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Abstract Purpose: In acute kid-
ney injury patients, metabolic
acidosis is common. Its severity,
duration, and associated changes in
mean arterial pressure (MAP) and
vasopressor therapy may be affected
by the intensity of continuous renal
replacement therapy (CRRT). We
aimed to compare key aspects of
acidosis and MAP and vasopressor
therapy in patients treated with two
different CRRT intensities. Meth-
ods: We studied a nested cohort of
115 patients from two tertiary inten-
sive care units (ICUs) within a large
multicenter randomized controlled
trial treated with lower intensity (LI)
or higher intensity (HI) CRRT.
Results: Levels of metabolic acido-
sis at randomization were similar
[base excess (BE) of -8 ± 8 vs.
-8 ± 7 mEq/l; p = 0.76]. Speed of
BE correction did not differ between
the two groups. However, the HI
group had a greater increase in MAP
from baseline to 24 h (7 ± 3 vs.

0 ± 3 mmHg; p \ 0.01) and a
greater decrease in norepinephrine
dose (from 12.5 to 3.5 vs. 5 to 2.5 lg/
min; p \ 0.05). The correlation
(r) coefficients between absolute
change in MAP and norepinephrine
(NE) dose versus change in BE were
0.05 and -0.37, respectively. Con-
clusions: Overall, LI and HI CRRT
have similar acid–base effects in
patients with acidosis. However, HI
was associated with greater improve-
ments in MAP and vasopressor
requirements (clinical trial no.
NCT00221013).
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Introduction

Acid–base homeostasis is a key therapeutic target in
critically ill patients [1, 2]. However, acidosis is common

in the critically ill [3]. Such acidosis is an independent
predictor of unfavorable outcome in this population [4, 5].
In patients with acute kidney injury (AKI), metabolic
acidosis is especially common [6]. Although the exact
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mechanisms of metabolic acidosis in AKI are complex,
excess of retained metabolic acids is likely to contribute,
together with other general acid–base disorders of critical
illness (hyperlactatemia and/or hyperchloremia) [7, 8].
Depending on its severity, correction may require differ-
ent levels of intervention including renal replacement
therapy (RRT) [9].

Despite the logical expectation that RRT should
improve metabolic acidosis, studies have reported that
its effect on acid–base status is likely dependent on the
nature of acidosis (anion gap positive vs. non-anion gap
acidosis), its intensity, choice of buffer, ability of the
body to metabolize buffer to bicarbonate, site of
delivery of the buffer, and quantity of buffer delivered
[10–12]. In addition, the plasma concentration of sol-
utes available for ultrafiltration, and the rate of
ultrafiltration also appear to determine the effect of
RRT on acid–base status [13, 14]. In this regard,
although under most circumstances other buffers are
adequate, bicarbonate-based replacement or dialysis
solutions more predictably and consistently reverse
metabolic acidosis [11]. However, once bicarbonate is
used as replacement fluid and dialysate fluid, little is
known about the impact of CRRT intensity on the
speed and extent of correction of metabolic acidosis in
advanced AKI. In particular, it is unknown whether
applying more intensive CRRT would lead to faster
and/or greater resolution of acidosis in the early (first
24 h) treatment period. Also, given concerns that aci-
dosis and/or acidemia might lower MAP and increase
vasopressor requirements, it is unknown whether such
correction would be accompanied by an effect on mean
arterial pressure.

We hypothesized that, in the first 24 h, higher inten-
sity (HI) CRRT would reverse metabolic acidosis at a
faster rate and to a greater degree than lower intensity (LI)
CRRT, and thus had correction of acidosis in the first 24 h
as our primary endpoint. We also hypothesized that such
changes would be accompanied by a greater increase in
MAP, and therefore had improved MAP at 24 h as our
secondary endpoint. We tested these hypotheses by con-
ducting a nested cohort study within the randomized
evaluation of normal versus augmented level (RENAL)
Replacement Therapy Study, a multicenter randomized
controlled study comparing two levels of CRRT intensity
[15].

Methods

The study involved a nested cohort of patients from two
centers within the RENAL study in whom detailed data
on acid–base status were obtained during the first 24 h of
CRRT treatment. The RENAL study was a multicenter,

prospective, randomized trial of two levels of intensity of
continuous renal replacement therapy (CRRT) originally
in 1,508 critically ill patients with acute kidney injury
conducted in 35 ICUs in Australia and New Zealand [15].
The study was approved by the Human Research Ethics
Committees of the University of Sydney and all partici-
pating institutions.

