (Fig. 12)

 Postanoxic myoclonus (PAM) Involuntary generalized, segmental or focal of the body after hypoxic-ischemic brain injury. Can vary in rhyth-
micity. Maybe cortical or subcortical in generation
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that increased metabolic demand from higher frequency 
discharges may be partially compensated, possibly due 
to limited vasoreactivity in ABI, and that compensatory 
mechanisms are insufficient with certain IIC patterns, 
especially those above 2.0 Hz.

Recovery of consciousness and prognostication
Bedside clinical examinations are crucial to predict recov-
ery of consciousness; however, they are labor intensive 

and intermittent. Even careful standardized neurologi-
cal assessments of consciousness may misclassify con-
scious patients as unresponsive [37, 38]. Impaired levels 
of consciousness may influence the decision to withdraw 
life-sustaining therapies in patients with ABI [39, 40]. 
Over the years, clinicians and researchers have explored 
the potential to augment the accuracy of prognostication 
models and several EEG-based techniques have emerged 
as promising. EEG was first linked to patient outcomes 

Table 1 (continued)

 Myoclonic Status Epilepticus (MSE) Not uniformly defined. Maybe practically defined as (1) myoclonic activity occurring once every 10 s longer 
than 10 min or (2) at least once for a minute and lasting longer than > 30 s

 Postanoxic status epilepticus Electroclinical or electrographic status epilepticus occuring after hypoxic-ischemic brain injury. May also 
include myoclonic status epilepticus

Fig. 2 Cyclical seizures over the right posterior region can be observed on raw electroencephalography (left) and are demonstrated with the flame 
sign on color-dense spectral array panels

Fig. 3 Recurrent multifocal seizures are in a term neonate, which are appreciated on raw EEG (left) in addition to the identification of the ‘flame sign’ 
on color dense spectral array (right, middle panels) and increase in amplitude on the aEEG panel (right, bottom panel)
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over 50  years ago [41], classifying EEG of patients with 
hypoxic-ischemic brain injury (HIBI) based on frequency 
and amplitude [41]. Follow-up studies have further devel-
oped and automatized the generation of EEG features for 
neuroprognostication [42–45].

Advantages of using EEG for this purpose include its 
wide availability, low expense, non-invasive nature, and 
ability to continuously monitor physiologic signals of 
brain activity without interrupting clinical care. Chal-
lenges include expertise required in the interpretation 
of EEG patterns, obtaining high-quality recordings in 
an artifact-rich ICU environment, and confounders that 
may affect the EEG signal as well as the level of con-
sciousness (e.g., sedative pharmacotherapy, temperature, 
and infection). Improved digital storage capacity and 
computational power have triggered a surge in the use of 
prolonged, continuous digital EEG recordings to predict 
and detect recovery of consciousness after ABI.

Resting‑state EEG‑raw EEG
Seizures and epileptic patterns may be associated with 
a depressed level of consciousness. Patients with mild 
encephalopathy often have a decrease in the frequency 
of the posterior dominant rhythm (PDR), excess slowing, 
and overall loss of faster frequencies [46]. Diffuse atten-
uation of the background is recorded with more severe 
encephalopathy [46]. Generalized periodic patterns with 
‘triphasic wave’ morphology are commonly seen in differ-
ent conditions including toxic/metablic encephalopathies 
(Fig. 4, Supplemental Fig. 3), but can sometimes be ictal 
themselves [47–49]. Loss of reactivity and a discontinu-
ous or completely suppressed EEG are characteristic of 
severe encephalopathies [49]. Sleep architecture and the 
emergence of sleep spindles may reflect corticothalamic 
integrity, an important component of arousal mecha-
nisms (Fig. 5, Supplemental Fig. 4) [51, 52].

