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Abstract Introduction: Acetyl
salicylic acid (ASA) and nonsteroidal
anti-inflammatory drugs (NSAIDs)
may have potential as adjunctive
agents for sepsis. Materials: This
review considers the large body of lit-
erature that indicates a basis for sepsis
therapy with ASA and suggests an
agenda for future intervention studies
in sepsis prevention and treatment.
ASA and NSAIDs have beneficial
effects in numerous experimental
models of sepsis. Low doses of ASA of
100 mg/day or less trigger synthesis of
lipoxins that are anti-inflammatory and
aid in resolution of inflammation.
Higher doses of ASA and NSAIDs act
to reduce NF-jB stimulation and
inhibit numerous septic pathways.

While a previous randomised con-
trolled trial of ibuprofen failed to show
a reduction in mortality in sepsis, it did
reduce clinical manifestations of sep-
sis. More recent observational studies
have shown reduction in sepsis or
acute lung injury leading to lower
mortality in ICU patients treated with
ASA. Conclusions: Low-dose ASA
appears to be beneficial in the preven-
tion and treatment of sepsis and SIRS.
If proven, this intervention would have
a major, cost-effective impact on sep-
sis care.
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Introduction

Acetyl salicylic acid (ASA) or aspirin has had a profound
effect on human health since its discovery in 1897 [1].
This nonspecific cyclo-oxygenase (COX) inhibitor is one
of the most widely used drugs in the world because of its
potent vascular disease prevention [2]. ASA contributes to
systemic signalling in plants in response to parasitic
invasion acting to limit infection severity [3].

ASA and other non-steroidal anti-inflammatory drugs
(NSAIDs) have beneficial actions on inflammatory path-
ways contributing to sepsis. Low doses of ASA
(75–81 mg/day) trigger lipoxin synthesis [4], mediating
both anti-inflammatory and inflammation-resolving
effects [5]. Additionally, the NF-kappaB (NF-jB) cellular
signalling pathway can be inhibited by ASA and NSAIDs
[6].

The full range of therapeutic effects of ASA in sepsis is
unknown. NSAIDs were shelved as agents for the therapy of
sepsis because of the negative result of the single random-
ised controlled trial in this area [7]. ASA has activity against
numerous cellular pathways and cytokine mediators of
sepsis, and demonstrated benefits in animal models with
treatment after establishment of sepsis or tissue injury.
Human pharmacokinetics show pharmacological levels
achieved with safe doses. Finally, numerous observational
studies suggest benefits of ASA in sepsis.

ASA triggers lipoxins, reducing and resolving
inflammation (Fig. 1)

Lipoxin A4 is a natural lipid mediator that actively alters a
variety of inflammatory processes including nitric oxide
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production [8], the inhibition of superoxide production by
neutrophils and prevention of neutrophil/endothelial inter-
actions (reviewed in [5]). ASA-triggered 15-epi-lipoxin A4
(ATL) has the same activity as lipoxin A4 [9]. ASA is the only
NSAID that can directly acetylate the COX2 site in endo-
thelial and epithelial cells to induce the formation of ATL.

Lipopolysaccharide (LPS)-stimulated polymorphonu-
clear leukocytes (PMNs) exhibit delayed apoptosis
contributing to ongoing inflammation in sepsis [10]. PMN
apoptosis was reinstated by the addition of pharmacolog-
ical concentrations of ASA and was mediated through both
ATL production [11, 12] and NF-jB inhibition [13],
resulting in a reduction in proinflammatory cytokines [11].
ATL also reduces the secretion of TNF-alpha by T lym-
phocytes [14]. Importantly, such ATL-mediated actions
are both anti-inflammatory and contribute to the resolution
of the sepsis cascade. Recent studies also demonstrate that
ASA triggers synthesis of resolvins, a novel class of lipid
mediators with activities that resemble ATL [5].