The methodological details of the RENAL study were
recently reported [15]. In brief, patients were eligible for
enrollment if they were critically ill adults who had AKI,
were deemed to require RRT by the treating clinician, and
fulfilled predefined criteria [15]. Eligible patients were
randomly assigned to continuous venovenous hemodia-
filtration (CVVHDF) with effluent flow at 25 ml/kg/h
(lower intensity, LI) or 40 ml/kg/h (higher intensity, HI).
Replacement fluid was delivered into the extracorporeal
circuit after the filter (i.e., postdilution), with a ratio of
dialysate to replacement fluid of 1:1. Blood flow was kept
above 150 ml/min. Fluid was removed by decreasing the
flow of the replacement fluid and of the dialysate in equal
proportion, so that effluent exceeded them by any amount
prescribed by the clinician.

Filters with the AN69 membrane (Gambro) were used.
Hemosol BO fluid (Gambro) was used as the dialysate
and replacement fluid. Hemosol contains sodium ion
(Na?, 140 mmol/l), chloride ion (Cl-, 109.5 mmol/l),
bicarbonate (HCO3

-, 32 mmol/l), lactate (3 mmol/l), cal-
cium ion (Ca2?, 1.75 mmol/l), and magnesium ion
(Mg2?, 0.5 mmol/l).

All patients were anticoagulated with unfractionated
heparin with target at the attending clinician’s discretion.

The intensive care management of the patients
including CO2 tension in arterial blood (PaCO2) and MAP
aims were set by the treating physicians. Study treatment
was discontinued on death, discharge from ICU, or
recovery of renal function.

Measurements

In all patients arterial blood pH, plasma lactate, PaCO2,
K, Na, Mg, ionized Ca (iCa), Cl, phosphate (Phos),
albumin (alb), creatinine, and urea levels, MAP, and dose
of norepinephrine in lg/min were recorded 2-hourly for
24 h.

Calculations

Plasma standard HCO3
- levels and BE values were cal-

culated by blood gas machines.
The strong ion gap (SIG) [16] was calculated as the

difference between the apparent (SIDa) and effective
(SIDe) strong ion difference [17, 18], where
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SIDa ¼ ½Naþ� þ ½Kþ� þ 2� ½iCa2þ� þ 2� ½Mg2þ�
� ½Cl�� � ½L-lactate�

and [16]

SIDe ¼ 1000� 2:46� 10�11 � PaCO2=10�pH þ Alb

� ð0:123� pH� 0:631Þ þ Phos� ð0:309

� pH� 0:469Þ :
Statistical analysis

Data are expressed as mean with standard deviation (SD)
for normally distributed variables and as median and
interquartile range (IQR) for non-normally distributed
variables.

To adjust for the effect of any missing data, calcula-
tions were made with and without imputations for missing
data. Imputations were done by calculating the mean of
the value immediately before and after the missing value.
If a value was missing at the end of the observational
period, the ‘‘last value carry forward’’ method was used.
The calculations with the two datasets corresponded well
to one another, thus only analysis based on original data
without imputations is reported, unless otherwise stated.

Comparisons were made using the z-test for dichotomous
variables, t test or analysis of variance (ANOVA) as appro-
priate for repeated measurements for variables with normal
distribution and the Mann–Whitney test or Wilcoxon mat-
ched-pairs test for variables with non-normal distribution.
Spearman’s rank test was used for calculating correlation
coefficients. p\ 0.05 was considered significant. Statistical
analyses were performed by STATISTICATM software,
version 10 (StatSoft, Tulsa, OK, USA).

Results

Patient characteristics

We studied 115 patients, of whom 59 (51 %) were ran-
domized into the lower intensity (LI) group and 56 (49 %)
into the higher intensity (HI) group. The two groups
were comparable in terms of age, mortality, severity of

illness and organ failure, and delivered CRRT time
(Table 1). All but one patient had an abnormal anion
gap, and 28 of the 115 patients (24 %) had plasma lactate
over 4 mmol/l. Discharge diagnosis groups are provided in
Table 2.

At 28 days, 45 (39 %) patients were dead: 24
(41 %) in the LI group and 21 (38 %) in the HI group.
The most common ICU admission diagnosis was
sepsis with AKI (n = 43, 37 % of total), followed by
postoperative AKI (n = 21, 18 % of total), AKI due to
primary renal disease (n = 19, 17 % of total), and
AKI secondary to other medical conditions (n = 32,
28 % of total).

Acid–base effects

Biochemical, acid–base, and MAP values at baseline and
24 h are given in Table 3. Overall, acidosis improved
similarly in both groups. In particular, BE increased
similarly from 0 to 24 h in both groups (Fig. 1).

Normal BE between -2 to ?2 mmol/l at 24 h was
achieved in 29 (49 %) LI patients and 29 (52 %) HI
patients.

