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Abstract 

ARDS, first described in 1967, is the commonest form of acute severe hypoxemic respiratory failure. Despite consider-
able advances in our knowledge regarding the pathophysiology of ARDS, insights into the biologic mechanisms of 
lung injury and repair, and advances in supportive care, particularly ventilatory management, there remains no effec-
tive pharmacological therapy for this syndrome. Hospital mortality at 40% remains unacceptably high underlining 
the need to continue to develop and test therapies for this devastating clinical condition. The purpose of the review 
is to critically appraise the current status of promising emerging pharmacological therapies for patients with ARDS 
and potential impact of these and other emerging therapies for COVID-19-induced ARDS. We focus on drugs that: 
(1) modulate the immune response, both via pleiotropic mechanisms and via specific pathway blockade effects, (2) 
modify epithelial and channel function, (3) target endothelial and vascular dysfunction, (4) have anticoagulant effects, 
and (5) enhance ARDS resolution. We also critically assess drugs that demonstrate potential in emerging reports from 
clinical studies in patients with COVID-19-induced ARDS. Several therapies show promise in earlier and later phase 
clinical testing, while a growing pipeline of therapies is in preclinical testing. The history of unsuccessful clinical trials 
of promising therapies underlines the challenges to successful translation. Given this, attention has been focused on 
the potential to identify biologically homogenous subtypes within ARDS, to enable us to target more specific thera-
pies ‘precision medicines.’ It is hoped that the substantial number of studies globally investigating potential therapies 
for COVID-19 will lead to the rapid identification of effective therapies to reduce the mortality and morbidity of this 
devastating form of ARDS.
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Introduction

Acute respiratory distress syndrome (ARDS) is the com-
monest form of acute severe hypoxemic respiratory 
failure in the critically ill. First described in 1967, the 

management of ARDS remains supportive [1]. Despite 
considerable advances in our knowledge regarding the 
pathophysiology of ARDS, insights into the biologic 
mechanisms of injury and lung repair, and advances in 
supportive care, particularly ventilatory management, 
there remains no effective direct therapy for ARDS. 
Mortality and morbidity remain unacceptably high [2], 
underlining the need to continue to develop and test 
therapies for this devastating clinical condition. The 
lack of effective ARDS therapies has been further high-
lighted in the evolving COVID-19 pandemic, which 
causes severe acute respiratory failure and ARDS in 
3–5% of infected patients. The prior disappointing expe-
rience with potentially promising therapies that have 
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subsequently failed in large-scale clinical trials must also 
be borne in mind [3].

In this review, we assess the current status of prom-
ising emerging therapies for patients with ARDS. 
We focus on drugs that: (1) modulate the immune 
response, both via pleiotropic mechanisms and via 
specific pathway blockade effects, (2) modify epithelial 
and channel function, (3) target endothelial and vas-
cular dysfunction, (4) have anticoagulant effects, and 
(5) enhance ARDS resolution. We also critically assess 
drugs that demonstrate potential in emerging reports 
from clinical studies in patients with COVID-19-in-
duced ARDS.

Therapies in clinical trials for ARDS
Immunomodulatory therapies
A number of medications with a broad base of ‘pleio-
tropic’ immunomodulatory effects are in clinical trials for 
the treatment of ARDS or to prevent ARDS development 
(Figs. 1, 2). 

Steroids
Steroids have long been studied as a potential therapy 
for both early and late phase ARDS, with some stud-
ies suggesting potential benefit, via suppression of the 
pro-inflammatory cytokine response, while other stud-
ies demonstrating potential risks due to immune sup-
pression. A recent interesting open-label multicenter 
study examined the efficacy of high-dose dexametha-
sone regimen in patients with established moderate to 
severe ARDS (i.e., P/F ratio < 200 mmHg at 24 h follow-
ing ARDS diagnosis). Although terminated early for 
low recruitment, it was found that the mean number of 
ventilator free days was 4.8 days higher and the number 
of patient deaths was lower (21% versus 36%) following 
early treatment with dexamethasone [4]. The authors 
highlight the dosing regimen and time of administra-
tion as key to the use of steroid therapy in ARDS. Addi-
tional studies, focused on this specific moderate to 
severe ARDS population (diagnosed within 24  h), will 
be required to confirm and extend these interesting 
findings.

Ulinastatin
Ulinastatin is a urinary glycoprotein and protease 
inhibitor with potent antioxidant and anti-inflamma-
tory effects [5]. In a small phase 2 trial, patients (n = 40 
per group) with ARDS treated with ulinastatin injec-
tion (12 hourly for 14  days) demonstrated improved 
lung oxygenation and function and reduced duration of 
mechanical ventilation and reduced hospital stays com-
pared to standard care [5]. Ulinastatin therapy also sig-
nificantly lowered inflammatory cytokines and increased 

antioxidant activities [5]. Another phase 2 trial of uli-
nastatin is currently enrolling, and a number of other 
protease inhibitors are in the preclinical stages of testing.

Vitamin C
Vitamin C is recognized for its antioxidant and repara-
tive properties. In a phase 2 study of patients with sepsis-
induced ARDS, vitamin C did not reduce SOFA scores, 
which was the primary outcome, nor did it have an effect 
on biomarkers, even at high doses [6]. Of the secondary 
outcomes, vitamin C did reduce 28-day mortality. The 
time delay between onset of shock and development of 
ARDS delayed the administration of Vitamin C infusion 
when compared to other studies in sepsis [6]. A phase 
2 trial is currently recruiting SARS-CoV-2 patients for 
treatment with vitamin C (NCT04254533).

Carbon monoxide
Carbon monoxide (CO) is a gas produced endogenously 
by heme oxygenase, which protects against oxidative 
stress, cell death and suppresses inflammation [7]. Pre-
clinical lung injury studies have shown safety and promis-
ing efficacy of low-dose inhaled CO [8]. In an exploratory 
phase 1 study, eight patients with ARDS were treated 
with inhaled low-dose  CO (100–200 parts per million), 
which was well tolerated with trends toward a difference 
in lung injury severity score and a trend toward improved 
SOFA scores in the treatment group [9]. A phase 2 effi-
cacy study of CO in ARDS is currently recruiting.

Mesenchymal stromal cell (MSC) therapies
MSCs have immunomodulatory and pro-reparative 
effects and show efficacy in preclinical models of ARDS 
[10, 11]. A single IV infusion of allogeneic, bone marrow-
derived human MSCs was well tolerated in nine patients 
with moderate to severe ARDS in a 2015 phase 1 dose 
escalation trial [12]. However, in the subsequent phase 2a 
study in 60 participants, MSC treatment did not improve 
outcomes [13]. MSC viability was variable and may have 
altered their efficacy, while the patient group that had 
received MSC therapy was more severely ill at baseline 
[13]. A phase 1 study of an umbilical cord derived MSC 

Take home message 

Several ARDS therapies show promise in clinical studies, while a 
growing pipeline of therapies is in preclinical testing. The history 
of unsuccessful clinical trials of promising therapies underlines 
the challenges to successful translation. Attention is now focused 
on identifying biologically homogenous subtypes within ARDS, 
to enable us to identify more specific ‘precision medicines’ for this 
severe syndrome.
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Fig. 1  Classification of therapies in clinical studies by biologic target
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Fig. 1  continued

Fig. 2  Pharmacological therapies and their targets, in clinical testing for ARDS therapy



2269

in moderate–severe ARDS showed safety and potentially 
interesting immunomodulatory effects [14]. A prelimi-
nary report from an unpublished phase 1/2 trial of Mul-
tiStem® (bone-marrow-derived human MSCs) suggested 
that MultiStem® therapy enhanced the number of ven-
tilator-free days (VFDs) and ICU-free days and lowered 
mortality [15]. Another MSC trial using umbilical cord 
derived cells is currently recruiting (NCT03042143), and 
two others are ongoing (NCT02444455, NCT03608592).