Multiple EEG features have been included in prog-
nostication algorithms for unconscious patients. Much 
of the published reports focus on patients with HIBI 
due to cardiac arrest. Poor outcome has been associated 
with suppressed background activity, burst suppres-
sion with identical or not identical bursts (the former 
indicating worse outcomes; Supplemental Fig.  5), and 
lack of continuous background activity. However, these 
patterns may be misleading when used in isolation, and 
good recovery may occasionally be seen. Therefore, the 
significance of EEG findings should always be assessed 
on a case-by-case basis using a multimodal approach 
[50, 53–55]. Continuous background activity with 
mixed frequencies is associated with a good prognosis 
[53, 54]. An exception to these general associations is 
the rare “alpha-coma” pattern. Unlike the normal alpha 

rhythm in healthy awake patients that close their eyes 
(PDR), in “alpha coma”, unresponsive patients demon-
strate an unreactive EEG in the alpha frequency range 
that predominates the frontal electrodes or is even seen 
throughout the brain (Fig.  6). In the postanoxic set-
ting, this has been linked to poor outcomes and may be 
related to brainstem injury [56]. EEG reactivity to stim-
uli, defined as any change in the EEG signal to alerting 
stimuli, was proposed to improve the prognostic accu-
racy of EEG, [42, 57] although there remains a lack of 
standardization of reactivity testing and limited inter-
rater agreement [58, 59]. Myoclonus may or may not be 
associated with epileptiform discharges on EEG. Myo-
clonic status (with or without EEG correlate) is associ-
ated with poor outcomes, but on a case-by-case basis 
may be treated with reasonable outcomes [60]. For 
example, postanoxic myoclonus with continuous back-
ground and narrow, vertex spike-wave discharges have 
been associated with favorable outcomes [61]. Reactiv-
ity is usually considered a predictor of a good outcome 
and should be included in the multimodal assessment 
of poor prognosis in a post-anoxia coma [62, 63]

Postanoxic status epilepticus (without myoclonus) 
may be associated with good outcomes and may jus-
tify an aggressive treatment approach in a subset of 
patients [64]. For example, in a prospective cohort 
study, 54% of patients with postanoxic status epilepti-
cus lasting > 60 min and refractory to both intravenous 
benzodiazepine and an additional antiseizure medica-
tion (associated with no other predictors of bad out-
comes) survived that were treated aggressively, and 44% 
of these patients had good neurological outcome (i.e., 
the ability to going back to work at 6 months); however, 
those with generalized PDs (most of whom had status 
myoclonus) did poorly [64]. Seizures are less common 
in HIBI patients with more severe injuries [61, 65]. It is 
also important to note that mild hypothermia and seda-
tion do not significantly affect the prognostic accuracy 
of EEG in HIBI [45, 57, 66, 67]. The accuracy of EEG 
patterns for prognostication is likely time-dependent, 
as early detection of favorable patterns may be more 
accurate in predicting outcomes than unfavorable pat-
terns. One study demonstrated that patients with early 
background recovery and late appearance of epilepti-
form activity were found to have good outcomes [68]. It 
is important to acknowledge that in the cardiac arrest 
literature, postanoxic myoclonus, myoclonus status 
and postanoxic status epilepticus have been used inter-
changeably, leading to misperceptions of the prognostic 
implication of postanoxic myoclonus [69].

The prognostication literature is less robust for patients 
with non-anoxic injuries [70–72]. Seizures have been 
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associated with increased mortality across a spectrum 
of neurological, medical and surgical ICU patients [72]. 
Reactivity suggests favorable outcomes in patients with 
TBI and metabolic or toxic encephalopathies [73, 74].

Resting‑state EEG‑quantitative analysis
Analysis of digitally recorded EEG signals exploring 
power, amplitude, complexity and inter-signal relation-
ships (i.e., functional connectivity, network analysis) 
can be related to the level of consciousness and may 
improve the ability to accurately prognosticate recov-
ery after ABI [71, 75–79]. The distribution of EEG 
power can be displayed as spectral plots (x-axis fre-
quency in Hz, and y-axis power in dB) recorded over a 
set timeframe to investigate features linked to anterior 
forebrain corticothalamic integrity [76]. EEG record-
ings can be used as the source and characteristic spec-
tral power plots have been associated with the degree 
of thalamocortical disconnection that may track recov-
ery. Recovery in patients treated with neuro  stimulants 
may be tracked with these measures of thalamocorti-
cal integrity [75]. Clinically unconscious patients with 
resting EEG patterns that resemble those of conscious 
patients are more likely to recover in subsequent weeks 
[80]. Although qEEG is a promising tool, it is not cur-
rently used routinely in clinical practice to prognosti-
cate recovery of consciousness.

