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Abstract 

Intracranial pressure (ICP) monitoring is now viewed as integral to the clinical care of many life-threatening brain 
insults, such as severe traumatic brain injury, subarachnoid hemorrhage, and malignant stroke. It serves to warn of 
expanding intracranial mass lesions, to prevent or treat herniation events as well as pressure elevation which impedes 
nutrient delivery to the brain. It facilitates the calculation of cerebral perfusion pressure (CPP) and the estimation of 
cerebrovascular autoregulatory status. Despite advancements in our knowledge emanating from a half century of 
experience with this technology, important controversies remain related even to fundamental aspects of ICP meas-
urements, including indications for monitoring, ICP treatment thresholds, and management of intracranial hyperten-
sion. Here, we review the history of ICP monitoring, the underlying pathophysiology as well as current perspectives 
on why, when and how ICP monitoring is best used. ICP is typically assessed invasively but a number of emerging, 
non-invasive technologies with inherently lower risk are showing promise. In selected cases, additional neuromonitor-
ing can be used to assist in the interpretation of ICP monitoring information and adapt directed treatment accord-
ingly. Additional efforts to expand the evidence base relevant to ICP monitoring, related technologies and manage-
ment remain a high priority in neurosurgery and neurocritical care.
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Introduction

Injured tissue frequently exhibits hemorrhage and edema, 
increasing its volume. The injured brain is uniquely chal-
lenged by these processes because it resides within the 
fixed confines of the skull where a compartment syn-
drome readily develops. Focal pressure increases within 
the skull can precipitate herniation of brain tissue while 
generalized increases can impede the inflow of nutrients 
(Fig. 1). In this context, measurement of intracranial pres-
sure (ICP) has played an important role in clinical care 

of the injured brain for the last half century. Although 
many fundamental questions await a resolution, progress 
is being made in understanding, measuring and treating 
intracranial hypertension. Here we share current per-
spectives on the physiology and monitoring of ICP.

The history of intracranial pressure monitoring
Although cerebral swelling and the consequences of 
opening the skull were understood by Galen, Hippocrates 
and early Egyptian physicians, the modern understand-
ing can be traced to Kellie and Monro. The Monro-Kel-
lie doctrine holds that because the brain is enclosed in a 
non-expandable skull, when the volume of an intracra-
nial component increases compensatory displacement 
of blood and cerebrospinal fluid occurs [1]. When this 
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compensation is exhausted, however, a linear increase in 
volume leads to an exponential increase in ICP (Fig. 2).

Measurement of cerebrospinal fluid (CSF) pressure 
in humans started in the late nineteenth century when 
Heinrich Quincke published his method of lumbar 
CSF pressure measurement in 1891 [2]. CSF pressure 
measurement was subsequently refined and considered 
to be a reliable indicator of ICP. However, even at that 
time, lumbar puncture was reported to precipitate the 
death of patients with intracranial pathology because 
of herniation events. This provided the rationale for 
measuring ICP directly within the cranium. Early 
descriptions of such intracranial measurements came 
from Guillaume and Janny in 1951[3] as well as by Nils 
Lundberg [4–10]. Lundberg described eponymous ‘A’, 
‘B’, and ‘C’ waves of ICP [11] which remain fundamental 
aspects of brain pathophysiology[12]. ‘A’ waves are 
synonymous with plateau waves in which intracranial 
hypertension is sustained for 5–20 min, while ‘C’ waves 
reflect influence of the cardiac and respiratory cycles. 
‘B’ waves are short repeating elevations in ICP with a 

frequency of 0.5–2 per minute that are of uncertain 
origin and relevance.

