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Patient–ventilator interaction during assisted 
mechanical ventilation
Mechanical ventilation (in combination with sedation) 
can completely suppress patient respiratory drive and 
effort. While there are circumstances under which this 
may be desirable, maintaining spontaneous respiratory 
effort is generally preferred because it reduces atelecta-
sis, improves oxygenation, reduces pulmonary vascular 
resistance, and may prevent disuse diaphragm atrophy [1, 
2]. Vigorous respiratory effort during assisted ventilation, 
however, can induce unintentional patient self-inflicted 
lung injury (P-SILI). Large respiratory efforts increase 
tidal volumes and elevate both global and regional lung 
stress, increasing the risk of volutrauma in the baby lung 
and exacerbating respiratory failure [3, 4]. Vigorous dia-
phragm contractions may also cause load-induced dia-
phragm injury [2]. Spontaneous breathing is, therefore, 
not a panacea, and its benefits and risks depend heav-
ily on the magnitude of respiratory effort. Physiological 
principles and observational data suggest that a level of 
effort similar to that of resting quiet breathing is probably 
optimal [5].

Respiratory drive and effort also determine the risk 
of patient–ventilator asynchrony [6]. Asynchrony usu-
ally results either from low respiratory drive (ineffective 
efforts, reverse triggering), or from high respiratory drive 
and excessive effort (double triggering, flow starvation). 
Diagnosis and management of these asynchronies can 
be informed by an assessment of respiratory drive and 
effort.

In sum, assessing and managing patient respiratory 
effort are central to optimizing patient–ventilator inter-
action and mitigating its potential adverse effects.

The need for non‑invasive techniques to monitor 
patient–ventilator interaction and respiratory 
effort
Detecting adverse patient–ventilator interactions and 
excessive or insufficient respiratory effort is challenging. 
Respiratory rate is an unreliable indicator of respiratory 
effort as it is relatively unresponsive to changes in venti-
latory loading and can be influenced by multiple factors 
[7]. Airway pressure and flow provide no direct informa-
tion about inspiratory effort, though changes in effort can 
be suggested by changes in flow or pressure waveforms. 
Airway pressure is an unreliable marker to quantify 
global lung stress in the presence of respiratory effort, as 
it can underestimate the increased transpulmonary pres-
sure generated by negative pleural pressure swings from 
the contraction of the inspiratory muscles [8]. Therefore, 
basic inspection of ventilator waveforms is not sensi-
tive enough to rule out potentially injurious respiratory 
efforts [9].

Esophageal manometry can monitor patient–ventila-
tor interaction by evaluating the presence and intensity 
of the respiratory effort based on the esophageal pres-
sure swing (∆Pes), estimating the pressure generated by 
the respiratory muscles (Pmus) [10]. However, as with 
other monitoring tools (i.e., diaphragm electrical activ-
ity), Pes monitoring requires time, dedicated equipment, 
and some expertise to appropriately interpret the signals. 
Busy clinicians require simple, feasible, non-invasive 
techniques to evaluate patient–ventilator interaction and 
respiratory effort.*Correspondence:  ewan.goligher@utoronto.ca 
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Using a brief expiratory occlusion maneuver 
to detect adverse patient–ventilator interactions
When an end-expiratory airway occlusion is applied at 
random for the duration of a single inspiratory effort (or 
up to 5  s), spontaneous respiratory effort by the patient 
during the occlusion will generate a negative pressure 
deflection in the airway pressure that ‘unmasks’ the res-
piratory muscle effort (Fig.  1a). The magnitude of the 
negative pressure deflection during the occlusion (Pocc) 
is correlated with Pmus during mechanically assisted 
breaths, because a single end-expiratory occlusion 
applied intermittently at random for a single breath does 
not alter the magnitude of diaphragm activation [11].