EEG recorded with passive perturbation
Perturbation tasks evaluate averaged EEG signals in 
response to a stimulus (i.e., somatosensory, auditory) 
– also called evoked/event-related potentials (ERPs) 
[81]. In clinical practice, somatosensory evoked poten-
tials (SSEP) are most commonly used in the context of 
diffuse brain injuries such as HIBI and TBI [44]. These 
visualize the averaged electrical response of the central 
nervous system following repeated electrical stimula-
tion of a peripheral nerve, such as the median nerve at 
the wrist. Absent cortical responses (i.e., N20, the nega-
tive wave 20 ms after stimulation) indicate severe injury 
and are predictive of poor recovery with high specificity 
in patients with HIBI and TBI [44, 82]. Another exam-
ple is the use of auditory ERPs, although less commonly 
used in clinical practice. Distinct responses to standard 
and deviant tones may reflect higher cognitive process-
ing and subsequently predict recovery [44]. ERPs can 
be classified into low- and high-order. Low-order ERPs 
(within 300  ms of the stimuli) are usually seen in pri-
mary sensory pathways and as a result of direct detec-
tion of the stimulus. High-order ERPs (usually more 
than 300 ms after the stimuli) result from the recruit-
ment of multiple brain regions and may require more 
complex methods for detection [44]. Responses seen in 
high-order ERPs may reflect higher cortical processing 
and subsequently higher chances of recovery.

Fig. 4 Generalized periodic sharp waves are observed with triphasic morphology in a patient with hepatic encephalopathy
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Fig. 5 Example of sleep spindles observed over the bilateral hemispheres (arrow), indicative of corticothalamic function

Fig. 6 An alpha coma pattern is observed in a 2-year-old female after a submersion injury and hypoxic-ischemic brain injury
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EEG recorded with active perturbation
Evaluating brain responses to stimuli that assess the patient’s 
ability to interact (e.g., a motor command) are labeled as 
active perturbation tasks. This technique allows investigators 
and clinicians to determine if the patient is actively engaging 
with specific tasks. Cognitive motor dissociation (CMD) is a 
state in which the patient willfully modulates brain activity 
(detected either by functional MRI or EEG) to verbal com-
mands (e.g., to move their hand), but does not demonstrate 
a behavioral sign such as a motor response [12, 13, 83–86]. 
CMD can be detected in 15% of acute brain injured adult 
patients who appear clinically unresponsive on the exam 
using EEG, contrasting the EEG response to motor com-
mands “keep opening and closing your right (left) hand” as 
compared to “stop opening and closing your right (left) hand” 
[12]. This diagnosis is made after power spectral density anal-
ysis of the EEG signal, and using machine learning algorithms 
to determine if the recorded EEG signal was significantly 
different between the two commands (Fig. 7). Patients with 
CMD diagnosed in the ICU have a higher chance of function-
ing independently 1 year after the injury [12].

Recommendations

The 2020 AHA guidelines recommend intermittent or continuous 
EEG monitoring for patients in a coma to evaluate for seizures [87]. 
In the 2021 European Resuscitation Council and European Society 
of Intensive Care Medicine guidelines, highly malignant EEG pat-
terns at > 24 h after cardiac arrest are integrated into the prognos-
tication algorithm. Highly malignant patterns include suppressed 
background with or without PDs or burst suppression [61, 63, 88, 
89]. Other patterns described as predictors of poor outcomes in the 
European guidelines include the presence of seizures on EEG dur-
ing the first 72 h, absence of background reactivity, and bilaterally 
absent SSEP N20 responses [63]. For both anoxic and non-anoxic 
injuries, the 2018 American Academy of Neurology and the 2020 
European Academy of Neurology guidelines endorse EEG following 
perturbation tasks if these are available, but are primarily guided by 
data from patients with chronic disorders of consciousness as evi-
dence in the critical care setting is only now emerging [90, 91]. Pas-
sive and active perturbation tasks (e.g., motor command) have the 
potential to improve the management of ICU patients. However, 
this research may bring to the surface ethical and societal dilem-
mas when caring for vulnerable populations and equity questions 
will need to be addressed [81]. Lastly, brain–computer interfaces 
that utilize EEG may offer an opportunity for alert ICU patients with 
a limited ability to communicate to connect to the outside world, 
but many challenges will have to be overcome to make this a com-
monly used reality [92–94].