Pathway‑specific immunomodulators to prevent ARDS
Dilmapimod
The p38 mitogen-activated protein kinase (MAPK) path-
way is activated during cellular stress and drives down-
stream production of inflammatory cytokines [16]. 
Dilmapimod is a specific p38MAPK inhibitor and potent 
anti-inflammatory. In a small dose response study in 
trauma patients at risk for ARDS development, a 24-h 
dilmapimod infusion was well tolerated and reduced 
the concentrations of the pro-inflammatory cytokines 
IL-6, IL-8 and soluble tumor necrosis factor receptor 1 
(TNFR1) [16]. The incidence of ARDS was low overall 
and not different between the groups [16].

Anti‑TNFR1
An anti-TNFR1 antibody selectively antagonizes TNF-α 
signalling through TNF receptor-1 (TNFR1), but not 
through TNFR2. In a volunteer study in 37 healthy 
humans challenged with a low dose of inhaled LPS, anti-
TNFR1 attenuated pulmonary neutrophil infiltration, 
inflammatory cytokine release, and reduced evidence 
of endothelial injury [17]. Targeting TNFR1 may have 
potential in ARDS and requires further investigation.

Therapies targeting epithelial/endothelial dysfunction
ARDS is a disorder involving injury and dysfunction of 
the pulmonary epithelium and endothelium, with result-
ant dysfunction of the alveolar–capillary barrier leading 
to lung edema. Consequently, targeting epithelial ion 
channels/channel dysfunction and endothelial/vascular 
dysfunction in ARDS constitute an important therapeu-
tic target.

AP‑301
AP-301 (also termed Solnatide) is an activator of alve-
olar epithelial sodium channels. Nebulized AP-301 
every 12  h for 7  days was recently shown to decrease 
extravascular lung water and reduce ventilation pres-
sures in a small phase 2 (n = 20 per group) randomized 
blinded exploratory study in patients with early ARDS 
(< 48 h of diagnosis) stratified based on SOFA score 
(SOFA score ≥ 11) [18]. Another, larger phase 2 study 
of AP-301 for the treatment of pulmonary edema in 

patients with moderate–severe ARDS is currently 
recruiting (NCT03567577), while another is recruit-
ing COVID-19 ARDS patients (EudraCT Number: 
2020-001244-26).

Citrulline
This nonessential amino acid is a substrate for nitric 
oxide synthase (NOS) in the formation of nitric oxide 
(NO). Low levels of citrulline are seen in patients with 
ARDS [19]. Citrulline deficiency may cause NOS to pro-
duce harmful nitrites, while a drop in NO can induce 
vasodilation, leukocyte adhesion, and alter other impor-
tant aspects of endothelial function [19]. A recently com-
pleted, small phase 2 study of lower-dose (n = 26) versus 
higher-dose (n = 24) citrulline for patients with sepsis-
induced ARDS showed no effect over placebo (n = 22) 
on the primary outcome measure (vasopressor depend-
ency index), but a full report has not been published 
(NCT01474863).

ACE2
Angiotensin II is a vasoconstrictor, which has been impli-
cated in lung inflammation and pulmonary edema, and is 
inactivated by angiotensin-converting enzyme 2 (ACE2). 
Angiotensin (1–7), the product of ACE2, attenuates ven-
tilator- or acid aspiration-induced lung injury and inflam-
mation [20] and reduces post-injury lung fibrosis [21]. 
Recombinant ACE2 administration was well tolerated in 
a phase 1 dose escalation study, while in the subsequent 
phase 2a study of 39 ARDS patients with concomitant 
infection/sepsis, there were no differences in lung or 
SOFA scores between the treatment and placebo groups 
[22].

Anticoagulants and thrombolytic therapies
Dysfunction of coagulation in ARDS plays a key role in 
ARDS pathogenesis. Consequently, anticoagulants and 
thrombolytics have also received attention as therapies 
for ARDS.

ALT‑836
Tissue factor (TF) is a glycoprotein that is upregulated in 
the lung during inflammation and leads to fibrin depo-
sition which incites further inflammatory effects [23]. 
Studies have observed that increased TF in the serum 
of ARDS patients correlates with higher mortality [23]. 
The anti-TF drug, ALT-836, was found to be safe when 
administered to ARDS patients in a phase 1, randomized, 
placebo-controlled, dose escalation study [24]. A phase 
2 efficacy study of ALT-836 in 150 septic patients with 
ARDS was completed in 2013, but these results have not 
been published.
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Heparin
Both heparin and antithrombin have been shown to 
dampen inflammation and ALI in preclinical models 
without negatively impacting systemic coagulation [25]. 
Nebulized heparin reduced the need for mechanical ven-
tilation in a small phase 2 study of 50 critically ill patients 
[26]. Prophylactic nebulized heparin enhanced alveolar 
perfusion and CO2 elimination in patients following car-
diac surgery [27].

Streptokinase
Streptokinase binds plasminogen to form plasmin. Nebu-
lized streptokinase improved oxygenation and lung com-
pliance in a phase 3 trial in 60 patients with late phase 
(> 10 days) severe ARDS, suggesting promise as a rescue 
therapy for ARDS patients [28].

Potential therapies in preclinical ARDS studies
There are a substantial number of potential therapies in 
preclinical testing. We will concentrate on those demon-
strating particular promise in each of the key therapeutic 
target areas (Table 1, Fig. 3).

Pleiotropic immunomodulators
Elafin
Elafin is an endogenous and immunomodulatory pro-
tease inhibitor produced by lung epithelial cells among 
others. Low levels of elafin, due to dysregulated cleavage, 
are associated with high mortality in ARDS [29–31]. One 
study showed that a functional variant of elafin that was 
more resistant to degradation had enhanced therapeutic 
benefit in a mouse model of LPS-induced ALI [30]. Spe-
cifically, it dampened immune cell infiltration into the 
lung and lowered monocyte chemoattractant protein 
(MCP)-1 levels [30].

Alpha 1‑antitrypsin
Alpha 1-antitrypsin (AAT) is an endogenous protease 
inhibitor of several pro-inflammatory cytokines asso-
ciated with ARDS including interleukin-6, IL-1β, and 
TNF-α. AAT inactivation has been demonstrated in 
infected lung lobes in community-acquired pneumonia 
[32]. AAT significantly improved oxygenation, decreased 
pulmonary edema and BAL protein levels and inflam-
matory cytokines, and inhibited cell apoptosis in a dual-
hit mechanical ventilation and LPS-induced ALI rodent 
model [33]. Another study using the same dual-hit injury 
model in the rat (and a single-hit murine model) found 
no therapeutic benefit with AAT treatment [34], suggest-
ing that additional studies are needed to further under-
stand its therapeutic potential.