The notion that ICP elevation was harmful took 
longer to emerge. Douglas Miller associated marked 
ICP elevations with death and argued that values as low 
as 10  mmHg were harmful [13, 14]. In part because of 
Douglas Miller’s efforts, ICP monitoring was implicit 
in the Brain Trauma Foundation’s (BTF) subsequently 
published guidelines [15–18]. In fact, placement of 
an ICP monitor was used as a surrogate measure of 
guideline compliance in numerous studies [19, 20]. Of 
additional influence has been the American College of 

Take‑home message 

Intracranial pressure measurement and management continues to 
play a central role in traumatic brain injury and other severe brain 
insults. Here we review fundamental physiology as well as current 
views and technologies relevant to monitoring and managing 
intracranial pressure.

Fig. 1 Hypoperfusion and mechanical toxicities following traumatic brain injury. Following traumatic brain injury ICP monitoring can assist with 
the recognition of secondary insults. Mechanical toxicity can result from mass lesions and edema, potentially resulting in herniation of brain tissue. 
Herniation subtypes (shown in red text) are associated with elevated ICP in most cases and can cause injury through compression of brain tissue 
or cerebral vessels. Hypoperfusion toxicity is typically a more global cerebral insult characterized by insufficient cerebral perfusion. ICP monitoring 
can also allow this to be detected through the derivation of CPP and the recognition of insufficient values. Invasive ICP measurements can be made 
with a intraparenchymal transducer or an EVD. Ancillary monitoring can assist the detection and diagnosis of insults and can additionally suggest 
appropriate therapeutic maneuvers and assess response to therapy. CBF, cerebral blood flow; CPP, cerebral perfusion pressure; EEG, electroencepha-
logram; EVD, external ventricular drain; ICP, intracranial pressure, a parenchymal ICP monitor (green text) is in situ in the brain presented; MAP, mean 
arterial pressure;  PbtO2, partial pressure of brain tissue oxygen;  SjO2, jugulovenous oxygen saturation



Surgeons’ decision to assess ICP monitor placement as 
part of trauma center accreditation [18, 21].

Harm from intracranial hypertension
A principal reason for ICP monitoring is the toxicity of 
intracranial hypertension. Indeed, ICP elevation is not 
merely a marker of injury severity. Without treatment, 
acute intracranial hypertension may be rapidly fatal: 
either because of trans-tentorial brain herniation and 
brainstem compression, and/or because of critical 
cerebral perfusion pressure (CPP) reductions leading to 
global brain ischemia (Fig. 1).

Patients may suffer different “doses” of high ICP. 
The impact of these ICP doses—which reflect both 
the magnitude and time of exposure to intracranial 
hypertension—on outcome has been studied in different 
series. A seminal analysis based on the Traumatic Coma 
Data Bank showed that prolonged ICP values higher than 
20  mmHg were associated with unfavorable outcome 
[22]. ICP refractory to treatment has been shown to be 
associated with worse 6-month outcome in a multicenter 
study of 407 TBI patients [23]. These findings have been 
confirmed in subsequent multivariable models. For 
instance, the area under the curve (AUC) of the ICP 
recording calculated in 93 patients with traumatic brain 
injury (TBI) was a significant predictor of poor outcome 
(and specifically of death) at 6  months [24]. Across a 
wide range of ICP intensity/duration combinations, the 

ICP dose was found to be independently associated with 
mortality in a multicenter study, including 261 adults and 
99 pediatric TBI victims [25]. Finally, the AUC of the ICP 
profile in the first 48 h of monitoring was an independent 
predictor of mortality in 499 patients [26]. This is 
additionally informed by studies on decompressive 
craniectomy (DC) performed for refractory intracranial 
hypertension. When DC is performed and ICP surgically 
controlled, mortality is reduced [27, 28], providing 
further evidence of the lethal potential of prolonged 
high ICP. The same concepts apply also to subarachnoid 
hemorrhage patients [29, 30].

