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Critically ill patients constitute the most heterogene-
ous population in the hospital, with the highest rates 
of acute and chronic multimorbidity. Daily, two criti-
cally ill patients are admitted to the ICU with the same 
syndrome-based diagnosis, receive similar treatment, 
and yet have diametrically opposite outcomes. Knowl-
edge regarding disease mechanisms and effectiveness 
of interventions that could explain this is lacking, but it 
is increasingly clear that syndrome-based patient cat-
egorisation inevitably leads to grouping of patients with 
different risk profiles, responses to interventions, and 
outcomes. In septic shock, for instance, cardiovascular 
sub-phenotypes are insufficiently characterised, which 
compromises the effectiveness of hemodynamic support 
[1].

Recently, Geri and colleagues identified five different 
cardiovascular sub-phenotypes in septic shock patients, 
using clinical and echocardiographic parameters [1]. 
Two reflected response to interventions (“well resus-
citated”, “still hypovolemic”), while three characterised 
cardiac function (“left ventricle systolic dysfunction”, 
“hyperkinetic”, “right ventricle failure”). To personal-
ise and improve treatments, patients must be clustered 
into novel sub-phenotypes based on clinically objec-
tifiable parameters reflecting disease mechanisms or 
treatment responses, rather than admission diagnoses. 
Therefore, we highly commend the authors for taking 
an innovative, machine learning (ML) based approach 
in investigating an established problem in critical care 
and providing a detailed methodological description of 

how to incorporate clustering analyses into critical care 
research in a clinically relevant way.

ML applications in critical care are booming and have 
fuelled ground-breaking research using different meth-
odologies [2–7]. A recent overview by Sinha and Calfee 
of the advances in identifying homogeneous subgroups 
and phenotypes in acute respiratory distress syndrome 
(ARDS), which show divergent clinical characteristics, 
outcomes, and differential response patterns, highlights 
how this can add to clinicians’ existing knowledge [7]. 
With the ever-growing stream of data collected in ICUs 
generating increasingly high-dimensional and complex 
datasets, selecting the right analytical tools is more cru-
cial than ever. Figure 1 provides a schematic explanation 
of how clustering algorithms (a type of unsupervised 
learning algorithm where no labels are known a priori 
but get assigned based on inherent similarities between 
data points) can be applied in exploratory data analyses 
to identify relevant patient sub-groups.

Geri and colleagues used the hierarchical clustering on 
principle components (HCPC) algorithm, which is a sub-
type of hierarchical clustering (HC) [8, 9]. In HC, clusters 
are visualised in dendrograms that split at different levels 
based on the similarity between data points [8]. HCPC 
differs from other HC algorithms in that a principal com-
ponent analysis (PCA) is conducted before clustering 
to reduce data dimensionality: after PCA is performed, 
data are reduced to a few continuous variables (prin-
cipal components), which contain the most important 
information in the data. Using these transformed data 
for clustering can help improve cluster stability in multi-
dimensional datasets with multiple continuous variables 
[9]. K-means is another often used algorithm, where data 
are initially divided into a user-defined number of clus-
ters, which is repeatedly updated until the distance (i.e. 
difference) between points within a cluster is minimized 
[8]. Another algorithm particularly successfully applied 
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within critical care research is latent class analysis (LCA) 
[3, 5, 6]. LCA is an established, model-based statistical 
technique, that defines the best fitting models for data 
assumed to contain several unobserved groups. LCA is 
particularly useful for assessing heterogeneous treatment 
effects, and ML-based applications may allow its use with 
increasingly complex and larger datasets [10].

With these and countless other algorithms available, it 
is important to distinguish between hard and soft clus-
tering algorithms. In hard clustering, each data point 
can belong to one cluster only, whereas soft clustering 
algorithms such as fuzzy c-means assign data points a 
membership probability of belonging to one or more 
clusters [8]. Given the known limitations of hard cluster-
ing techniques in dealing with datasets containing static 
and dynamic variables, soft clustering techniques could 
come to play a pivotal role in studying overlapping dis-
ease mechanisms in heterogeneous populations. For 
example, replicating Geri et al.’s analysis using soft clus-
tering would provide better patient characterization by 
allowing mixed clusters including “well resuscitated” and 
“hyperkinetic” phenotypes, instead of having two and 
three clusters separately describing treatment response 
and cardiac function, respectively.

Once clusters have been defined, internal validity 
(including cluster stability) and external clustering valid-
ity have to be tested [11]. Internal validity is assessed by 
verifying whether the structure of the clustering is intrin-
sically appropriate for the data: that is, if data points are, 
simultaneously, similar within the same cluster, and as 
distinct as possible from those in other clusters. This will 
define what the ideal number of clusters for the data is, 
and can be done through indices such as Silhouette and 
Dunn or by determining cluster stability [8, 12]. This 
measure represents the cluster variation over different 
sub-samples of the same input data, and is determined 
by comparing changes in clusters composition using first 
the full dataset and then only a fraction thereof, or by 
training a supervised classifier on different data sub-sam-
ples [1, 13]. External validity assesses whether clustering 

results match the a priori expected data structure by 
comparing the clustering output to a given “correct” clus-
tering when “true” class labels are available (Fig. 1) [14]. 
This is crucial because clustering algorithms will inevi-
tably partition data into clusters irrespective of whether 
any clusters are indeed present [8]. Lastly, as for all ML-
based exploratory studies, external validation should be 
done to determine the generalizability of the findings. 
This can be done by using the most relevant variables of 
a clustering analysis to train a classifier on a new dataset, 
and then assessing whether individuals are classified into 
the same groups as during clustering [4].

In conclusion, increasingly flexible and sophisticated 
clustering techniques are available, which can allow for 
analyses of higher-dimensional datasets that help better 
characterize patients, disease mechanisms, and hetero-
geneous treatment response patterns (Fig.  1). However, 
before these findings can truly inform the design of mul-
ticentre, international prospective studies and trials, 
efforts to increase the interpretability of the findings are 
essential. For instance, the Interpretable Clustering via 
Optimal Trees algorithm developed by Bertsimas et  al. 
provides a clear, tree-based representation of the most 
important variables and the respective thresholds which 
led to cluster formation [15].
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(See figure on previous page.)
Fig. 1  Panorama of clustering analyses using heterogeneous ICU data. Clustering analysis of heterogeneous and complex ICU data starts with the 
selection of a hard or soft algorithm, based on the expected overlap between sub-phenotypes and the size of the dataset. Once clusters have been 
identified, the validity of the findings must be assessed. Internal validity is assessed by using validity indices such as the Silhouette or Dunn indices. 
These indices combine multiple measures (compactness, connectedness, and separation) to provide an estimate of whether the structure of the 
clustering is appropriate for the data. Cluster stability can be assessed in distinct ways, two of which are shown. Lastly, external validity measures 
such as Rand and Meila’s VI indices can confirm whether the clustering results match the a priori expected data structure. To determine whether 
clustering findings are generalizable, external validation using a similar dataset must follow. Validated findings can be used to better characterize 
patient sub-phenotypes in terms of clinical characteristics and outcomes, to optimise the design and powering of randomised trials by generating 
more homogeneous groups, and to identify differential treatment patterns in these randomised trials results by determining the variability in the 
direction and magnitude of individual treatment effects, both beneficial and adverse. Based on this, patients can be classified as most, moderate, 
and least responsive according to how well a treatment is expected to work
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