Pathway‑specific immunomodulators
Imatinib
The tyrosine kinase inhibitor imatinib has potent antioxi-
dant and anti-inflammatory effects in vivo and has been 
shown to ameliorate lung injury and mortality in single- 
and dual-hit ARDS preclinical models [35, 36]. There is 
also an ongoing ‘first-in-human study’ examining the 
effects of imatinib in healthy volunteers exposed to LPS 
with no results available yet (NCT03328117).

Bevacizumab
Bevacizumab, a human monoclonal antibody against vas-
cular endothelial growth factor (VEGF), has been investi-
gated in a model of high-permeability pulmonary edema 
in mice, which was induced by VEGF overexpression 
[37]. Bevacizumab was shown to reduce lung fluid and 
BAL protein levels [37]. Currently, there is a phase 2/3 
trial recruiting patients with SARS-CoV-2 pneumonia for 
treatment with bevacizumab (NCT04275414).

Anti‑IFN‑γ
Interferons appear to play a complex role in ARDS, with 
variable effects reported depending on the specific inter-
feron, whether type I, II or III, and ARDS etiologic agent. 
Interferon-β1α (Type I interferon), which has anti-viral, 
anti-inflammatory, and anti-fibrotic functions demon-
strated promise in a phase 2a study, but the subsequent 
phase 3 study did not show efficacy in ARDS [38]. In con-
trast, certain interferons may worsen influenza-induced 
ARDS, as evidenced by the finding that a monoclonal 
antibody to IFN-γ (Type II interferon) reduced the sever-
ity of murine H1N1 influenza-induced ARDS, reduced 
inflammation, and improved mortality [39]. Interest-
ingly, a recent study by Ziegler et al. showed that IFN-γ 
upregulates ACE2 expression in lung epithelial cells and 
hence could aid SARS-CoV-2 viral entry [40]. Anti-IFN-γ 
therapy may have potential as a therapy for COVID-19.

NLRP3 inflammasome inhibitors
The NLRP3 inflammasome is important in innate immu-
nity and causes caspase 1 activation and the release of 
pro-inflammatory cytokines such as IL-1β [41]. Pirfeni-
done, a  NLRP3 inflammasome inhibitor, was shown to 
suppress oxidative stress and apoptosis in  vitro [42]. In 
a LPS-induced ALI mouse model, pirfenidone reduced 
lung injury scores, lung cell infiltration, and lung perme-
ability, while also limiting caspase activation, inflamma-
tory IL-1β release and profibrotic, TGF-β release [42]. 
In a recently published abstract, tetracycline, another 
NLRP3 inflammasome inhibitor, was shown to reduce 
mortality, vascular leakage, and neutrophil infiltration 
in a murine LPS ALI model [43]. Caspase activation 
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and pro-inflammatory cytokine release were also dimin-
ished [43]. Currently, pirfenidone is under phase 3 
clinical investigation in the treatment of SARS-CoV-2 
(NCT04282902).

Targeting epithelial/endothelial dysfunction
TRPV4 inhibitors
The transient receptor potential vanilloid 4 (TRPV4) 
channel is a mechano-sensitive and immuno-sensitive 

calcium transport channel which functions to maintain 
pulmonary epithelial cell homeostasis. Increased TRPV4 
channel activity has been implicated in ARDS pathology 
particularly in the context of lung stiffness [44, 45], lead-
ing to alveolar epithelial and endothelial barrier dysfunc-
tion, activation of innate immune cells, and potentiation 
of pro-inflammatory cytokine release, oxidative stress, 
and extracellular matrix deposition [45, 46]. TRPV4 
−/− mice are protected against VILI [47] and chemically 

Table 1  Classification of therapies in preclinical studies classified by biologic target

Proposed therapy Mechanism of action Key studies and finding(s)

Immunomodulatory—pleiotropic effects
 1. Elafin Protease inhibitor, antimi-

crobial
1. A protease-resistant Elafin variant demonstrated enhanced anti-inflammatory activity in 

a murine LPS ALI model [30]

 2. Alpha-1-antitrypsin Protease inhibitor, anti-inflam-
matory, anti-apoptotic

1. Alpha-1-antitrpysin improved lung oxygenation and reduced lung permeability and 
inflammatory cytokines following injurious mechanical ventilation and LPS challenge in 
rodents [33]

2. Alpha-1-antitrpysin did not exert beneficial effects in a similar murine injury model [34]

Immunomodulatory—pathway specific
 1. Imatinib Protein–tyrosine kinase 

inhibitor
1. Imatinib lowered pulmonary edema, oxidative stress, apoptosis, and mortality in a LPS 

ALI mouse model [36]
2. Imatinib decreased pulmonary infiltrates and TNF-α release in a dual-hit, VILI, and LPS 

mouse model [35]
3. A first-in-human study of imatinib in the human-inhaled endotoxin model of lung injury 

was completed in 2017. Results remain pending. NCT03328117

 2. Bevacizumab Anti-VEGF 1. Bevacizumab reduced VEGF-induced pulmonary edema in the mouse lung [37]
2. A phase 2 study of bevacizumab in ARDS was withdrawn and is currently seeking fund-

ing. NCT01314066
3. Another phase 2 study of bevacizumab for SARS-CoV-2 is currently recruiting. 

NCT04275414

 3. Anti-IFN-γ IFN-γ neutralization 1. Anti-IFN-γ reduced lung inflammation and mortality in a H1N1 lung injury mouse 
model [39]

 4. Pirfenidone NLRP3 inflammasome inhibi-
tors

1. Pirfenidone inhibited lung injury and inflammation, caspase activation, and fibrosis in a 
murine LPS model [42]

2. A phase 3 study of pirfenidone for SARS-CoV-2 is underway. NCT04282902

 5. Tetracycline NLRP3 inflammasome inhibi-
tors

1. Tetracycline reduced inflammation, apoptosis, and mortality in an endotoxin-induced 
ALI model [43]

Epithelial/channel dysfunction
 1. GSK634775
 2. GSK1016790

TRPV4 inhibitors 1. TRPV4 channel inhibitors improve lung function and potentiate anti-inflammatory 
responses following acid instillation or chlorine gas exposure in murine models [48]

2. A first-in-human study of GSK2798745 following LPS challenge in healthy volunteers 
was terminated early due to a lack of positive outcomes (NCT03511105)

 3. GW328267C
 4. CGS-21680

Adenosine A2A receptor 
agonists

1. Adenosine A2A receptor agonists are reparative and anti-inflammatory in the lung fol-
lowing infection, acid, or mechanical injury [50, 51]

 5. RAGE Inhibitors RAGE neutralization 1. RAGE inhibition (peptides, monoclonal antibodies, or soluble RAGE decoy receptors) 
restored lung function in acid instillation lung injury models in mice and in piglets [53, 
54]