While the association of high ICP with mortality 
seems consistent across observational [22–26] and 
interventional [27, 28] studies, the long-term effects 
of high ICP on survivors remains less clear. The dose 
of ICP has been associated with worse outcomes over 
the entire Glasgow Outcome Scale (GOS) range, not 
only mortality [14, 25]. After adjusting for predictors 
intracranial hypertension has not always, however, been 
associated with long-term outcome in multivariable 
analyses [24–26]. It does seem indisputable that ICP 
elevation is harmful when one considers the extreme 
scenario of brain death in which intracranial pressure 
exceeds arterial pressure, preventing the intracranial 
flow of blood [14]. Undoubtedly, less extreme ICP values 
not immediately resulting in brain death are associated 
with harm from impaired nutrient delivery to the brain, 
though the relevant ICP threshold remains uncertain.

Indications for invasive ICP monitoring in trauma 
and non‑traumatic neuroemergencies
The indications for insertion of an ICP monitor have 
been long debated and have sought a point of equilibrium 
between benefits and risks. In a seminal retrospective 
study published in 1982, Narayan et  al. [31] tried to 
identify, using first generation computed tomography 
(CT), TBI patients with greater risk of intracranial 
hypertension. Narayan’s study recognized ICP elevation 
in some patients with normal cranial CT studies and has 
strongly influenced the indications for ICP monitoring in 
the BTF guidelines since their first edition [21]. The BTF 
guidelines thus stated that ICP “should be monitored 
in all salvageable patients with a severe TBI (Glasgow 
Coma Scale (GCS) score between 3-8 after resuscitation) 
and an abnormal CT scan. An abnormal CT scan of 
the head is one that reveals hematomas, contusions, 
swelling, herniation, or compressed basal cisterns” with 
the addition, inspired by Narayan’s study, that “ICP 
monitoring is [also] indicated in patients with severe TBI 
with a normal CT scan if two or more of the following 
features are noted at admission: age over 40  years, 
unilateral or bilateral motor posturing, or systolic blood 

Fig. 2 Pressure volume curve. As intracranial pressure increases 
linearly, intracranial pressure (ICP) increases exponentially—a fun-
damental tenet of TBI physiology. The change in pressure in relation 
to the change in volume is referred to as compliance. Patient (B) 
who falls to the right side of this curve has reduced compliance as 
compared with patient (A). Patient (B) is at greater risk for intracranial 
hypertension and will likely require more aggressive treatment to 
maintain acceptable ICP values. Adapted from Tadevosyan & Korn-
bluth, 2021 [70]



pressure (BP) < 90 mm Hg”. In recent decades, clinicians 
have tended to use the first part of this guideline, but ICP 
monitor insertion in the presence a negative CT scan has 
been less common. Notably, the most recent edition of 
the BTF guidelines [18], using more strict methodological 
criteria than in the past, judged there to be insufficient 
evidence to support a Level I or IIA recommendation for 
this topic.

An alternate perspective comes from the International 
Multidisciplinary Consensus Conference on 
Multimodality Monitoring whose recommendations 
are relevant to a broader neurocritical care patient 
population [32]. The consensus panel opined that ICP and 
CPP monitoring are recommended as a part of protocol-
driven care in patients who are at risk of elevated 
ICP based on clinical and/or imaging features (strong 
recommendation, moderate quality of evidence) and 
that ICP and CPP monitoring be used to guide medical 
and surgical interventions and to detect life-threatening 
imminent herniation (strong recommendation, high 
quality of evidence). However, different centers interpret 
this information variably and substantial between-
center variation in the use of ICP monitoring has been 
documented by the CENTER-TBI study [33].

Recently a prediction tool for intracranial hypertension 
has been developed by Alali et al. [34] with a sensitivity 
of 94% and specificity of 42%. Per this tool, high ICP 
would be suspected in the presence of 1 major or ≥ 2 
minor criteria. Major criteria are: compressed cisterns 
(CT classification of Marshall diffuse injury III), midline 
shift > 5  mm (Marshall diffuse injury IV), or non-
evacuated mass lesion. Minor criteria are GCS motor 
score ≤ 4, pupillary asymmetry, abnormal pupillary 
reactivity, or Marshall diffuse injury II. This tool may help 
to identify patients who require ICP monitoring in high-
resource settings or who require ICP-lowering treatment 
in resource-limited environments.

