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Abstract Purpose: Bioactive NO
carriers in circulating blood formed
during NO inhalation selectively dis-
tribute blood flow to areas in need,
and may thus improve collateral per-
fusion to the area-at-risk in acute
myocardial infarction (AMI). Here,
we tested the hypothesis that NO
inhalation during the ischemic phase
of AMI may improve left ventricular
function and reduce infarct size in
rats. Methods: Following left ante-
rior descending coronary artery
(LAD) occlusion, rats received
50 ppm NO for 2 h of ischemia,
during subsequent 3 h of reperfusion,
or for 5 h of ischemia and reperfu-
sion. Effects of inhaled NO were
compared to those of intravenous
nitrite as a putative carrier formed
during NO inhalation. Downstream
signaling via soluble guanylate

cyclase was tested by inhibition with
1H-[1,2,4]oxadiazolo[4,3-a]quinoxa-
lin-1-one (ODQ). Results: NO
inhalation during myocardial ische-
mia increased left ventricular systolic
pressure, contractility, relaxation, and
cardiac output, and reduced myocar-
dial infarction size and area-at-risk as
compared to untreated controls. NO
inhalation during the reperfusion
phase caused a comparable protective
effect. Combined inhalation during
ischemia and reperfusion did not
further improve left ventricular
hemodynamics, but had an additive
protective effect on the myocardial
area-at-risk. NO inhalation increased
circulating nitrite levels, and mim-
icking of this effect by intravenous
nitrite infusion achieved similar pro-
tection as NO inhalation during
myocardial ischemia, while ODQ
blocked the protective NO effect.
Conclusions: Inhalation of NO
during myocardial ischemia improves
left ventricular function and reduces
infarct size by mechanisms that
increase levels of circulating nitrite
and involve soluble guanylate
cyclase. NO inhalation may represent
a promising early intervention in
AMI.

Keywords Nitric oxide � Inhalation �
Myocardial infarction � Collateral
perfusion � Nitrite
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Introduction

In acute myocardial infarction (AMI), the time lag
between ischemic insult and onset of reperfusion predicts
myocardial infarct size (IS) and hence prognosis. Fre-
quently, however, revascularization cannot occur within
the critical interval of 12 h [1]. Current strategies to
reduce morbidity and mortality from AMI therefore focus
on logistic measures to shorten the time between AMI and
revascularization, and on cardioprotective approaches to
attenuate myocardial necrosis up to the time of revascu-
larization. Yet, therapeutic interventions initiated after the
onset of ischemia are hampered by the problem that
systemically delivered drugs will not reach the infarcted
tissue because of inadequate perfusion.

Increasing collateral perfusion to the infarcted area
provides a promising alternative strategy, as it will increase
oxygen and substrate delivery to the area-at-risk (AAR)
surrounding the initial infarct core and thus attenuate the
progression of IS. However, systemic vasodilators are
contraindicated in AMI, as they will not selectively increase
collateral perfusion, but instead redistribute blood flow
from ischemic to healthy myocardium (‘‘steal effect’’) [2]
while reducing coronary perfusion pressure [3].

Conversely, early interventions in AMI should aim to
selectively improve perfusion to the AAR, thus causing an
inversed steal adequately termed the Robin Hood effect [4].
In murine and ovine models of ischemic stroke, we recently
realized this effect through inhalation of NO [5]. Inhaled NO
(NOi) results in the formation of stable NO carriers in blood,
namely nitrite [6, 7], which may conserve and circulate NO
bioactivity and release NO when hemoglobin desaturates
[8–10], thus redistributing blood flow preferentially to hyp-
oxic tissues. Hence, wehypothesized that NOi may provide a
novel and attractive therapeutic option for the treatment of
AMI, and tested this concept in a rat model of AMI.

Materials and methods

Animals

Male Sprague–Dawley rats (375 ± 25 g body weight
(bw)) were from Charles River (Sulzfeld, Germany). All
animals received care in accordance with the Guide for
the Care and Use of Laboratory Animals (National
Academy Press, Washington, DC 1996). The study was
approved by the Animal Care and Use Committee of the
local government authorities.