Ischemia detection
Cortical layers III and V neurons play a prominent role in 
the generation of EEG signals and are exquisitely sensi-
tive to ischemia, making EEG a potentially useful tool for 
perfusion monitoring [95]. EEG changes associated with 
ischemia follow a somewhat predictable order: (1) Loss of 
faster frequencies (> 6–8 Hz) is usually seen when CBF is 
below 35 ml/100 g/min, which corresponds to anaerobic 
metabolism and neurotransmitter release (i.e. glutamate); 

(2) with further reduction in CBF (18–25 ml/100 g/min), 
an increase of slower frequencies (4–7 Hz) is seen, which 
corresponds to lactic acidosis and declining adenosine 
triphosphate; (3) increase of even slower frequencies 
(1–4  Hz) occurs with further worsening of CBF (12–
18 ml/100 g/min), which corresponds to sodium–potas-
sium pump failure, and increased intracellular water 
content; (4) finally, EEG signal suppression occurs with 
CBF levels below 10–12  ml/100  g/min, corresponding 
to calcium accumulation, anoxic depolarization, and cell 
death [95].

In patients undergoing carotid endarterectomy, half 
had decreases in alpha, beta, and theta power and an 
increase in delta power at a median of 4 min after carotid 
cross-clamping [96]. Similarly, in patients with acute 
ischemic strokes, there is an increase in slower frequen-
cies and a decrease in faster frequencies that correlate 
with CBF [97]. These changes are reflected on the EEG 
within seconds, and EEG improvement may precede 
clinical recovery after the restoration of blood flow by up 
to 100 min.[98–100] Delta-Alpha Ratio (DAR) or Delta-
Theta/Alpha–Beta Ratio (DTABR) were highly correlated 
with stroke outcomes up to 1 year later [99].

Clinically, ischemia monitoring in the ICU is most 
established for the detection of delayed cerebral ischemia 
(DCI) in SAH patients. Common parameters used to 
evaluate ischemia in patients with SAH include Alpha/
Delta Ratio (ADR), Relative Alpha Variability (RAV), and 
total power [14, 101–105]. These EEG measures usually 
precede a diagnosis of DCI by other methods (by hours 
to days) and may increase DCI detection sensitivity [101, 
103, 104]. Increased slowing, new epileptiform activity, 
and seizures have been reported in patients with DCI 
[13]. Combining these EEG findings with qEEG features 
can provide daily pretest-probability assessments for DCI 
[14]. Combining EEG for detection of epileptiform find-
ings and transcranial Doppler ultrasound (other qEEG 
measures were not utilized in this study) may improve 
the accuracy of diagnosing DCI when compared to either 
modality alone [106].

Using EEG for ischemia monitoring has multiple limi-
tations, including expertise required for interpreting 
data, effects of different confounders (e.g., medications, 
temperature, toxic/metabolic disturbances) on EEG sig-
nals, and availability of qEEG software to generate quan-
titative data. In clinical practice, using EEG monitoring in 
patients with SAH is most helpful for comatose patients 
with high-grade SAH who are at higher risk for devel-
oping DCI. The 2014 international multidisciplinary 
consensus conference on multimodality monitoring in 
neurocritical care “suggests” EEG as a tool to detect DCI 
in comatose SAH patients, in whom the neurological 
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examination is unreliable. [107] EEG acquisition systems 
with improved signal-to-noise ratios will be important 
for improving the use of EEG as a reliable tool for DCI 
detection across the spectrum of high-risk patients.