In other acute severe brain pathologies such as 
subarachnoid hemorrhage (SAH) and intraparenchymal 
hemorrhage, indications for ICP monitoring are less 
formalized but the concepts discussed above apply [32]. 
Acute hydrocephalus in SAH patients should be managed 
by an external ventricular drain (EVD) as indicated by the 
American Heart Association (Class I, Level of Evidence 
B) [35]. Similar concepts apply also to spontaneous 
intracranial hemorrhage (ICH) where, in presence of 
coma and clinical evidence of transtentorial herniation or 
significant hydrocephalus, consideration should be given 
to ICP monitoring and treatment with an EVD [36]. ICP 
monitoring is more controversial in other conditions 
such as meningitis and hypoxic encephalopathy.

The SYNAPSE-ICU study is a large, international, 
multi-centre observational study intended to investigate 

the current status of ICP monitoring in TBI, SAH and 
ICH [37]. It included 2395 patients, 55% of whom 
had an ICP monitor. It documented large variability 
between centers and countries in the current use of 
ICP monitoring. This study also demonstrated that 
the use of ICP monitoring is more common in patients 
with severe acute brain injury with specific pre-injury 
characteristics (younger with lower prevalence of pre-
injury comorbidities) and injury-related characteristics 
(pathological CT findings and normal pupil reactivity). In 
this study ICP monitoring and treatment was associated 
with significantly lower 6-month mortality in patients 
with at least one unreactive pupil.

Invasive ICP monitoring techniques
The optimal ICP monitoring device should be accurate, 
reliable, cost-effective, and cause minimal patient 
morbidity as first described by Lundberg in 1965 
[9]. More recently it has been specified that an ICP 
measuring device should have a pressure range of 
0–100  mmHg, accuracy ± 2  mmHg in the 0–20  mmHg 
range, and maximum error of 10% in the 20–100 mmHg 
range (https:// www. aami. org). ICP monitoring devices 
differ in their accuracy, reliability, and cost (Table 1).

Ventricular catheters
Measurement of ventricular fluid pressure is the current 
gold standard for measuring ICP as it is the most 
accurate, low-cost, and reliable method of monitoring 
ICP [38]. This method permits periodic recalibration 
and—very importantly—therapeutic drainage of CSF. 
Major drawbacks of external ventricular drains are 
that obstruction of the catheter can occur, and that 
the external transducer must be maintained at a fixed 
reference point (the external auditory meatus). Changes 
in position of the transducer may lead to inaccurate 
assessment of ICP. Occlusion of the holes at the tip of 
the catheter can impede pressure transduction and result 
in underestimation of ICP. Moreover, this system allows 
accurate ICP measurements only when the ventricular 
drain is closed. If an attempt is made to record the ICP 
while the catheter is draining CSF, the recorded ICP is 
always equal to or lower than the drainage level because 
of hydrostatic laws. Some commercially available 
ventricular catheters have a pressure transducer within 
their lumen which do allow for simultaneous accurate 
ICP monitoring and CSF drainage. Placement of 
EVDs can also be challenging when the ventricles are 
compressed or shifted; frameless stereotaxy can assist 
accurate positioning.

Although placement of the external ventricular catheter 
is often seen as a minor procedure, it can be associated 
with serious haemorrhagic and infectious complications 
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as well as neurological deficits. Based on a meta-analysis, 
the overall haemorrhagic complication rate is approxi-
mately 7%, with a lower risk of significant haemorrhage 
(0.8%) [39]. Catheter-related ventriculitis and menin-
gitis are potentially life-threatening complications. The 
quoted incidence of ventriculostomy related infection is 
wide, ranging from 0% to greater than 20% depending on 
the definition of infection used and the characteristics of 
the study population. Antibiotic or silver-impregnated 
catheters are associated with a significant decrease in 
infection risk [18].