Table 1 Characteristics of the study population according to treatment allocation

Overall population LI group HI group p-Value

Sex (% male) 83/115 (72 %) 41/59 (70 %) 42/56 (75 %) 0.51
Day 28 mortality (% dead) 45/115 (39 %) 24/59 (41 %) 21/56 (38 %) 0.70
Age (IQR), years 67 (19) 66 (18) 69 (19) 0.24
APACHE III (IQR) 103 (30) 100 (35) 107 (33) 0.09
SOFA (IQR) 11 (6) 11 (6) 11 (6) 0.43
Hours on CRRT (IQR) 21 (6) 21 (7) 22 (6) 0.46

p-Values refer to intergroup differences
LI lower intensity, HI high intensity, APACHE Acute Physiology and Chronic Health Evaluation score, CRRT continuous renal
replacement therapy, SOFA Sequential Organ Failure Assessment score

Table 2 ICU discharge diagnosis groups for cohort (n = 115)

n Percentage
of total

Medical diagnoses 89 77
Infectious conditions 34 30
Cardiac conditions 6 5
Respiratory conditions 2 2
Genitourinary conditions 25 22
Hepatic conditions 8 7
Other medical conditions 14 12

Surgical diagnoses 26 23
General surgical conditions 13 11
Cardiac surgical conditions 9 8
Vascular surgical conditions 3 3
Trauma 1 1
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Effect on mean arterial pressure and norepinephrine
dose

MAP was higher in the LI group at baseline compared with
the HI group (78 ± 12 vs. 73 ± 11 mmHg; p \ 0.05) in the
overall population. However, the absolute change in MAP
from baseline to 24 h was greater in the HI group
(p \ 0.001) (Fig. 2). The absolute change in MAP did not
correlate with the absolute change in BE (r = 0.05).

The dose of norepinephrine differed between the
groups at baseline (p \ 0.05; Table 3). The absolute
change in norepinephrine dose from baseline to 24 h
(Fig. 3) was greater in the HI group (-7 ± 5 vs.
0 ± 5 lg/min; p \ 0.05) than in the LI group. This dif-
ference in dose remained significant even when patients
without baseline norepinephrine treatment were excluded
(25 out of 59 patients in the LI group and 15 out of 52
patients in the HI group). The correlation between

Table 3 Change in biochemical and physiologic data in the two study groups from baseline to 24 h

Change from baseline to 24 h of CRRT Lower intensity CRRT Higher intensity CRRT

0 24 p-Value 0 24 p-Value

pH 7.30 ± 0.12 7.36 ± 0.12 \0.001 7.29 ± 0.11 7.38 ± 0.07 \0.001
HCO3

- (mmol/l) 18 ± 6 22 ± 4 \0.001 18 ± 6 23 ± 6 \0.001
BE (mEq/l) -8 ± 8 -3 ± 6 \0.001 -8 ± 7 -2 ± 4 \0.001
SIDa (mmol/l) 38 ± 6 38 ± 5 0.38 38 ± 6 37 ± 4 0.17
SIG (mmol/l) 10 ± 4 8 ± 14 0.30 10 ± 5 5 ± 4 \0.001
Lactate (mmol/l) 2.4 (1.3–4.6) 1.8 (1.4–2.9) 0.83 2.2 (1.6–3.8) 1.4 (1.1–2.5) \0.01
Chloride (mmol/l) 104 ± 7 103 ± 4 0.24 103 ± 8 103 ± 3 0.97
MAP (mmHg) 78 ± 11 78 ± 12 0.93 73 ± 11 81 ± 15 \0.001
Norepinephrine dose (lg/min) 5 (0–14) 3 (0–11) 0.53 13 (0–22) 4 (0–14) \0.001

Values are given at 0 h (at the start of CRRT) and at 24 h of CRRT
Data are given as mean ± standard deviation or median (interquartile range)
p-Values refer to intragroup difference from 0 to 24 h
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Fig. 1 Changes in base excess (BE) levels in the first 24 h of
treatment in patients receiving lower intensity and higher intensity
CRRT (mean ± standard error, SE)
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Fig. 2 Absolute changes in mean arterial pressure (MAP) from
baseline in the first 24 h of treatment in patients receiving lower
intensity and higher intensity CRRT (mean ± SE)
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Fig. 3 Absolute changes in the infusion rate of norepinephrine
from baseline in the first 24 h of treatment in patients receiving
lower intensity and higher intensity CRRT (mean ± SE)
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absolute change in norepinephrine dose and the absolute
change in BE was weak (r = -0.37).

Discussion

Key findings

We conducted a nested cohort study within the RENAL trial
to test whether HI CRRT would result in faster and/or
greater early correction of acidosis and whether it would
also affect MAP and NE treatment. Overall, we found that
HI CRRT achieved a similar rate and magnitude of acidosis
correction compared with LI CRRT. However, HI CRRT
resulted in a greater increase in blood pressure and a greater
decrease in norepinephrine requirements. These changes
did not correlate with changes in pH or BE.