Endothelial/vascular dysfunction
 1. Haptoglobin Scavengers of plasma-free 

hemoglobin
1. Haptoglobin dampened oxidative stress and lung injury in a pneumonia model and was 

protective against injury in a blood lung injury model [55, 56]

Anticoagulants
 1. Antithrombin Endogenous anticoagulant 1. Nebulized antithrombin attenuated lung injury induced by intra-tracheal acid and 

endotoxin [25]

Pro-resolution effects
 1. Lipoxin A4 Endogenous pro-resolving 

lipid mediator
1. Lipoxin A4 protects against alveolar type II apoptosis, enhances their proliferation, and 

inhibits epithelial–mesenchymal transition following LPS challenge in mice [58]
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induced ALI [44], while TRPV4 channel inhibitors 
GSK2220691 and GSK2337429A also reduced ALI [44]. 
The TRPV4 inhibitors, GSK634775 and GSK1016790, 
attenuated acid instillation or chlorine gas-induced lung 
injury, decreasing lung edema, improving oxygenation, 
and attenuating immune cell infiltration and pro-inflam-
matory cytokine release [48]. However, a recent first-
in-human study of TRPV4 inhibitor, GSK2798745, in 
volunteers receiving inhaled LPS was terminated early for 
inefficacy (NCT03511105). The effect of TRPV4 appears 
cell and injury specific, affecting its utility as a therapeu-
tic target, as recently, macrophage TRPV4 activity has 
been shown to enhance macrophage phagocytosis and to 
confer protection against Pseudomonas aeruginosa infec-
tion in mice [49].

Adenosine A2A receptor agonists
Adenosine A2A receptors which are expressed on many 
cell types have been shown to regulate fluid transport 
as well as inflammation in the lung [50]. The adenosine 
A2A receptor agonist GW328267C enhanced alveolar 
fluid clearance in models of acid instillation, LPS, and live 
E.coli-induced lung injury [50]. Another adenosine A2A 
receptor agonist, CGS-21680, improved lung compliance 
and reduced neutrophil infiltration and pro-inflamma-
tory cytokine release in a rat VILI model [51].

RAGE inhibitors
The receptor for advanced glycation end-products 
(RAGE) is expressed primarily in alveolar type-1 epithe-
lial cells and is a regulator of epithelial barrier transport. 

Plasma-soluble RAGE concentrations constitute a 
marker of epithelial lung injury, are increased in ARDS 
patients, and can predict ARDS development in ‘at risk’ 
patients [52]. RAGE appears to drive lung injury also, as 
evidenced by the finding that blockade of RAGE (using 
peptides, monoclonal antibodies, or soluble RAGE decoy 
receptors) reduced acid-induced lung injury in mice [53] 
and piglets [54].

Haptoglobin
Plasma-free hemoglobin causes the formation of reac-
tive oxygen species and is elevated in clinical pneumonia 
or sepsis. Scavengers of plasma-free hemoglobin such as 
haptoglobin reduced iron availability, oxidative injury, 
and lung injury and increased survival in a preclinical 
model of S. aureus pneumonia [55]. Transgenic mice 
overexpressing haptoglobin were also protected from 
hemoglobin-included lung injury [56].

Pro‑resolution effects
Lipoxin A4
Lipoxin A4, which is an endogenous pro-resolving lipid 
mediator, enhanced alveolar epithelial wound repair, 
promoted differentiation of alveolar type II (ATII) cells 
to type I cells, promoted ATII proliferation and limited 
apoptosis in  vitro [57]. In a murine LPS-induced ALI 
model, lipoxin A4 enhanced alveolar epithelial type II 
cell proliferation, decreased apoptosis by limiting caspase 
3 activation and limited epithelial–mesenchymal transi-
tion as evidenced by immunofluorescent staining [58]. 

Fig. 3  Pharmacological therapies and their targets, in preclinical testing for ARDS therapy



2273

Lipoxin A4 warrants further investigation in other pre-
clinical ARDS models.

Emerging therapies for COVID‑19‑induced ARDS
The lack of proven therapies for COVID-19 ARDS has 
prompted a vast research effort to identify new targets 
or repurpose existing drugs to treat COVID-19-induced 
ARDS (Table  2). There are two distinct strategies being 
pursued, namely strategies that are targeted at the virus 
itself (reducing replication, ACE-2 receptor binding, etc.) 
and strategies that modulate the host immune response 
to the virus infection (targeted or nonspecific immune-
modulating drugs). Much of the data available in stud-
ies to date come from clinical case series, retrospective 
analyses, or uncontrolled clinical trials, and so definitive 
proof of efficacy for interventions is lacking. Neverthe-
less, given the urgent need for information on which to 
base treatment decisions, we have included such studies 
where better designed studies are lacking.

A positive effect of this global focus on severe COVID-
19 disease should be the acceleration of multiple potential 
therapies into clinical testing. Given the rapidly evolving 
nature of COVID-19 research, we indicate where have 
cited unpublished and/or un-reviewed reports in this 
section.

Antiviral therapies/strategies
Remdesivir
Remdesivir, a broad-spectrum antiviral originally 
investigated as an anti-Ebola drug [59], is an analogue 
of adenosine that disrupts viral RNA polymerase and 
viral replication [60]. Remdesivir inhibits MERS-CoV 
and SARS-CoV in vitro and in vivo [60]. A recent study 
showed that remdesivir was particularly effective against 
SARS-CoV-2 infection in vitro [61]. A study of compas-
sionate remdesivir use in 61 patients with SARS-CoV-2 
infection observed clinical improvement in 68% of cases 
with improved oxygenation and a decrease in patients 
requiring mechanical ventilation [62]. An unpublished 
recent report suggesting that remdesivir shortened 
recovery times but did not impact mortality rates has 
led to the drug being licensed for use in COVID-19 
patients in the USA. A recently completed phase 3 study 
of 237 COVID-19 patients in China showed no signifi-
cant improvement in clinical outcomes although there 
was a trend for enhanced recovery time with remdesivir 
treatment [63]. Most recently, a randomized, blinded, 
placebo controlled trial in over 1000 patients demon-
strated that Remdesivir shortened the time to recovery 
in adults hospitalized with COVID-19 and evidence 
of lower respiratory tract infection [64]. The results of 
several other phase 2/3 remdesivir clinical trials are 
awaited (Table 2).

Favipiravir
Favipiravir is a broad-spectrum antiviral RNA polymer-
ase inhibitor, already approved for use in influenza A and 
B [65]. A recent, open-label, control study, showed that 
favipiravir exhibited significant improvements in chest 
CT scans and viral clearance in COVID-19 patients [66]. 
Several other clinical studies are underway with one 
examining the potential of favipiravir in combination 
with tocilizumab.

Lopinavir/ritonavir
Lopinavir/ritonavir are HIV protease inhibitors and 
are generally used as part of combination therapies. A 
recently concluded, open-label trial of lopinavir/ritonavir 
in 199 severe COVID-19 patients unfortunately showed 
no clinical improvement, although the mortality rate 
was slightly lower in the treatment group (19.2% vs. 25%) 
[67]. Potential explanations include lopinavir/ritonavir 
use in late COVID-19 infection, its use as a single agent, 
and in relatively lower doses, which should be addressed 
in ongoing studies [67]. Of relevance, another recently 
completed phase 2 study showed that early combined 
treatment of lopinavir/ritonavir with IFN-β1β and riba-
virin reduced viral shedding and shortened hospital stays 
compared to lopinavir/ritonavir alone in mild–moderate 
COVID-19 patients [68].