Intraparenchymal transducers
The second most common device used for ICP moni-
toring is the intraparenchymal transducer. Such devices 
are of two types—solid-state devices based on pressure-
sensitive resistors or those that incorporate a fibreop-
tic design. Fibre optic devices, such as the Camino ICP 
Monitor (Integra LifeSciences, Plainsboro Township, 
New Jersey, USA) transmit light via a fibreoptic cable 
towards a displaceable mirror at the tip. Changes in ICP 
distort the mirror and the differences in intensity of the 
reflected light are translated into an ICP value. Solid-
state devices, such as the Codman MicroSensor (Cod-
man & Shurtleff, Raynham, MA, USA), the Raumedic 
Neurovent-P ICP sensor (Raumedic, Helmbrechts, Ger-
many) and the Pressio sensor (Sophysa, Orsay, France), 
belong to the group of piezoelectric strain gauge devices. 
When the transducer is deformed because of a change in 
ICP, resistance changes and this is converted into an ICP 
value. Intraparenchymal ICP probes are usually placed in 
the right frontal region at a depth of approximately 2 cm. 
The Codman and Raumedic sensors are compatible with 
magnetic resonance imaging but the Camino and Pressio 
sensors contain ferromagnetic components and are not.

All microtransducers share a common drawback—
it is not possible to recalibrate them after placement. 
Although both types of systems are very accurate at the 
time of insertion, there is a degree of zero-drift over time 
which can result in a measurement error after several 
days. No clinical complications related to such drift 
have been reported as yet, however. The overall safety 
of microtransducer-based ICP monitoring devices is 
good with clinically significant complications, such as 
infection and hematoma occurring infrequently [38]. The 
cost of these microtransducers is, however, higher than 
both conventional and antibiotic impregnated ventricular 
systems. Of note, fracture of the transducer has been 
described in rare instances such as when patients are 
moved.

Subdural and epidural monitors are less accurate 
than intraparenchymal devices, and lower ICP values 
are measured in the subdural than epidural space. Such 
monitors are now rarely used in clinical practice.

Estimating intracranial pressure non‑invasively
Although the gold standard for ICP monitoring is invasive 
devices, their placement risks complications as discussed 
[40]. In addition, sometimes ICP monitoring is desirable 
but not definitively indicated. As a result there have 
been recent efforts to develop tools which can inform 
ICP non-invasively. Some are based on morphological 
features (magnetic resonance, computed tomography, 
and fundoscopy), and some on physiological changes 
(transcranial and ophthalmic Doppler, tympanometry, 
near-infrared spectroscopy, electroencephalography, 
otoacoustic emissions assessment) [41]. Particularly 
important have been ultrasound based methods and 
automated pupillometry which have the advantage of 
being safe, easily repeatable and inexpensive.

Table 1 Summary of the main characteristics of invasive and non‑invasive methods for intracranial pressure (ICP) estima‑
tion

MRI, magnetic resonance imaging; CT, computed tomography; ONSD, optic nerve sheath diameter

Availability Accuracy Risks of infection/
hemorrhage

Operator 
dependency

Cost

External ventricular drain Moderate/high High Moderate Low (Level 
of external 
transducer)

Moderate (antibiotic 
impregnation 
approximately 
doubles cost)

ICP microtransducer Moderate/high High Low None High (higher than 
both conventional 
and antibiotic 
impregnated EVDs)