Cortical spreading depolarization (SD)
Although many intensivists are aware of this phenome-
non, the detection, reporting, and analysis of SD remain 
mostly in the research domain and are limited to a few 
centers. SD is a wave of electrophysiological hyperactivity 
(followed by inhibition) that slowly propagates across the 
cortex. SD leads to an abrupt breakdown of transmem-
brane ion gradients, altered vascular response, synaptic 
architecture changes, and cytotoxic edema subsequently 
leading to depression in electrical activity in an injured 
brain [108–111]. The influx of large cations and loss of 
membrane potentials results in depression in a corti-
cal activity that spreads slowly at rates of 2–6  mm per 
minute [110]. Injured brain tissue is susceptible to SDs 
which are seen in conditions such as HIBI, hypoglycemia, 

ischemic stroke, aSAH, TBI, and seizures (Fig.  8, Sup-
plemental Fig.  6). [15, 110, 112–116] In brain-injured 
patients, a vasoconstrictive response with an insufficient 
restorative vascular response is hypothesized to cause 
further ischemia that worsens the initial injury (second-
ary injury) [117, 118]. The acutely injured brain often 
cannot recover, leading to prolonged or terminal depo-
larization – the electrophysiologic correlate of neuronal 
cell death.

Depolarizations are accompanied by very slow 
(< 0.1 Hz) but high voltage shifts in brain electrical activ-
ity, best detected via direct current (DC) recordings from 
the cortical surface, but these can potentially be detected 
from alternating current (AC) recordings with proper fil-
tering or qEEG (both via hardware and software filters) 
[119]. The secondary depression of standard EEG fre-
quencies (the “depression” component) is usually focal 
and may occur over prolonged epochs [120]. As a result, 
this activity (both the DC shift and the focal depression) 
may be missed on scalp EEG [110]. Spatial resolution of 

Fig. 7 Diagram describing different paradigms for evaluating event-related potentials with local and global effects to evaluate unconscious or 
conscious detection of novel auditory stimuli, in addition to the “motor command protocol” utilized for assessing motor command following using 
electroencephalographic power spectral density [7]
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scalp EEG is on the order of centimeters squared, while 
SD happens over millimeters squared area. However, 
approximately 40–70% of depolarizations seen on cor-
tical electrodes (subdural strips with multiple contacts 
placed directly over the injured brain or by a mini-depth 
electrode placed via an intracranial access bolt) corre-
late with decreases in amplitude on scalp EEG [121, 122] 
(Figs. 9, 10, 11, 12).

SDs have been associated with worse outcomes in TBI 
patients. The addition of this data to a six-month out-
come prediction model (International Mission for Prog-
nosis and Analysis of Clinical Trials in TBI [IMPACT] 
model, commonly used for TBI) increased the amount of 
variance that could be explained by the IMPACT model 
alone [15, 123]. In a subsequent study, the development 
of clusters of SDs (defined as ≥ 3 SD within a 2 h period) 
or isoelectric SDs was independently associated with lack 
of motor recovery in the hospital and worse functional 
outcomes at 6  months [16]. SDs have also been associ-
ated with increased infarct volume in ischemic stroke 
patients [124–127]. In patients with SAH, the appearance 
of clusters of SDs coincided with DCI, independent of 
angiographic vasospasm [128]. A phase III study of 170 
patients undergoing strip electrode recordings after SAH, 
a total of 60 min per 24-h period of SD-related depres-
sion of high-frequency activity was associated with the 
development of reversible delayed neurological deficits 
and the duration of delayed depressions were signifi-
cantly associated with the development of DCI, serving 
as a biomarker for this phenomenon [129].

In clinical practice and before SD monitoring becomes 
more available and feasible, the priority for intensivists 
should be focused on optimizing and managing second-
ary insults (such as hypotension, hypoxia, hypoglycemia, 
fever, and other metabolic disturbances) to prevent the 
cascade of secondary injury that may initiate or result 
from SDs [130]. Hopefully, detection and either treatment 
or prevention of SDs will become practical in the near 
future [131, 132].

Logistics of using EEG in the ICU
Technologists
Neurodiagnostic technologists may vary with respect 
to their experience and responsibilities should be tai-
lored accordingly to the performance of EEGs, reactivity 
assessments, and maintaining technical quality of contin-
uous ICU EEG recordings [3].