Umifenovir
Umifenovir (also known as arbidol), an antiviral approved 
for influenza that can affect viral interaction and binding 
via ACE2, was recently shown to enhance viral clearance 
in comparison with lopinavir/ritonavir treatment, in a 
retrospective study of 50 COVID-19 patients [69]. An un-
reviewed preprint reporting an open-label, multicenter 
trial comparing arbidol with favipiravir in 240 COVID-19 
patients, with recovery at day 7 as the primary outcome 
measure, found no differences between these two treat-
ments [70]. A number of studies are currently examin-
ing the safety and efficacy of arbidol in patients with 
COVID-19.

Chloroquine and hydroxychloroquine
The antimalarial drugs, chloroquine and its hydroxylated 
version, hydroxychloroquine, disrupt ACE2 binding and 
hence viral entry and also affect endosomal and lysoso-
mal pH, which can inhibit the virus from merging with 
host cells [71]. These drugs also suppress pro-inflamma-
tory cytokine release [72]. Chloroquine has specifically 
been shown to inhibit influenza A H5N1 virus-induced 
lung injury in preclinical models [73] and SARS-CoV-2 
infection in  vitro [61]. A small clinical study recently 
showed that hydroxychloroquine in combination with 
azithromycin reduced viral load in 20 patients with 



2274

Table 2  Emerging therapies for SARS-CoV-2

Proposed therapy Mechanism of action Published findings to date Randomized controlled clinical trials in progress (selected 
from clinicaltrials.gov)

Antiviral therapies/strategies

 1. Remdesivir (GS-5734™) Nucleoside-based RNA 
polymerase inhibitor

Therapeutic in preclinical models 
of MERS-CoV and SARS-CoV and 
inhibits SARS-CoV-2 infection 
in vitro [60, 61]

Remdesivir potentially beneficial in 
report of 61 patients with SARS-
CoV-2 [62]

Trend for enhanced recovery in a 
phase 3 study of 237 patients with 
COVID-19 [63]

Remdesivir shortened the time to 
recovery in adults hospitalized with 
COVID-19 and evidence of lower 
respiratory tract infection [64]

1. Expanded Access Remdesivir (RDV; GS-5734™). NCT04302766
2. ACTT—Adaptive COVID-19 Treatment Trial. NCT04280705
3. Study of the Safety and Antiviral Activity of Remdesivir 

(GS-5734™) in Participants With Severe Coronavirus Disease. 
NCT04292899

4. A Phase 3 Randomized Study to Evaluate the Safety and 
Antiviral Activity of Remdesivir (GS-5734™) in Participants 
With Moderate COVID-19 Compared to Standard of Care 
Treatment. NCT04292730

5. The Efficacy of Different Anti-viral Drugs in COVID-19 Patients. 
NCT04321616

6. DISCOVERY—Trial of Treatments for COVID-19 in Hospitalized 
Adults. NCT04315948

7. The SOLIDARITY Trial. ISRCTN83971151

 2. Favipiravir Broad-spectrum RNA 
polymerase inhibitor

Blocks viral replication and recently 
shown to improve chest opacities 
and reduce viral load in SARS-CoV-2 
patients [66]

No benefit over arbidol in open-label 
trial [70]

1. THDMS-COVID-19—Various Combination of Protease Inhibi-
tors, Oseltamivir, Favipiravir, and Chloroquin for Treatment of 
COVID-19. NCT04303299

2. Favipiravir Combined with Tocilizumab in the Treatment of 
Corona Virus Disease 2019. NCT04310228

3. Clinical Study to Evaluate the Performance and Safety of 
Favipiravir in COVID-19. NCT04336904

 3. Lopinavir/ritonavir HIV protease inhibitors Unsuccessful in a recent trial of 199 
patients, infection was at advanced 
stage and very severe, however [67]

Triple therapy with lopinavir/ritonavir, 
IFN-β1β, and ribavirin reduced viral 
shedding and hospital stays in a 
phase 2 study [68]

1. ELACOI—The Efficacy of Lopinavir + Ritonavir and Arbidol 
Against Novel Coronavirus Infection. NCT04252885

2. The Efficacy and Safety of Lopinavir–Ritonavir in Hos-
pitalized Patients with Novel Coronavirus Pneumonia. 
ChiCTR2000029308

3. Treatment of Moderate to Severe Coronavirus Disease in 
Hospitalized Patients. NCT04321993

4. REMAP-CAP—Randomized, Embedded, Multifactorial 
Adaptive Platform Trial for Community-Acquired Pneumonia. 
NCT02735707

5. DISCOVERY—Trial of Treatments for COVID-19 in Hospitalized 
Adults. NCT04315948

6. The SOLIDARITY Trial. ISRCTN83971151

 4. Umifenovir (arbidol) Inhibits viral interaction 
and binding with host 
cells via ACE2

Retrospective analysis showed 
that arbidol treatment (n = 16) in 
comparison with lopinavir/ritonavir 
treatment (n = 36) reduced viral 
load in SARS-CoV-2 patients [69]

No benefit over favipiravir in open-
label trial [70]

1. UAIIC—Study of Umifenovir in COVID-19. NCT04350684
2. Study of Arbidol Hydrochloride Tablets in the Treatment of 

Pneumonia caused by Novel Coronavirus. NCT04260594
3. ELACOI—Efficacy of Lopinavir + Ritonavir & Arbidol Against 

Novel Coronavirus Infection. NCT04252885

 5. Chloroquine
 6. Hydroxychloroquine

Antimalarial drugs Inhibits viral entry and SARS-CoV-2 
infection in vitro [61]

Hydroxychloroquine plus azithromy-
cin reduced viral load in 20 COVID-
19 patients [74]

Concerns regarding cardiotoxicity 
and QT prolongation in COVID-19 
[75, 76]

A large observational study in 14,888 
COVID-19 patients treated with 
either hydroxychloroquine or 
chloroquine reported that these 
drugs increased the risk of mortality 
and increased the risk of de novo 
ventricular arrhythmia [77]

1. COPCOV—Chloroquine Prevention of Coronavirus Disease in 
the Healthcare Setting. NCT04303507

2. Comparison of Lopinavir/Ritonavir or Hydroxychloroquine in 
Patients with Mild Coronavirus Disease. NCT04307693

3. HC-nCoV—Efficacy and Safety of Hydroxychloroquine 
for Treatment of Pneumonia Caused by 2019-nCoV. 
NCT04261517

4. HYDRA—Study of Hydroxychloroquine Treatment for Severe 
COVID-19 Pulmonary Infection. NCT04315896

5. THDMS-COVID-19—Various Combinations of Protease Inhibi-
tors, Oseltamivir, Favipiravir, and Chloroquin for Treatment of 
COVID-19. NCT04303299