Radiological findings (MRI/CT) High Low None Low Low/moderate

ONSD High Low None High Low

Transcranial Doppler High Low None High Low

Automated pupillometry High Low None Low Low



Sonographic measurement of optic nerve sheath 
diameter (ONSD) is a convenient, rapidly performed 
bedside technique which holds promise for assessing 
the presence, absence and magnitude of increased ICP 
[42]. The optic nerve sheath (ONS) is continuous with 
the dura mater of the brain, and therefore surrounds the 
subarachnoid space containing CSF [42]. As the ONS is 
distensible, when there is an increase in CSF pressure the 
ONSD enlarges [42]. To date, different ONSD thresholds 
have been proposed ranging from 4.5 and 6  mm. In a 
prospective study, non-invasively measured ICP (nICP) 
based on ONSD demonstrated superior correlation 
with ICP as compared with other ultrasound-based 
techniques such as arterial and venous transcranial 
doppler (R = 0.76 for ONSD) [43]. In addition, in a recent 
meta-analysis, the area under the hierarchical summary 
receiver-operating characteristic curve of ONSD for 
predicting increased ICP was 0.938 [42].

Transcranial doppler (TCD) is another promising 
ultrasound-based technique for the non-invasive assess-
ment of ICP and it also holds promise for non-invasive 
CPP measurements. Intracranial hypertension produces 
specific changes in cerebral blood flow velocity and wave-
form with diastolic flow velocity being particularly sensi-
tive [44]. Gosling Pulsatility Index (gPI) is one of the first 
parameters derived from the TCD for ICP assessment, 
but its clinical utility is questionable due to its poor preci-
sion as it is importantly influenced by changes in arterial 
blood pressure and carbon dioxide [45]. Other formulas 
have been proposed for ICP and CPP estimation. Among 
these, one of the most promising is based on the diastolic 
flow velocity and has been shown in a pilot study to have 
a sensitivity of 100% for detecting increased ICP [46]. A 
larger multicenter study of TCD (IMPRESSIT) including 
262 patients has been concluded and it confirmed a high 
negative predictive value for intracranial hypertension 
(ICP > 20 mmHg = 91.3%, > 22 mmHg = 95.6%, > 25 mmH
g = 98.6%) [47].

In recent years, automated pupillometry has seen 
increased use in the ICU setting. Different parameters 
have been evaluated and among these the neurologi-
cal pupillary index (NPi) has a suggested association 
with ICP. In a cohort of 134 patients Chen  et al. [48] 
demonstrated that in patients with normal pupil reac-
tivity the average ICP was 19.6  mmHg, whereas in 
patients with abnormal pupillary reactivity the average 
ICP was 30.5  mmHg. Interestingly, pupil abnormali-
ties were detectable  15.9  h before important increases 
in ICP, suggesting that NPi may provide early warning 
of intracranial hypertension. Subsequent studies have 
also demonstrated an inverse correlation between NPi 
values and intracranial pressure, further supporting that 

pupillometry may help to estimate ICP non-invasively 
[49].

At present, methods of measuring ICP non-invasively 
are limited by high intra and inter-observer variability, the 
need for training, and a lack standardized methodology. 
Most importantly, they are not yet accurate enough to 
substitute for invasive methods. These methods will 
undoubtedly be used, however, when invasive ICP 
monitoring cannot be utilized or is undesirable.

Intracranial pressure thresholds and additional 
applications of ICP monitoring
The BTF guidelines have recommended ICP treatment 
thresholds of 20  mmHg [15], 20–25  mmHg [16, 50], 
20  mmHg [17, 51] and most recently 22  mmHg [18] 
over the course of its four editions, although it is 
generally acknowledged that the ideal value is still 
not known with certainty. Indeed, values lower than 
20  mmHg may be harmful [13, 14], although there is 
also evidence that suprathreshold values can be tolerated 
[52]. ICP monitoring can, though, facilitate more than 
the maintenance of ICP below a threshold value. ICP 
monitoring can facilitate early detection of an expanding 
intracranial hematoma. It can provide reassurance of 
normal values which can be valuable when imaging or 
non-cranial procedures are needed. It can also assure the 
safety of therapeutic maneuvers such as mean arterial 
pressure (MAP) augmentation or hypoventilation. 
Moreover, ICP is needed to calculate CPP. Current 
evidence more strongly supports CPP-directed care than 
ICP-directed care [18].