Recording technology
Disk and cup scalp electrodes are typically used in ICU 
continuous EEG monitoring; these are made of gold, 
silver or silver chloride material. Subdermal needles 

and wire electrodes are also available [133]. While 
safe in the computed tomography (CT) scanner, they 
can cause substantial artifact. Specialized electrodes 
made with conductive plastic and non-ferrous met-
als are compatible with both CT and MR imaging, and 
can cause minimal artifact [134, 135]. Daily inspection 
for skin breakdown and infection is important, and the 
use of intermittent periods of scalp rest is often help-
ful during prolonged monitoring. Using subcutaneous 
electrodes is another option [3, 136] Electrodes are 
usually arranged using the international 10–20 system 
with a 21-electrode montage (Supplemental Fig.  1). 
Electrodes are placed in standardized locations (e.eg., 
the international 10–20 system) most commonly using 
21-electrodes. For visualization of the recorded EEG 
signal bipolar (i.e., the potential difference of one elec-
trode is recorded compared to another one, typically a 
neighboring electrode) and referential montages (i.e., 
one electrode is compared to a distant one or to the 
combination of many others, then also referred to as 
average) are commonly used. Intracranial EEG can be 
performed with intraparenchymal depth or subdural 
strip electrodes for the detection of epileptiform abnor-
malities and SDs not readily detectable on surface EEG 
[137–140].

ACNS provides standards for critical care EEG ampli-
fiers, converters, and the necessary hardware and soft-
ware used to collect ICU EEG data [3]. Monitoring of 
SDs ideally utilizes direct-current amplifiers [139]. 
Synchronized video and audio recordings are recom-
mended to assess associations of changes in clinical 
behavior with specific EEG findings and help identify 
artifacts and patient stimulation. Bedside EEG annota-
tion of relevant information by bedside ICU personnel 
is helpful and frequent review of EEG is needed. Bed-
side and central monitoring stations can allow for suf-
ficiently trained personnel to screen for changes that 
require urgent assessment.

Interpretation
ACNS provides consensus recommendations regarding 
personnel and technical specifications for continuous 
EEG monitoring for critically ill adults and children [3]. 
Training may occur through various pathways; including 
fellowship in clinical neurophysiology, epilepsy, or neu-
rocritical care training that offers sufficient teaching and 
exposure to EEG. For neonates, ACNS guidelines recom-
mend EEG interpretation by a clinical electroencepha-
lographer at least twice per 24-h epochs and more often 
as indicated [141]. At a minimum, a daily written report 
within the medical record is recommended that synthe-
sizes key EEG findings.
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Intermittent versus continuous EEG
Controversy remains regarding the optimal duration of 
EEG monitoring particularly in resource-limited set-
tings. A recent multicenter randomized controlled trial 
(Continuous EEG Randomized Trial in Adults [CERTA]) 
[142] compared continuous to intermittent, routine EEG 
in patients who had not had prior seizures and found no 
difference in mortality in ICU patients. However, seizures 
and anti-seizure modifications were more frequent in 
those undergoing continuous monitoring. This trial had 
many limitations, although it did suggest that repeated, 
routine EEG studies are reasonable in resource-limited 
settings [143]. Of note, these serial EEGs are not neces-
sarily easier for the EEG technologist than continuous 
monitoring. A scoring system (2HELPs2B score) with the 
use of clinical and EEG features maybe beneficial to iden-
tify higher-risk patients who need longer EEG recording 

[144, 145]. More prolonged EEG monitoring may sup-
port a goal-directed management support of patients 
with refractory status epilepticus, both in upper-middle 
and high-income countries [146].

Navigating resource‑limited settings
The logistics of ICU EEG acquisition and interpreta-
tion require substantial resources. Several technologies 
have been developed including abbreviated montages, 
peel and stick electrodes, electrode caps/bands and sim-
plified user-friendly EEG machines that help facilitate 
timely performance of EEGs by bedside ICU personnel. 
These technologies may assist smaller centers in identi-
fying patients who require transfer to centers that can 
facilitate continuous EEG monitoring [147, 148]. Many 
centers may not have sufficient resources to facilitate fre-
quent reviews of continuous EEG. Several studies have 