6. REMAP-CAP—Randomized, Embedded, Multifactorial Adap-
tive Platform Trial for Community- Acquired Pneumonia. 
NCT02735707

7. CLOCC—Combination Therapy With Camostat Mesi-
late + Hydroxychloroquine for COVID-19. NCT04338906

8. The Efficacy of Different Anti-viral Drugs in COVID-19 Patients. 
NCT04321616

9. DISCOVERY—Trial of Treatments for COVID-19 in Hospitalized 
Adults. NCT04315948

10. The SOLIDARITY Trial. ISRCTN83971151
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Table 2  (continued)

Proposed therapy Mechanism of action Published findings to date Randomized controlled clinical trials in progress (selected 
from clinicaltrials.gov)

 7. TMPRSS2 inhibitor 
(camostat mesilate)

Protease Inhibitor In vitro study showing SARS-CoV-2 
cell entry depends on ACE2 and 
TMPRSS2 and is blocked by pro-
tease inhibitor [78]

1. CamoCO-19—The Impact of Camostat Mesilate on SARS-
CoV-2 Infection. NCT02735707

2. CLOCC—Combination Therapy with Camostat Mesi-
late + Hydroxychloroquine for COVID-19. NCT04338906

 8. Baricitinib JAK inhibitor Anti-inflammatory and inhibitor of 
ACE2-mediated viral entry may be 
promising for viral ARDS [79]. Identi-
fied using a drug discovery search 
engine platform

Baricitinib well tolerated and poten-
tially beneficial over standard care in 
small clinical study [80]

1. Treatment of Moderate to Severe Coronavirus Disease 
(COVID-19) in Hospitalized Patients. NCT04321993

2. BARI-COVID—Pilot Study of Baricitinib in Symptomatic 
Patients Infected by SARS-CoV-2. NCT04320277

 9. Inactivated convales-
cent plasma

IV immunoglobulins Enhanced viral clearance and clinical 
outcome in 5 patients in a case 
study of SARS-CoV-2 [82]

Well tolerated in expanded access trial 
(un-reviewed preprint) [83]

1. Anti-SARS-CoV-2 Inactivated Convalescent Plasma in the 
Treatment of COVID-19. NCT04292340

2. Anti-COVID-19 Convalescent Plasma Therapy. NCT04338360

Immunomodulatory—pleiotropic effects

 1. Methylprednisolone Steroid, anti-inflamma-
tory

Retrospective studies of 46 and 
201 patients with SARS-CoV-2 
ARDS show that early and careful 
administration may have beneficial 
role [88, 89]. Steroid use may hinder 
viral clearance in MERS coronavirus 
infection [87]

1. Steroids-SARI—Glucocorticoid Therapy for Novel Coronavirus 
Critically Ill Patients With Severe Acute Respiratory Failure. 
NCT04244591

2. Efficacy and Safety of Corticosteroids in COVID-19. 
NCT04273321

3. MP-C19—Efficacy of Methylprednisolone for Patients With 
COVID-19 Severe ARDS. NCT04323592

4. REMAP-CAP—Randomized, Embedded, Multifactorial Adap-
tive Platform Trial for Community- Acquired Pneumonia. 
NCT02735707

 2. Thalidomide Immunomodulator, anti-
IL-6, pro-apoptotic

Therapeutic in preclinical model of 
viral ARDS [91]

1. Efficacy and Safety of Thalidomide in the Adjuvant Treatment 
of Moderate COVID-19. NCT04273529

2. Efficacy and Safety of Thalidomide Combined With Low-
dose Hormones in the Treatment of Severe COVID-19. 
NCT04273581

 3. Type I and Type III 
interferons

Antiviral, anti-inflamma-
tory, and anti-fibrotic

Interferons affect SARS and MERS 
differentially, but SARS-CoV-2 is 
particularly sensitive to interferon 
treatment [92, 94]

Triple therapy with IFN-β1β, lopinavir/
ritonavir, and ribavirin reduced viral 
shedding and hospital stays in a 
phase 2 study [68]

1. Study of IFN-α1β in the Treatment of Patients with Novel 
Coronavirus. NCT04293887

2. Study of Pegylated Interferon Lambda Treatment for COVID-
19. NCT04343976

3. A Study of Interferon-β1α in COVID-19. NCT04350671
4. DIC—A Study of Interferon-β1α, Compared to Interferon-

β1β and the Base Therapeutic Regiment in COVID-19. 
NCT04343768

5. Double Therapy With IFN-β1β and Hydroxychloroquine. 
NCT04350281

6. DISCOVERY—Trial of Treatments for COVID-19 in Hospitalized 
Adults. NCT04315948

7. REMAP-CAP—Randomized, Embedded, Multifactorial 
Adaptive Platform Trial for Community-Acquired Pneumonia. 
NCT02735707

4.MSCs Immunomodulatory and 
pro-resolution effects

Promising in preclinical and phase 1/2 
ARDS studies [10, 11, 15]

ACE2-/- MSCs were well tolerated, 
improved pulmonary function and 
immune response in a case series of 
7 COVID-19 patients [95]

1. REALIST—Study of MSC Repair in COVID-19-induced ARDS. 
NCT03042143

2. Study of UC-MSC Treatment for the 2019-Novel Coronavirus 
Pneumonia. NCT04269525

3. Mesenchymal Stem Cell Treatment for Pneumonia Patients 
Infected With COVID-19. NCT04252118

4. Study of Human Mesenchymal Stem Cells in the Treatment of 
COVID-19 Pneumonia. NCT04339660

5. Study of Mesenchymal Stem Cells for Severe Corona Virus 
Disease 2019. NCT04288102

6. Pilot Study of Inhale of MSC-Derived Exosomes for Treating 
Severe Novel Coronavirus Pneumonia. NCT04276987

7. MACOVIA—Study of MultiStem Administration for COVID-
19-Induced ARDS
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SARS-CoV-2 infection [74]. Conversely, concerns have 
been raised regarding potential adverse effects (e.g., car-
diotoxicity) with chloroquine and hydroxychloroquine, 
particularly at high doses and when used in combina-
tion with azithromycin, in COVID-19 patients [75, 76]. A 
major observational study in 14,888 COVID-19 patients 
treated with either hydroxychloroquine or chloroquine, 
alone or in combination with a macrolide, found that 
these patients had an increased risk of mortality and an 
increased risk of de novo ventricular arrhythmia [77]. A 
number of other and larger clinical investigations of chlo-
roquine and hydroxychloroquine, alone or in combina-
tion with other antivirals, are underway (Table 2).

TMPRSS2 inhibitor
SARS-CoV-2 viral entry into lung epithelial cells is depend-
ent on the ACE2 receptor, while priming of the viral spike 
protein is dependent on the host serine protease TMPRSS2 
[78]. A protease inhibitor of TMPRSS2 blocked viral entry 
in  vitro and may be a promising therapeutic option [78]. 
Clinical studies investigating the efficacy of TMPRSS2 
inhibitor, camostat mesilate, are currently recruiting.