Materials

All substances were from Sigma-Aldrich (Taufkirchen,
Germany) unless stated otherwise.

Surgical preparation

Rats were anesthetized as described [11] and placed in
supine position on a thermostatic blanket to maintain
body temperature at 37.5 �C. Following tracheostomy,
rats were ventilated at 70 breaths/min with peak inspi-
ratory and positive end-expiratory pressures of
13.1 ± 1.1 and 5 cmH2O. Right carotid artery and left
jugular vein were cannulated for hemodynamic moni-
toring, blood sampling, and drug delivery. A Mikro-Tip
2-F catheter was advanced from the carotid artery into the
left ventricle for continuous recording of left ventricular
pressure (LVP) and maximal and minimal rate of LVP
change (dp/dt max and dp/dt min). For cardiac index (CI)
measurements, a 250-lL bolus of 4 �C cold 0.9 % saline
was injected into the right atrium via a catheter inserted
from the right jugular vein, and detected by a thermo-
couple (IT-24P-Microprobe, Physitemp Instruments,
Clifton, NJ) positioned in the aorta [12]. Thermodilu-
tion measurements were performed in triplicate.
Following a midline thoracotomy, the pericardium was
opened for left anterior descending coronary artery
(LAD) ligation.

Experimental protocol

After 15 min stabilization, baseline hemodynamics were
recorded, and arterial blood samples obtained. The LAD
was reversibly ligated 2–3 mm from its origin [13], and
AMI was evident as acute discoloration of the left ven-
tricle. In experimental groups undergoing reperfusion, the
ligature was removed after 120 min. Thirty minutes prior
to euthanasia, a bolus of 30 mg Evans Blue (EB) was
injected intravenously. Animals were euthanized by
exsanguination, and hearts were excised for determination
of AAR and IS.

The effects of NOi were studied first in myocardial
ischemia alone, then in a model of 2 h of ischemia
and 3 h of reperfusion, and finally in the presence
of the soluble guanylate cyclase (sGC) inhibitor
1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ)
[14] (Fig. 1). Nitric oxide was inhaled at 50 ppm for
indicated time intervals and the inspiratory NO con-
centration was continuously monitored (Dräger Pac 3,
Dräger, Lübeck). ODQ (10 lg/kg bw) was adminis-
tered intravenously [15] with the start of NO
inhalation. In a subset of experiments, we mimicked
the effects of NOi by intravenous nitrite infusion. To
this end, we assessed nitrite concentrations in arterial
blood during inhalation of 50 ppm NO using an ozone-
based chemiluminescence detector (Model 280 nitric
oxide analyzer; Sievers Instruments, Boulder, CO) [16–
18]. Next, we tested different intravenous nitrite dosing
strategies for their ability to reproduce similar plasma
levels.
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Quantification of myocardial area-at-risk and infarct
size

Infarct size, i.e., the area in which the myocardium has
succumbed to irreversible cell death, and AAR, i.e., the
still viable yet unperfused myocardium surrounding the
infarct core, were quantified by the EB and tetrazolium
chloride staining techniques [19–21]. The left ventricle
was cut into 5–6 horizontal slices (each 1.5 mm thick)
perpendicular to the LAD axis. Each slice was weighed,
immersed in 1 % triphenyl-tetrazolium chloride (TTC)
for 20 min, and then bleached with 4 % formaldehyde for
30 min. Pre mortem infusion of EB stained perfused
myocardium in blue, demarcating the border of the AAR,
while TTC stains viable myocardium red. Consequen-
tially, intact myocardium appears in dark violet, the AAR
in red and the infarct core in white. AAR and IS were
quantified as surface area in each slice by Image-J (NIH,
Bethesda, MD), referred to slice weight, and expressed as
percentage of left ventricular mass [22].