Relationship to previous studies

The effect of CRRT on acid–base balance appears
determined by the plasma concentration of solutes avail-
able for ultrafiltration, the composition of the dialysis or
replacement fluid, the intensity of ultrafiltration, and body
weight [13, 14]. Our study showed, as expected, that
bicarbonate-based CRRT attenuates metabolic acidosis
[10–12]. Although the effects of bicarbonate-based CRRT
on acid–base disorders have been investigated previously
[19], our study is the largest study of the acid–base effect
of CRRT intensity within a randomized trial.

The overall reversal of acidosis was similar in the LI
and HI groups in terms of pH change and change in
HCO3

- levels and BE.
Despite the similar effects on BE, HI and LI had a

different effect on SIG, which decreased more in the HI
group. This effect could be consistent with the view that
the removal of unmeasured organic anions by CRRT is
increased with greater intensity [7, 20]. However, since
SIG decreased similarly in both HI and LI groups in the
severe acidosis subgroup, this effect may not entirely be
related to CRRT intensity or only operate at less severe
acid–base disturbances. In contrast, there were no or
minimal effects of CRRT on the SID, a major determinant
of acid–base status [16]. However, one ion (potassium)
was affected by CRRT intensity. Such decrease in plasma
potassium levels appears due to direct clearance by CRRT
rather than a pH effect [21].

CRRT has been previously associated with improved
MAP in animal models of sepsis and in humans [22–25].
However, no controlled studies have compared two inten-
sities of CRRT in terms of their effect on MAP and
vasopressor requirements [26]. We found that MAP
increased and vasopressor requirements decreased with HI
CRRT. Although decreased norepinephrine requirements
could be attributed to normalization of pH, this was not

different between the two groups and cannot be logically
used to explain our findings [27, 28]. Cooling by CRRT at
higher intensity may also explain changes in MAP. How-
ever, in all cases fluids were warmed to 37 �C or more,
making this mechanism somewhat unlikely. A potential
alternative mechanism could be more efficient removal of
biologic mediators responsible for hypotension and/or
vasodilatation [23, 29–31]. Some of these mediators may
have contributed to the changes in SIG as well as inducing
hypotension. Our study, however, cannot provide a mech-
anistic analysis of the physiological effects observed.

Implications

Our study suggests that acidemia is generally effectively
reversed during CRRT after 24 h of therapy. This infor-
mation could be of interest to clinicians wishing to correct
metabolic acidosis in patients with severe AKI, but it is
not clear if it would actually change the management of
these patients. Additionally, the findings that higher
intensity CRRT improves MAP and reduces vasopressor
doses may assist clinicians dealing with patients with the
combination of acidosis, severe hypotension, and vaso-
pressor requirements during early CRRT. Although
bicarbonate buffer was used in this study, other buffers
may have similar effects on acid–base balance.

Strengths and limitations

This study is the largest investigating the effect of CRRT
dialysate and replacement fluid flow on acid–base status
within a randomized controlled trial (RCT); data collection
was extensive, numerical, and based on blood gas machine
output or independently recorded by the bedside nurse. These
aspects of the study make bias unlikely. As this is a nested
cohort study of the RENAL trial, thus a substudy, selection
bias introduced by studying a subpopulation can influence
results. However, patients included in this study were
recruited by including all patients from two centers of the
RENAL study, their age and illness severity are similar to
those reported for the whole population of RENAL trial
patients [15], and the cohort represents a mixture of patients
typically seen in general intensive care units. Others have
reported that nested cohort studies have a design that pre-
serves the validity of the original population when selection
bias can be avoided [32].

Another consequence of our methodology is that our
patients were not recruited and randomized to test the
specific hypothesis of this study. However, since a
majority of study patients had metabolic acidosis, this
population was particularly useful to investigate the acid–
base effects of CRRT in this setting. This study investigated
a specific CRRT setup (bicarbonate-based continuous
venovenous hemodiafiltration, with fixed blood flow and

433



postfilter replacement); conclusions from this study, there-
fore, may not apply to other CRRT techniques.

Finally, our study was only conducted for 24 h, thus
we cannot comment on the later effects associated with
CRRT [33]. However, most acid–base disturbances are
reversed within this time period, and if CRRT fails to
restore acid–base homeostasis by 24 h, clinicians may
choose additional therapies [34].

Future research

Further studies of CRRT intensity with other buffers (e.g.,
citrate) may be of interest given the evolution of therapy
toward greater use of citrate as anticoagulant [35]. In
addition, investigation of the mechanism by which HI
CRRT improves MAP might provide insights into future
therapeutic interventions.

Conclusions

In this nested cohort study within a large RCT, HI CRRT
did not affect acid–base differently from LI CRRT
overall. In addition, HI CRRT increased MAP and
decreased norepinephrine requirements compared with LI
CRRT. These physiological observations may be helpful
to clinicians faced with the treatment of patients with
combined AKI, metabolic acidosis, hypotension, and
vasopressor therapy.
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