ICP is also integral to the determination of a patient’s 
autoregulatory status. Cerebral autoregulation is the 
process by which arterioles in the cerebral vasculature 
dilate or constrict in order to maintain a constant nutri-
ent supply to the brain (Fig. 3) [53]. In understanding ICP 
and autoregulatory principles it is helpful for the clini-
cian to understand the important role that the cerebral 
blood volume plays in second-to-second ICP changes. As 
recognized by Risberg and Lundberg [10], engorgement 
of the brain from autoregulatory mechanisms seems to 
underlie plateau waves. Rosner described vasodilatory 
and vasoconstriction cascades relevant to this process 
(Fig.  4) [54]. Treatments which increase nutrient deliv-
ery to the injured brain can induce vasoconstriction 
which reduces intracranial blood volume and ICP [55, 
56]. When cerebrovascular autoregulation is active, ICP 
elevations are tolerated for a longer duration [25].

Pressure autoregulation—which maintains a constant 
flow of blood to the brain despite changing systemic 
blood pressures—is a subtype of autoregulation which 
all physicians caring for TBI should be able to assess and 
incorporate into their plan of care [55, 56]. Following a 



TBI, pressure autoregulation can be disrupted making 
the brain pressure passive. The status of autoregulation 
changes the approach to patient care in important 
ways. For instance, a patient with deficient pressure 
autoregulation will do better with a lower CPP target 
(typically 60 mmHg, as long as perfusion needs are met), 
since higher values can elevate ICP [18]. Conversely 

patients with intact pressure autoregulation will do bet-
ter with a higher CPP target (typically 70  mmHg) [18]. 
Different methods of assessing pressure autoregulation 
have been proposed, such as the pressure reactivity index 
(PRx) which is a running correlation coefficient between 
ICP and MAP values. There is, however, no consensus 

Fig. 3 Lassen Curve. Cerebrovascular autoregulation is the process by which the brain’s arterioles alter their caliber to maintain a constant nutrient 
supply in relation to change in systemic blood pressure, blood viscosity, the concentration of nutrients and metabolites as well as other variables. 
Pressure autoregulation is the autoregulatory mechanism with highest familiarity and is depicted here in the Lassen curve. Between the upper 
and lower limits of pressure autoregulation cerebral blood flow remains relatively constant despite changes in systemic blood pressure because 
of changes in arteriole diameter. This mechanism can be lost as a result of brain injury and the brain becomes pressure passive as a result. It is now 
felt important for clinicians caring for severe TBI patients to be familiar with autoregulatory principles, to be able to measure the status of pressure 
autoregulation and to incorporate this knowledge into the care plan. Adapted from Budohoski et al., 2013 [71]

Fig. 4 Rosner’s vasodilatory and vasoconstriction cascades. The vasodilatory and vasoconstriction cascades reflect broad autoregulatory processes 
which can influence the diameter of the cerebral vasculature and thus the cerebral blood volume and intracranial pressure despite injury to the 
brain. These cascades were described by Rosner based on clinical observations. These cascades are clinically relevant as they demonstrate a means 
by which ICP can be reduced by increasing nutrient delivery to the brain. Adapted from Rosner et al., 1995 [54]



on the accuracy, reproducibility or clinical validity of any 
such method at present [53].

An extension of autoregulatory principles has led to 
the notion of CPPopt, which has been defined as the 
CPP at which the PRx is most negative [57, 58]. The 
phase II COGiTATE study evaluated feasibility and 
safety of targeting CPPopt, calculated over a preceding 
4 h period [59]. Currently, this approach is experimental 
with limited evidentiary support and can be laborious 
to implement. The notion of optimal CPP values has, 
though, also led to consideration that different patients 
could have distinct optimal ICP treatment thresholds. 
Experimental approaches are exploring the possibility 
that individualized ICP thresholds could be the ICP value 
at which PRx is consistently higher than + 0.20 [57, 60, 
61].