Baricitinib
Another drug which may inhibit viral entry via ACE2 
receptor-mediated endocytosis is baricitinib, a JAK 
inhibitor, that also disrupts the cytokine cascade and 
dampens inflammation [79] and is an approved drug for 
rheumatoid arthritis. Baricitinib with its anti-inflamma-
tory and antiviral potential was identified using a data 
search with the BenevolentAI drug discovery platform. 
A recent study of 12 patients with moderate COVID-
19 observed that baricitinib administered at 4  mg/day 
for 14  days was well tolerated and improved outcome 
in these patients when compared to patients receiving 
standard care [80]. Other larger trials evaluating barici-
tinib for COVID-19 are underway.

Convalescent plasma
Hoffmann et  al. showed that SARS-CoV-1 serum from 
convalescent patients offered protection from SARS-
CoV-2 infection, and this option may perhaps be effec-
tive if used prophylactically [78]. Convalescent plasma 
has also been shown to reduce viral load and mortality 
in critically ill H1N1 patients [81] and most recently has 

Table 2  (continued)

Proposed therapy Mechanism of action Published findings to date Randomized controlled clinical trials in progress (selected 
from clinicaltrials.gov)

Immunomodulatory—pathway specific

 1. Tocilizumab
 2. Sarilumab

Human monoclonal anti-
body, IL6R antagonist

Improved chest CT, lung oxygenation 
and reduced immune cell counts in 
a retrospective study of 21 patients 
with SARS-CoV-2 [99]

1. Favipiravir Combined With Tocilizumab in the Treatment of 
Coronavirus Disease 2019. NCT04310228

2. Efficacy and Safety of Tocilizumab in the treatment of New 
Coronavirus Pneumonia. ChiCTR2000029765

3. TOCIVID-19—Tocilizumab in COVID-19 Pneumonia. 
NCT04317092

4. TACOS—Tocilizumab vs CRRT in Management of Cytokine 
Release Syndrome in COVID-19. NCT04306705

5. Efficacy and Safety of Sarilumab in Hospitalized Patients With 
COVID-19. NCT04315298

6. TOCIVID—Anti-IL-6 Treatment of Serious COVID-19 Disease 
With Threatening Respiratory Failure. NCT04322773

7. Treatment of Moderate to Severe Coronavirus Disease 
(COVID-19) in Hospitalized Patients. NCT04321993

 3. Anakinra Human monoclonal anti-
body, IL1-R antagonist

Post hoc analysis confirmed improved 
survival in a subgroup of sepsis 
patients [103]

1. ESCAPE—Personalized Immunotherapy for SARS-CoV-2 
Associated with Organ Dysfunction. NCT04339712

2. Study of Emapalumab and Anakinra in Reducing Hyperin-
flammation and Respiratory Distress in Patients with COVID-
19. NCT04324021

3. CORIMUNO-ANA—Efficacy of Anakinra In Patients With SARS-
CoV-2 Infection. NCT04341584

4. COV-AID—Treatment of COVID-19 Patients With Anti-inter-
leukin Drugs. NCT04330638

5. REMAP-CAP—Randomized, Embedded, Multifactorial 
Adaptive Platform Trial for Community-Acquired Pneumonia. 
NCT02735707

Other potential therapies

 1. Heparin Anticoagulant Low molecular weight heparin associ-
ated with better prognosis in severe 
COVID-19 patients with markedly 
elevated d-dimers [104]

1. CHARTER study—Nebulized Heparin for patients with COVID-
19 ARDS. ACTRN:1260000517976
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been shown to reduce viral load and improve outcome 
in a series of 5 cases of critically ill SARS-CoV-2 patients 
[82]. An un-reviewed preprint of the results from a large 
expanded access trial of 5000 COVID-19 patients treated 
with convalescent plasma (NCT04338360) showed that 
treatment was well tolerated [83]. Other trials assess-
ing the safety and efficacy of anti-SARS-CoV-2-inacti-
vated convalescent plasma in COVID-19 patients are 
underway.

Angiotensin II
SARS-CoV-2 binds to the ACE receptor on lung epi-
thelial cells, which is a key step in virus infection of 
these cells. This also leads to a decrease in ACE2 and an 
increase in detrimental angiotensin II. Losartan, which is 
an angiotensin II receptor antagonist, is currently under 
investigation in SARS-CoV-2 patients (NCT04328012).

Immunomodulatory—pleiotropic effects
Methylprednisolone
The role of steroids indications for COVID-19 patients 
is unclear, with effects reported that might be harm-
ful or beneficial depending on the specific clinical con-
text [84–86]. Some evidence suggests that steroid use 
may hinder viral clearance in MERS coronavirus infec-
tion [87]. However, the effects of steroids in COVID-19 
appear to depend on the dose and the degree of ‘hyper-
inflammation’ present, the stage of infection, and the 
presence of ARDS [85, 86]. A recent single-center, retro-
spective study of 46 patients with COVID-19 published 
as an un-reviewed preprint showed that early, low-dose, 
and short-term administration of methylprednisolone 
improved chest CT and clinical outcome in the treat-
ment group [88]. Another larger retrospective study of 
201 COVID-19 patients showed that methylprednisolone 
treatment in those with ARDS reduced the risk of death 
[89]. Currently, there are a number of phase 2/3 clinical 
trials investigating the efficacy and safety of methylpred-
nisolone in patients with COVID-19 ARDS. Hopefully, 
these studies should provide clarity on the role of ster-
oids in these patients. The recent press release suggest-
ing a mortality benefit for Dexamethasone in COVID-19 
patients in the RECOVERY trial is of particular interest 
in this regard.

Thalidomide
Thalidomide, an immunomodulatory drug that acts to 
enhance apoptosis, inhibits IL-6 and promotes T cell 
responses and has been shown to lead beneficial effects 
in preclinical bacterial- and viral-induced ARDS [90, 91]. 
Clinical phase 2 investigations of thalidomide for therapy 
against SARS-CoV-2 infection are underway.

Interferons
As discussed earlier, type I interferon, interferon-β1α, 
was ineffective as a sole agent in a recent phase 3 ARDS 
trial ARDS [38]. However, type I interferons have been 
shown to respond with different inhibitory potencies 
toward MERS and SARS [92] and, as such, interferons 
have been investigated, as an adjunct to antivirals, in 
these viral infections [93]. A recent study published as 
an un-reviewed preprint has observed that SARS-CoV-2 
infection is potentially sensitive to type I interferons 
[94]. As mentioned previously, a recent phase 2 study 
of triple therapy with lopinavir/ritonavir, ribavirin, and 
IFN-β1β enhanced the recovery of patients with SARS-
CoV-2 infection compared to lopinavir/ritonavir alone 
[68]. There are a number of other phase 2/3 clinical tri-
als investigating the efficacy of both type I or type III 
interferons (including REMAP-CAP, DisCoVeRy, and 
SOLIDARITY), either as sole agents or as co-therapies in 
patients with SARS-CoV-2 (Table 2).

Mesenchymal stromal cell (MSC) therapies
The immunomodulatory effects of MSCs have gener-
ated considerable interest as a potential therapeutic 
for COVID-19 ARDS. A recent study of 7 COVID-19 
patients observed that a single dose of ACE2-/- MSCs 
(10 million cells/kg) was well tolerated and improved pul-
monary function, reduced TNF-α release while enhanc-
ing IL-10 release in comparison with the placebo [95]. 
A number of other trials are investigating the effects 
of MSCs and MSC-derived exosomes in patients with 
SARS-CoV-2 infection (Table 2).