Pocc can be used to estimate both Pmus and the 
dynamic transpulmonary driving pressure (∆PL,dyn), a 
measure of the dynamic mechanical stress applied to the 
lung during inspiration. Pmus and ∆Pes can be estimated 
from Pocc by validated correction factors that adjust for 
chest wall elastance and the difference in chest wall kin-
ematics between occluded and non-occluded conditions 
(Fig. 1a). ∆PL,dyn can then be estimated by subtracting the 
estimated ∆Pes from the positive airway pressure swing 
during assisted breaths (Fig. 1a). Of note, ∆PL,dyn may be 
a better reflection of peak regional lung stress than quasi-
static transpulmonary driving pressure [12]. Although 
optimal values for these parameters have not been 
established, estimated Pmus > 15  cm H2O and estimated 
∆PL,dyn > 20  cm H2O indicate that respiratory effort and 
dynamic lung stress, respectively, are likely excessive [11].

Using this simple method, clinicians can detect (a) 
excessive respiratory effort from the estimated value for 
Pmus, (b) absent respiratory effort during apnea (no pres-
sure deflection during the 5  s occlusion), and (c) exces-
sive lung stress during spontaneous breathing from the 
estimated value for ∆PL,dyn. Thus, the key parameters 
reflecting potential risk of diaphragm and lung injury can 
be readily and reliably detected by measuring Pocc. The 
maneuver can also be used to monitor patients receiv-
ing neuromuscular blockade to confirm the absence of 
respiratory effort; if there is no negative deflection in 
airway pressure during a 5 s occlusion (i.e., Pocc = 0 cm 
H2O), adequate paralysis has likely been achieved. The 

sensitivity of this approach has not yet been directly com-
pared against other commonly used methods to assess 
the adequacy of neuromuscular blockade (i.e., peripheral 
nerve stimulation).

Finally, an expiratory occlusion can differentiate vari-
ous dyssynchronies. For example, the expiratory occlu-
sion may unmask ineffective triggering if the patient’s 
intrinsic respiratory rate is much higher during the occlu-
sion than is apparent during the assisted breaths. When 
double cycling is observed, an end-expiratory occlusion 
will reveal whether this results from excessive and pro-
longed inspiratory effort or from reverse triggering (in 
which case the patient will generally be apneic during the 
pause) (Fig. 1b). If the ventilator appears to be triggered 
by the patient, but there are no respiratory efforts dur-
ing the occlusion, then autotriggering is likely (Figure E1, 
Online Supplement).

Limitations
This method has limitations. First, although Pocc can be 
used to accurately detect excess Pmus and ∆PL,dyn, the esti-
mated values of these parameters are imprecise and can-
not replace direct measurement if precision is required. 
Second, the absence of respiratory effort during the 
occlusion does not rule out the presence of respiratory 
effort from reverse triggering (Fig.  1b). Finally, dynamic 
hyperinflation and intrinsic PEEP might lead to under-
estimation of the effort, particularly if intrinsic PEEP has 
not equilibrated against the occluded airway.

Conclusion
An expiratory occlusion maneuver is a simple, feasible, 
and non-invasive method of evaluating patient–ventilator 
interaction. The maneuver can detect absent or excessive 
respiratory effort or  excessive dynamic lung stress and 
can be used to differentiate various forms of patient–ven-
tilator dyssynchrony. This maneuver may provide a basic 
monitoring approach for lung and diaphragm-protective 
ventilation (‘safe spontaneous breathing’) to be tested in 
future clinical trials.
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Fig. 1  Representative tracings showing a) the airway occlusion maneuver in a spontaneously breathing patient at rest, and b) two patients with 
double triggering; one resulting from reverse triggering and the other resulting from a dissociation between neural and mechanical inspiratory 
time. Airway pressure (Paw), flow, esophageal pressure (Pes), and transpulmonary pressure (PL) were recorded during the expiratory occlusion 
maneuver. Pocc represents the inspiratory swing in airway pressure against an occluded airway. ∆Pes represents the dynamic esophageal pressure 
inspiratory swing. The dynamic transpulmonary driving pressure (∆PL,dyn) represents the dynamic mechanical stress applied to the lung during inspi-
ration. By applying previously validated correction factors, clinicians can use Pocc to estimate respiratory muscle effort (Pmus) and ∆PL,dyn. In panel b, 
during the expiratory hold, there is no respiratory effort from the patient with reverse triggering, signifying that the double triggering is occurring in 
the absence of spontaneous respiratory drive. Conversely, an inspiratory effort can be seen during the hold in the other patients’ tracing
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