Statistical analyses

Data are presented as means ± SEMs. Values of different
groups were compared by Mann–Whitney U test for two
and Kruskal–Wallis and post hoc Dunn’s multiple com-
parison test for more than two independent groups, and by
two-way repeated measures ANOVA for multiple testing
at different time points. Statistical significance was
assumed at P \ 0.05.

Results

NOi improves left ventricular function in AMI

First, we tested the effect of NOi during 2 h of ischemia
without reperfusion (Fig. 2, solid lines). In untreated
controls, LAD occlusion caused an instantaneous decline
in left ventricular function that was followed by a further
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Fig. 1 Schematic diagram of
the experimental design. The
effects of inhaled nitric oxide
were assessed in models of
myocardial ischemia (2 h), in
myocardial ischemia (2 h) with
subsequent reperfusion (3 h),
and in the presence of the
soluble guanylate cyclase
inhibitor ODQ, respectively.
Similarly, the effects of
intravenous nitrite in acute
myocardial ischemia (2 h) were
determined. Time intervals of
NO inhalation and nitrite
infusion, respectively, are
indicated by horizontal bars.
Arrows indicate infusion of
ODQ, arrowhead infusion of
initial nitrite bolus
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deterioration over the 2-h ischemic interval, as demon-
strated by the progressive decrease in mean arterial
pressure (AP; Fig. 2a), left ventricular systolic pressure
(LVSP; Fig. 2b), and the maximal pressure generation

velocity dp/dt max as an indicator of left ventricular
contractility (Fig. 2c). Left ventricular relaxation speed,
reflected by dp/dt min, likewise decreased continuously
(Fig. 2d). While the initial decline in left ventricular
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Fig. 2 Protective effect of NO inhalation during myocardial
ischemia. Rats were subjected to either 2 h of ischemia only (I;
solid lines in a–e) or 2 h of ischemia, followed by 3 h of
reperfusion (I/R; dotted lines). Values between baseline and 90 min
show combined data from both I and I/R groups. Concurrent with
the onset of ischemia, rats in both I and I/R groups received inhaled
NO (50 ppm; I (NO) or I/R (NO–I)) or room air (I (control) or I/R
(control)) during the 2-h ischemic interval. Group data show mean
arterial pressure (a), left ventricular systolic pressure (b), dp/dt max
(c), and dp/dt min (d) determined at baseline and 0, 5, 30, 60, 90,
and 120 min after LAD occlusion and 60, 120, and 180 min after
initiation of reperfusion. Cardiac index (e) was determined at

baseline, 30 and 90 min after LAD occlusion and 60 min after the
onset of reperfusion. f Representative TTC- and EB-stained left
ventricular sections obtained either after 2 h of ischemia (I) or 2 h
of ischemia and 3 h of reperfusion (I/R) in rats inhaling either NO
(NO) or room air (control) during the ischemic interval show
normal perfused myocardium in dark violet, viable area-at-risk in
red, and the necrotic infarct core in white. G Bar graphs show the
combined area-at-risk and infarct size determined after 2 h of
ischemia only, or area-at-risk and infarct size as determined after
2 h of ischemia and 3 h of reperfusion. *P \ 0.05 versus corre-
sponding control, n = 8 animals each

1384



function after LAD occlusion was equally evident in rats
inhaling NO, NOi effectively prevented the subsequent
progressive hemodynamic deterioration, resulting in
higher AP, LVSP, dp/dt max and lower dp/dt min values
as compared to controls from t = 60 min after LAD
occlusion. The beneficial effect of NOi was further evi-
dent as an attenuated decrease in CI 30 min after LAD
occlusion (Fig. 2e). Hemodynamic differences were not
attributable to NO effects on central venous pressure,
which did not change significantly during experiments, or
differed between groups (data not shown). As determi-
nation of IS by the TTC method is not feasible in the
absence of tissue reperfusion [23], EB staining demar-
cated a combination of AAR and IS. In untreated controls,
this non-perfused area covered approximately 50 % of the
left ventricle, while NOi reduced AAR ? IS by more
than 20 % (Fig. 2f, g).