In addition, important is the notion of compliance, 
another metric that can be derived when ICP values 
are known. Compliance refers to the amount the ICP 
increases related to a fixed increase in intracranial 
volume (Fig.  2). Patients with poor compliance have 
less reserve and likely require tighter ICP control. There 
are ongoing efforts to make compliance measurements 
available at the bedside given the value of these 
measurements in clinical care [62–64]. Analysis of 
the ICP waveform has long been known to reflect 
compliance, albeit with imprecision [12]. The RAP index, 
a correlation coefficient between mean ICP and the ICP 
pulse amplitude (defined as the difference between the 
highest and lowest ICP measured during one cardiac 
cycle), has shown promise for informing compensatory 
reserve and intracranial compliance [65]. Morphological 
Clustering Analysis of  ICP  Pulse (MOCAIP) is another 
computationally intense method being explored for 
similar purposes [66]. MOCAIP involves the analysis and 
measurement of various morphological characteristics of 
the ICP waveform [66].

Protocols for the treatment of intracranial 
hypertension
Early severe TBI management algorithms [15, 67] 
published by the BTF were widely used but were absent 
in later guidelines [17, 18] as they are not evidence-based. 
This left an unfilled gap between the evidence-report and 
bedside management. To address this, in 2019, a diverse 
group of over forty international and multidisciplinary 
severe TBI experts produced the Seattle International 
severe traumatic Brain Injury Consensus Conference 
(SIBICC) algorithms for the management of patients 
with ICP monitors (SIBICC I [56]) and with both ICP 
and  PbtO2 monitors (SIBICC II [55]). Although they 
incorporate the fourth edition BTF evidence report [18] 
where applicable, these algorithms reflect expert opinion. 

They are meant to suggest a safe, modern, organized 
and comprehensive management protocol applicable to 
severe TBI patients that is available where expertise is 
limited. They are not a standard of care, legally binding, 
quality assurance tools, the right or only way, or a 
substitute for thoughtful care and clinical judgement. 
They may be adopted or adapted for use by a team or 
institution as felt indicated.

One method of dealing with the vagaries surrounding 
the existence of an absolute ICP threshold or patient-
specific pathophysiology [68, 69] is to interpret the ICP 
in terms of its influence on two key insult categories. 
Over a patient’s early course, marked variations in ICP 
often occur. By making use of ancillary monitoring, the 
presence and nature of “ICP toxicity” can be assessed 
(Fig.  1). When the ICP is elevated, in parallel with 
appropriate ICP-lowering treatment, observing the 
pupillary and motor exams, pupillometry readings, the 
ICP waveform, etc. provides insights into “herniation-
related” toxicity of those elevated ICP values. Examining 
the concomitant values for the  PbtO2,  SjvO2, lactate/
pyruvate ratio, electroencephalogram (EEG), CBF 
monitors, etc. provides similar insights into the 
“ischaemia-related” toxicity. These findings are also 
supplemented by the bedside nurse who may have 
observed trends not otherwise obvious. Considering 
careful modification of treatment thresholds under 
close clinical scrutiny may become reasonable when the 
patient seems to tolerate ICP values above 20–22  mm 
Hg. The advisability of performing a sedation-holiday-
based “wake-up” test can also be influenced by such 
precision medicine approaches [56].

Conclusions
ICP measurement remains integral to the intensive care 
of severe brain pathologies and shows no sign of being 
supplanted by other monitoring techniques because 
of the utility of ICP measurements and derived values. 
Further development and proliferation of non-invasive 
techniques will improve safety and availability of ICP 
data. With many unresolved questions, however, every 
aspect of ICP monitoring should remain a high priority 
for further study.
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