Fig. 8 Clusters of spreading depolarizations on depth electrode monitoring after severe traumatic brain injury. A 76 year old man was admitted 
after a fall. His initial Glasgow Coma Scale score was 7 and he had bilaterally reactive pupils. A right frontal multimodality monitoring bolt was 
placed at the bedside in the intensive care unit which included a depth electrode. Hours later, he developed a worsening of his neurological exam. 
A Post-bolt non-contrast head CT demonstrates widespread contusions, traumatic subarachnoid hemorrhage, and intraventricular hemorrhage. 
The location of the bolt within the right frontal cortex is shown. B An example of spreading depolarization (SD) using referential electrocorticogra-
phy (ECoG). The black band represents high-frequency EEG and the red band represents DC-centered signal. A negative DC potential is observed 
in channel 4 initially, followed by spread (red arrows) to channels 2 and 1. The depolarization in channel 4 occurred despite low voltage activity in 
the high-frequency band, defining an isoelectric spreading depolarization. The region of cortex recorded in channels 2 and 1 in contrast exhibits 
higher amplitude high-frequency activity that subsequently becomes depressed for approximately 10 min. C Using bipolar recording and near-DC 
low pass filtering (0.005 Hz), the same spreading depolarization can be visualized which displays the negative potential with an artificial ‘triphasic’ 
appearing morphology. Note the enhanced clarity of the focal regions of high-frequency depression. D Over a 6-h window, a cluster of spreading 
depolarizations occurs (denoted by white arrowheads), defined as 3 or more SD within a 2 h window. The restoration of high-frequency activity 
after each SD becomes progressively lower in amplitude until finally, the SDs become isoelectric
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Fig. 9 Example of normal awake background in an adult patient with a posterior dominant rhythm in the alpha (8–13 Hz) range

Fig. 10 Example of an electrographic seizure manifesting with definitive spatiotemporal evolution over 10 s in duration
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suggested that non-EEG experts such as bedside ICU 
personnel can be trained in the acquisition and trouble-
shooting of EEGs, as well as screening continuous raw 
EEG and qEEG for seizures [25, 148].

Some challenges are unique to low and middle-income 
countries. EEG equipment from major manufacturers, 
when available through importation, arrives at prohibi-
tive costs to medical institutions, which is a disincentive 

Fig. 11 Bilateral independent periodic discharges with embedded polyspikes (BiLPDs + , arrow) are observed in a patient with posterior reversible 
encephalopathy syndrome

Fig. 12 Lateralized rhythmic delta activity with embedded spikes (LRDA + S) observed in a patient with meningoencephalitis with acute sympto-
matic seizures
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to more widespread use in critically ill patients. Local 
EEG manufacturers may be scarce. There may be insuf-
ficient availability of advanced training for technologists 
and ancillary staff. Apart from rare specialized aca-
demic institutions with neurophysiology departments, 
many general public hospitals in low and middle-income 
regions lack the capacity to perform ICU EEG monitor-
ing. Some private institutions and hospital networks have 
developed capacity through the implementation of out-
side tele-EEG services to cover multiple institutions with 
remote centralized EEG reading, cloud-based storage, 
and telemedicine-based real-time notification of find-
ings to intensive care teams. Wider implementation of 
ICU EEG monitoring in these regions will likely require 
lower-cost equipment technology, additional training, 
and remote monitoring with tele-EEG services.

Future Developments
Institutional protocols designed around the best available 
evidence and expert consensus are recommended. Key 
factors that should be considered when developing insti-
tutional protocols include (1) what ICU EEG indications 
the centre can support (Supplemental Table 2), (2) what 
patient population is served (e.g., underlying diagnosis of 
the patients), (3) what monitoring length should be trig-
gered based on specific EEG findings (e.g., continuous 
monitoring for super-refractory status epilepticus), (4) 
what the local context is (i.e., number of available techni-
cians, available EEG readers, frequency of review.

Conclusion
EEG is a powerful tool to monitor the brain in critically ill 
patients. Beyond detection of seizures, continuous EEG 
is increasingly being used for behavioral assessments 
(especially to detect covert consciousness), prognostica-
tion, ischemia monitoring, and detection of cortical SDs. 
The improvement of storage capacity, computational 
power, and detection and prediction algorithms are the 
driving forces toward improving the utilization of EEG in 
the ICU—a step closer toward a personalized medicine 
approach to predicting, detecting and preventing second-
ary neuronal injury in critically ill patients.
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