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When randomized controlled trials are not possible,
observational longitudinal data may be the only option to
quantify the impact of a treatment on an outcome [1]. As
an illustration, we assessed the impact of empirical sys-
temic antifungal therapy (SAT) on mortality in critically
ill patients [2]. A regression may be used to model the

relationship between SAT and mortality, with adjustment
on potential confounders. In many situations, the regres-
sion coefficient cannot be interpreted causally,
particularly when SAT administration is a time-dependent
variable [3-5]. Indeed, besides a direct causal effect, there
may be several paths linking the treatment to the outcome
through various confounders, i.e., variables associated
with treatment allocation and with the outcome which
may confound the association of interest. In this situation,
the association measure provided by standard regression
may differ from what clinicians often seek, which is a
quantification of the direct causal effect between an
exposure and an outcome. This situation may be illus-
trated by considering severe sepsis as a single confounder.
Indeed, severe sepsis may trigger SAT while it also
impacts mortality. Hence, SAT and mortality share a
common cause, i.e., an indirect path linking SAT to
mortality (Fig. E1 in the Electronic Supplementary
Material). The standard approach based on logistic
regression, for instance, may lead to a biased estimation
of the causal effect of SAT on mortality because some
time-dependent variables (i.e., septic shock) which may
be affected by previous treatment history can in turn
affect both further treatments and the outcome [3]. To
overcome the limitation of standard regression approa-
ches, new specific statistical methods have been
developed to handle this type of bias and are often
referred to as causal inference methods. They were first
introduced in intensive care unit (ICU) literature by
Bekaert et al. [6].

Let us consider ten ICU patients, three with and seven
without severe sepsis (SS) at baseline, and suppose that
SAT is administered to two patients with SS (67 %) and
two patients without SS (29 %). To conclude about a
causal relationship between treatment and mortality, the
distribution of the confounders between the groups should
be balanced. The propensity score (PS) may be used for
this balance. In other words, with the use of the PS, a
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difference in outcome between the treatment groups may
be considered as causally related to the exposure [7]. PS
matching estimators are usually used to estimate the
average treatment effect in the treated (ATT) and answers
to the question: “How would the outcomes of the treated
individuals have differed had they received the control?”
Nonetheless, this may not be the question of interest.
When estimating the impact of SAT, the research ques-
tion is rather: “What would be the outcome if all patients
at risk were treated or if all remained untreated?” [8].
This is usually referred to as the average treatment effect
(ATE). The PS may be also used to estimate the ATE
through the inverse probability of treatment weight
(IPTW) estimators [8]. The IPTW general concept is to
weight each individual contribution by the inverse of his/
her probability of receiving his/her treatment. The
weights are calculated as g in treated individuals and =5
in the untreated individuals and are used to create a
pseudo-population in which the exposure is independent
of the measured confounders as illustrated in Fig. 1 [9,
10].

In the simple situation of a binary point treatment with
non-time-varying confounders, and under a certain set of
assumptions, one just has to compare the weighted out-
come in the treated and the untreated to get an estimation
of the causal effect of the exposure on the outcome in this
pseudo-population. Hence, the first benefit of these new
statistical approaches is that, under a set of assumptions,
they may offer the possibility to estimate such causal
quantities. However, the experimental situation is often
more complex and may involve multiple time-point
treatments and time-varying confounders. Marginal
structural models (MSM) are a new class of statistical
models developed by Robins [3] to handle this particular
situation. Practically, MSMs refer to the regression of the
outcome on the exposure in the pseudo-population [9]. In
MSMs, IPTW estimators are used to estimate the
parameter of interest (e.g., the causal risk difference,
relative risk, or odds ratio). Specifically, the causal risk
difference (i.e., the ATE) equals the slope of a weighted
linear regression of the outcome on the exposure, using
the weights as defined earlier. The added value of MSMs,
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Fig. 1 Example of estimating the inverse probability of treatment
weight. This example uses a virtual sample of ten patients. (/) The
population may be divided into two groups according to the
presence/absence of a severe sepsis (three versus seven). (2) In
each subgroup, some patients are receiving SAT. For each
individual in each subgroup, the probability of receiving his/her
actual treatment (PsaTiss; 1.€., probability of treatment given the
presence/absence of SS) may be estimated from empirical propor-
tions. (3) The inverse probability of treatment weight (IPTW) is
computed from this probability and is equal to 1/Psatiss). The
weight equals 1/PS when SAT =1 and 1/(1 — PS) when
SAT = 0. (4) These weights are used to build the pseudo-

population, where an individual with a low probability of SAT will
be up-weighted and, conversely, and individual with a high
probability of SAT will be down-weighted. The pseudo-population
encompasses both factual and counterfactual observations. In this
pseudo-population, the treated and untreated individuals are
exchangeable and it is possible to compute directly the difference
in mortality. If one death is observed in the treated group (without
severe sepsis) and two deaths are observed in the untreated group
(one with severe sepsis and one without severe sepsis), the
estimated number of death in the pseudo-population is 3.5 in the
treated group and 4.4 in the untreated group (3 + 1.4). The relative
risk for mortality is (3.5/10)/(4.4/10) = 0.795
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as compared to the previously described PS-based meth-
ods, is that they can handle time-dependent confounders
when classical PS methods account only for baseline
confounders bias.

In case of longitudinal data, the treatment probability
has to be updated at each time point [11, 12]. This means
that the treatment probability at time ¢ is estimated from
the variables measured up to time ¢, including the expo-
sure history. The probability of being treated at time ¢ is in
turn defined as the product of all the treatment probabil-
ities up to time ¢. Thus, the weights derived at each time
point are combined into single weights to estimate the
impact of the entire treatment regimen.

Causal interpretation of the MSM parameters relies on
some assumptions [3, 13]. First, for each combination of
covariates, there must be treated and untreated individu-
als. When, for certain characteristics, there are only
treated or untreated, the so-called positivity assumption is
violated [3, 9]. This means that, in this stratum, the causal
effect is not identifiable. In the present issue, Muriel et al.
used an MSM with IPTW to estimate the causal effect of
analgesic and/or sedative drugs on the failure of non-
invasive positive-pressure ventilation [14]. Although this
approach seems well suited for the topic, the results
should be interpreted with particular caution because of
the positivity assumption. The relatively small number of
individuals in each treatment group defies the positivity
assumption. This may explain the great variability in the
final estimates (the wide confidence intervals). A second

causal assumption is known as the ignorability assump-
tion. It refers to the absence of significant unmeasured
confounder. Specifically, in the context of longitudinal
studies, at each measurement time one must have avail-
able the history of all risk factors of the exposure that are
also associated with the outcome (time-dependent con-
founding factors). While the first assumption is verifiable
from the data, the second is often non-testable. Some
basic SAS codes adapted to our example as well as details
about the positivity assumption are provided in the
Electronic Supplementary Material. Finally, to obtain
unbiased causal estimates, the model for the conditional
probability of exposure has to be correctly specified.
Although MSMs are increasingly used in the medical
literature and offer a new appealing alternative to stan-
dard regression methods, they need a very complex
analytic strategy, especially because IPTW estimators can
be very unstable and need strong assumptions to be ade-
quately interpreted. Thus, the use of MSM for
observational and longitudinal ICU data analysis often
requires extensive statistical background. To overcome
the risk of PS model misspecification, recent advances
have been proposed. Double-robust estimators (e.g.,
augmented IPTW or targeted maximum likelihood esti-
mators) [15] may represent the future of causal inference.
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