Immunomodulatory—pathway specific
A subgroup of severely ill COVID-19 patients develop 
a ‘cytokine storm’ profile with rapid and sustained 
elevations in cytokines such as IL-6, and fulminant 
organ failure with features in common with secondary 
hemophagocytic lymphohistiocytosis (HLH) [96]. This 
has led to interest in specific anti-cytokine therapies.

Tocilizumab and sarilumab
Tocilizumab and sarilumab are human monoclonal anti-
bodies that block the IL-6 receptor. IL-6 inhibition has 
been shown to be therapeutic in patients with adult-
onset Still’s disease complicated with SIRS and ARDS [97, 
98]. One recent non-controlled retrospective study of 21 
patients with COVID-19, published as an un-reviewed 
preprint, suggested that tocilizumab treatment may have 
decreased white cell counts and improved CT lung opac-
ity and lung oxygenation [99]. There are currently several 
phase 2/3 trials investigating tocilizumab and/or sari-
lumab for COVID-19 patients, with reports expected 
imminently.
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Anakinra
Anakinra is a recombinant IL-1 receptor antagonist that 
neutralizes the biologic activity of IL-1a and IL-1b by 
competitively inhibiting their binding to interleukin-1 
type I receptor and is widely used in rheumatic diseases. 
Anakinra did not improve mortality in patients with sep-
sis and septic shock in large phase 3 studies [100–102]. 
However, in a post hoc analysis anakinra improved sur-
vival in the subgroup of sepsis patients with features of 
HLH (ferritin elevation in excess of 2000  ng/ml, coagu-
lopathy, and liver enzyme elevations) [103]. Anakinra is 
being trialled in the ‘COVID domain’ of the REMAP-
CAP study (NCT02735707).

Other potential therapies
Heparin
Disordered coagulation, specifically, pulmonary micro-
vascular thrombosis is increasingly implicated in the 
pathogenesis of severe COVID-19 respiratory failure. 
Other thrombotic complications including deep venous 
thrombosis are also reported. Anticoagulant therapy, 
mainly with low molecular weight heparin, has been 
associated with better prognosis in severe COVID-19 
patients with evidence of coagulation activation such as 
markedly elevated D-dimers [104]. Consequently, hepa-
rin has been recommended by some expert consensus 
groups; however, its efficacy remains to be proven. Intra-
venous heparin is being trialled in the REMAP-CAP 
study (NCT02735707). Studies of nebulized heparin, 
such as the CHARTER study, are also in progress [105].

Finding ARDS therapies—future directions
Improved preclinical models
Understanding and, where relevant, addressing limi-
tations to current preclinical models may help reduce 
future ‘translational failures’ of potential therapies for 
ARDS. Preclinical models are designed to be reliable and 
reproducible but, in achieving this, may poorly model 
the complexity of ARDS. More clinically relevant experi-
menal models can provide initial proof-of-principle; it 
allows ineffective strategies to be rapidly discarded.

Issues such as multiple or sequential insults, the timing 
of insults, the role of  host factors such as age, sex, and 
premorbid conditions, and the usually prolonged dura-
tion of ARDS are not well reflected in current preclini-
cal models. Testing promising therapies in more complex 
and diverse animal models, of varying age and species, 
employing multiple hits, and modeling longer dura-
tions of ARDS, while challenging, may be a useful step 
prior to embarking on clinical studies. Multicenter trials, 
incorporating randomization and blinding for preclinical 
studies, may minimize bias and improve robustness by 
increasing heterogeneity.

Other useful ‘intermediate’ steps for promising thera-
pies prior to trials in ARDS patients may be the use of 
human models such as endotoxin inhalation in volun-
teers or testing in surgical populations, such as those 
undergoing one lung ventilation. Testing promising ther-
apies in the ex  vivo human lung perfusion model may 
provide proof of concept that the intervention can work 
in an acutely injured human lung.

Improved clinical trials
Improving our approach to clinical trial design and 
patient selection [106] may enhance the likelihood of 
finding effective therapies. One key issue relates to the 
heterogeneity of ARDS and the nonspecific nature of the 
ARDS clinical criteria, which may result in recruitment 
of patients who do not possess the underlying injury 
processes and biologic pathways characteristic of ARDS. 
‘Practical enrichment’ involves careful selection of can-
didates who are likely to complete the intervention and 
survive the study period. ‘Prognostic enrichment’ aims 
to reduce the numbers required to detect a significant 
difference by enrolling patients who are most likely to 
experience the primary endpoint. ‘Predictive enrichment’ 
involves selecting patients based on pathobiological fac-
tors that will predispose them to a treatment response. 
This latter approach may offer most promise, by selecting 
for patients who have a strong likelihood for a response 
to the intervention (and by the same token, select ‘out’ 
those who are unlikely to respond). This would reduce 
study noise, sample size, and study-associated harm. In 
ARDS, this approach has already borne fruit: an impor-
tant—positive—study of prone positioning randomized 
only patients who demonstrated an initial positive 
response to prone positioning. The use of adaptive clini-
cal trial designs, which permits modifications of the trial 
and/or statistical procedures after its initiation, e.g., to 
favor recruitment to intervention arms where favorable 
outcome data appears to be emerging, may also enhance 
the potential to identify effective interventions. The 
REMAP-CAP trial is an example of such a trial in a rel-
evant clinical population.

Targeting ARDS subtypes
Identifying patients more likely to respond to a specific 
pharmacologic intervention should increase chances of 
trial success. A key recent advance in our understand-
ing of the pathobiology of ARDS has been the ability to 
divide ARDS into subgroups or sub-phenotypes. Latent 
class analysis identifies one-third of ARDS patients with a 
‘hyper-inflammatory’ phenotype, and reanalysis of a large 
negative RCT of simvastatin in ARDS using this approach 
suggested benefit in the ‘hyperinflammatory’ group [107]. 
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ARDS phenotyping based on the focal versus diffuse 
distribution of lung infiltrates is also potentially feasible 
[108], as are transcriptomics-based approaches [109]. 
While prospective trials are required to validate pheno-
typing approaches, and subsequently to test therapies in 
specific phenotypes, this approach offers considerable 
hope for the repurposing of drugs previously deemed to 
have ‘failed’ clinical translation.

Conclusions
There is a host of potential drug therapies demon-
strating promise for ARDS, from drugs that modulate 
the immune response, specific inflammatory pathway 
blockers, epithelial and channel function modulators, 
endothelial and vascular dysfunction therapies, antico-
agulant drugs, and therapies that aid resolution of ARDS. 
A promising pipeline of therapies is also progressing 
through preclinical testing. An important area of investi-
gation is the potential for advances in our understanding 
of the pathobiology of ARDS and specifically the poten-
tial to identify biologically homogenous subtypes within 
ARDS, to enable us to target more specific therapies. It 
is hoped that the substantial number of studies globally 
investigating potential therapies for severe COVID-19 
patients will help the identification of effective therapies 
for ARDS.
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