Beneficial effect of NOi is preserved after reperfusion

Next, we addressed whether NO inhalation during
ischemia confers protection that extends over a sub-
sequent 3-h reperfusion period without NOi (Fig. 2,
dotted lines). Myocardial reperfusion caused a rapid,
albeit incomplete, recovery of systemic (Fig. 2a) and left
ventricular (Fig. 2b–d) hemodynamic pressures in both
control and NOi-treated rats, followed by a subsequent
decline in line with progressive reperfusion injury. Car-
diac index spontaneously recovered in part during
ischemia, and continued to increase gradually during
reperfusion (Fig. 2e). In rats who received NOi during the
ischemic interval, AP and CI consistently exceeded
respective values in untreated controls during reperfusion.
A similar beneficial trend was evident for left ventricular
hemodynamics (LVSP, dp/dt max, dp/dt min), yet only
reached significance for LVSP and dp/dt max at 300 min.
AAR and IS were markedly reduced in NOi rats, dem-
onstrating that the beneficial effect of NOi during
ischemia was preserved throughout subsequent reperfu-
sion (Fig. 2f, g). Notably, NOi also reduced the ratio
IS/AAR from 0.59 ± 0.05 to 0.45 ± 0.04 (P \ 0.05),
indicating that the protective effect of NOi was not solely
attributable to improved collateral blood flow as demon-
strated by the reduced AAR, but also to potential
cardioprotective effects [24–26].

Continuous NOi during ischemia and reperfusion
has additive benefit on area-at-risk

As NOi during reperfusion has previously been shown to
reduce IS and improve myocardial perfusion [27, 28], we
tested whether continuous NOi during both ischemia and
reperfusion may provide additive benefits as compared to
NOi during either ischemia or reperfusion. Inhaled nitric

oxide during reperfusion alone improved systemic
(Fig. 3a, e) and left ventricular (Fig. 3b–d) hemodynam-
ics, and reduced AAR and IS (Fig. 3f). With respect to
AP and left ventricular hemodynamics, the beneficial
effects of NOi during either ischemia or reperfusion were
largely comparable. However, CI after 90 min ischemia
was higher in rats receiving NOi during ischemia as
compared to NOi during reperfusion, and this difference
was preserved for at least 1 h into the reperfusion period.
More importantly, NOi during reperfusion resulted only
in a moderate reduction of IS by 21 %, a non-significant
decrease in AAR, and no reduction in the ratio IS/AAR.
Conversely, NOi during ischemia decreased AAR, IS, and
the ratio IS/AAR by 22, 41, and 24 %, respectively, and
thus exerted a pronounced protective effect. Continuous
inhalation of NO during both ischemia and reperfusion
did not generate a detectable additive benefit as compared
to NOi during either ischemia or reperfusion with respect
to systemic or left ventricular hemodynamics. Yet, con-
tinuous NOi resulted in the most distinctive reduction in
AAR, which was superior to NOi during each interval
alone. A similar trend was observed for IS, which was
lower as compared to NOi during reperfusion, and just
failed to reach significance versus NOi during ischemia
(P = 0.065).

Beneficial effects of NOi are mediated by sGC

To address the involvement of the sGC–cGMP pathway
in the observed beneficial effects, we administered the
sGC inhibitor ODQ at the start of NO inhalation. As ODQ
by itself may exert hemodynamic effects, subsequent
comparisons were confined to differences between ODQ-
treated groups. In ODQ-treated rats, inhalation of NO no
longer exerted detectable beneficial effects on systemic
(Fig. 4a, e) or left ventricular (Fig. 4b–d) hemodynamics,
AAR, or IS (Fig. 4f).

Infusion of nitrite iterates the protective effect of NOi

Last, we tested whether the beneficial effect of NOi may
be due to formation of nitrite and mimicked by its sys-
temic delivery. While plasma nitrite levels remained
unchanged over 2 h in untreated controls undergoing
LAD occlusion, inhalation of 50 ppm NO increased
nitrite levels by sixfold (Fig. 5a). On the basis of pub-
lished pharmacokinetic profiles of intravenous nitrite in
rats [29], we tested dosing regimens for nitrite infusion
with an initial bolus of 0.5–4 nmol/g bw and subsequent
continuous infusion of 10 % of the initial dose per min.
Combination of an initial 0.5 nmol/g bw bolus followed
by infusion of 0.05 nmol g bw-1 min-1 mimicked the
effects of 50 ppm NOi, in that it yielded a stable increase
in plasma nitrite levels within the range measured during
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NO inhalation (Fig. 5b). When this dose was applied
during 2 h of LAD occlusion, nitrite prevented the pro-
gressive decline and in part even restored pre-ischemic
levels of systemic (Fig. 5c, g) and left ventricular
hemodynamics (Fig. 5d–f), and markedly reduced the
percentage of non-perfused left ventricular tissue
(Fig. 5h). These findings demonstrate that systemic nitrite
levels comparable to those achieved during NO inhalation
exert similar protective effects as NOi.

Discussion

Here, we identify NOi as an emerging early intervention
strategy in AMI. In an in vivo rat model of AMI, we

demonstrate that NOi during myocardial ischemia
improves left ventricular function and systemic hemody-
namics and reduces AAR and IS. This protection was to a
large degree attributable to improved collateral perfusion,
as demonstrated by the findings that NOi reduced AAR,
and that this effect markedly, albeit not exclusively,
accounted for the resulting decrease in IS. This property
of NOi is in line with our recent demonstration of an NOi-
induced Robin Hood effect in ischemic stroke [5], and
diametrically opposed to the detrimental steal effects
exerted by conventional (nitro-)vasodilators in AMI [2].
The protective effect of NOi exceeded the actual time
interval of drug inhalation and was preserved over a
subsequent 3-h reperfusion phase in the absence of NOi,
attesting to a sustained treatment benefit. Extension of NO
inhalation into the reperfusion phase further reduced
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AAR, indicating that prolonged NO inhalation during
both ischemia and reperfusion may have additive thera-
peutic effects. Inhaled nitric oxide effects were blocked
by sGC inhibition, confirming that improvement of
myocardial function and viability was mediated via the
NO–sGC–cGMP axis. Mimicking of the NOi-induced
increase in systemic nitrite levels by intravenous nitrite
replicated the beneficial effects of NOi, suggesting nitrite
as a putative biocarrier of NO activity.

While NOi was originally considered to act exclu-
sively in the lung owing to its short half-life in vivo,
several studies have demonstrated extrapulmonary effects

of NOi such as increased cerebral blood volume in pigs
[30], and increased forearm blood flow in healthy human
volunteers [31]. These effects have been attributed to the
formation and transport of bioactive NO carriers with the
circulating blood which may occur in the form of S-ni-
trosated proteins [32] and in particular as nitrite which is
present in relative abundance in both blood and tissue
[33]. Circulating nitrite may again release NO at low
oxygen tension owing to the oxygenation-dependent
function of hemoglobin as a nitrite reductase [34]. As a
result, increased amounts of circulating nitrite as gener-
ated by NOi will release NO and induce vasodilation
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preferentially in areas of tissue hypoxia. In murine and
ovine stroke models, we recently provided proof-of-
principle for this NOi-induced Robin Hood effect and
thus identified NOi as a promising early intervention
strategy in tissue ischemia [5].

Here, we show that this approach is equally beneficial
in experimental AMI, in that NOi at a clinically relevant
concentration of 50 ppm prevented the progressive decline
of left ventricular function and systemic perfusion, and

reduced AAR and IS. In line with the reported Robin Hood
effect in ischemic stroke, the vasodilatory effect of NOi in
ischemic myocardium, evident as a decrease in AAR, was
not associated with a decrease in total peripheral vascular
resistance (data not shown) and increased rather than
reduced systemic arterial pressure. However, owing to
methodological constraints in the beating rodent heart, the
specificity of the vasodilatory effect for the ischemic area
that is characteristic for the Robin Hood effect can at this
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Fig. 5 Nitrite infusion iterates
the protective effect of NO
inhalation. a Nitrite levels were
determined by
chemiluminescence in rat
plasma obtained before or 2 h
after induction of AMI in rats
receiving inhaled NO (50 ppm;
I (NO)) or room air (I (control)).
*P \ 0.05 versus I (control),
n = 8 animals each. b Nitrite
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stage not be spatially resolved. Notably, the observed
hemodynamic stabilization is in line with previous data
attesting to the clinical safety of NOi in patients with AMI
and associated cardiogenic shock where NOi did not
aggravate systemic arterial hypotension and in contrast
increased cardiac index [35].

In line with the proposed role of nitrite as a bioactive NO
carrier, NOi increased circulating nitrite levels by sixfold,
and elevation of plasma nitrite to comparable levels by
intravenous nitrite infusion replicated the effects of NOi.
While this finding does not preclude a contribution of other
bioactive NO-carriers in blood, it suggests a critical role for
nitrite in this scenario. Notably, nitrite has previously
proven protective in animal models of ischemia-reperfu-
sion including the heart, liver, and brain [25, 36, 37]. Yet in
contrast to the concept of increased collateral perfusion
during ischemia these effects were at large attributed to
cytoprotective effects during reperfusion due to an
NO-dependent modulation of mitochondrial reactive oxy-
gen species production [24–26]. Accordingly, nitrite
administration in these studies was either timed to the onset
of reperfusion [24, 25, 36, 37], or nitrite was given pro-
phylactically as a dietary supplement [25, 38, 39]. In
contrast, the present study was designed to specifically
deliver NO (or nitrite) during ischemia with the declared
aim to exploit the proposed Robin Hood effect. The effec-
tiveness of this approach was evident in that NOi caused a
marked reduction in AAR, thus directly demonstrating
improved perfusion of the myocardium surrounding the
infarct core. This effect accounted largely, albeit not
exclusively, for the decrease in IS which was 41 % larger
than would be expected from the 22 % reduction in AAR
alone, suggesting that aforementioned cytoprotective
effects of nitrite may have added to the beneficial effect.

While restriction of NO inhalation to the ischemic
interval could not prevent subsequent reperfusion injury
as indicated by the parallel decline in hemodynamic
parameters in both the NOi and the corresponding control

group during reperfusion (Fig. 2), the benefits gained by
NO inhalation during the period of ischemic injury were
largely preserved during subsequent reperfusion. This
finding attests to the fact that bridging of the ischemic
interval by NOi may provide long-lasting benefits in AMI,
which could be therapeutically supplemented by addi-
tional interventions targeted specifically at the reperfusion
phase. Hemodynamic effects of NO inhalation during
reperfusion were largely equipotent to those of NOi dur-
ing ischemia, a finding that is in line with previously
reported beneficial effects of NOi during myocardial
reperfusion that have been attributed to anti-inflammatory
and anti-aggregatory effects of NO [27, 28, 40]. However,
reductions in AAR, IS, and the IS/AAR ratio were more
prominent when NO was delivered during ischemia rather
than reperfusion. Myocardial protection was further
enhanced when NO was administered continuously, a
finding that is in line with the different proposed mech-
anisms of action during ischemia (improved collateral
perfusion) and reperfusion (anti-inflammatory and -ag-
gregatory) that may provide synergistic benefits. The fact
that the sGC inhibitor ODQ completely prevented the
effect of NOi confirms that NOi conferred its beneficial
effects by stimulation of the sGC–cGMP pathway.

The present data identify a protective effect of NOi in
myocardial ischemia and reperfusion which—in contrast
to existing paradigms—focuses on the ischemic rather
than the reperfusion phase. Inhalation of this clinically
approved gas may be rapidly implementable as a first-line
interventional strategy with the dual-pronged approach to
either prolong cell survival in the AAR up to the time of
interventional reperfusion, or to reduce total IS in cases
where timely revascularization is not feasible.
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