Salicylate and NSAID effects on inflammatory
pathways, particularly NF-jB pathway modulation

Investigators searching for potential antitumor effects of
ASA determined its ability to inhibit NF-jB activation, an

anti-inflammatory pathway additional to COX inhibition.
NF-jB contributes to activation of genes involved in cell
cycle control (cyclin-D1) [15], inflammation (TNF-alpha,
IL-6, COX) [6] and coagulation (tissue factor, TF) [16].
For example, there is a dose-dependent reduction in
NF-jB gene transcription seen in LPS-stimulated human
monocytes treated with salicylates and NSAIDs [17].

Cellular stimulation by various noxious stimuli, like
tissue damage, infection or cytokines, releases NF-jB
from binding to its inhibitory cytoplasmic protein com-
plex, IjB, allowing NF-jB to translocate to the cell’s
nucleus and transcribe genes as above. Salicylates and
NSAIDs inhibit NF-jB activation by blocking ATP
binding and phosphorylation of the cellular kinase IKK-b
[18], preserving expression of IjB [6]. It has been shown
that ASA is a less potent inhibitor of NF-jB activation
than many NSAIDs and other unrelated drugs including
tamoxifen and curcumin [15]. ASA’s IC50 for inhibition
of TNF-alpha-induced NF-jB activation is 5.67 mM,
10-fold less potent than indomethacin and 500 times less
potent than the anti-estrogen agent, tamoxifen [15].

The in vitro ASA concentration required for COX
inhibition is 1,000-fold less than the dose required for
NF-jB inhibition [15]. Previous authors considering the
potential of ASA as an NF-jB inhibitor in critical care
therapeutics have raised concerns that potentially toxic,
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Fig. 1 Pathways and effects of aspirin-triggered lipoxin synthesis.
Aspirin promotes the generation of 15R-hydroxyeicosatetraenoic
acid (HETE) from arachidonic acid via the acetylation of COX-2.
HETE is rapidly metabolised through the action of 5-lipoxygenase
(5-LOX), leading to production of 15-epi lipoxin A4. This aspirin-
triggered lipoxin (ATL) pathway mirrors classic lipoxin synthesis
and function. ATL then mediates anti-inflammatory effects via
reduced proinflammatory cytokines formed directly by stimulated

lymphocytes as well as effects on phagocytes that contribute to
additional pro-resolution effects on inflammation. Inhibition of
plasma-derived growth factor (PDGF), epidermal growth factor
(EGF) and leukotriene D4 (LTD4)-mediated signalling in neutro-
phils leads to reduced migration and promotes apoptosis while
increasing phagocytosis in macrophages. The combined effects
promote resolution of inflammation
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conventional anti-inflammatory doses are required [19].
However, low doses of ASA are required to produce
ATL-mediated anti-inflammatory effects [9].

Salicylates block some of the microbial mediators
of sepsis

Additional benefits of ASA therapy in sepsis may arise from
demonstrated inhibition of prominent microbial mediators of
sepsis particularly in gram-positive infection. Salicylic acid
(SA), ASA’s major metabolite, has been shown to exert its in
vitro effects on S. aureus virulence through hyper-activation
of the stress response regulon, sig B [20, 21]. This results in
reduced expression of at least two staphylococcal structural
genes crucial to pathogenesis, hla (the a-toxin gene) and
fnbA (a major fibronectin-binding adhesin) [22, 23]. As ASA
and NSAIDs reduce NF-jB activation these drugs may have
profound effects in endotoxemia due to gram-negative sep-
sis. Cell-associated bacteria like rickettsia also activate
NF-jB, which when blocked by ASA, attenuated vascular
endothelium infection [24].

Staphylococcus aureus infective endocarditis (IE) may
be a condition for which ASA has specific effects on
microbial pathogenesis leading to improved patient out-
comes. Recent insights into IE pathogenesis suggest how
the presence of ASA in the early stages of IE may reduce
the extent of valvular and perivalvular infection in IE.
ASA-mediated, platelet-dependent effects include a
reduction in platelet aggregation, yielding smaller sterile
vegetations, the platform upon which IE is initiated [25].
FnbA is a key determinant in both the initial vegetation
colonization and persistence stages in IE [22, 23]. In
contrast, hla is important in the post-colonization, pro-
gression phases of this infection [26].

In experimental animal models of staphylococcal IE,
improved microbiologic and embolic outcomes are seen,
especially when ASA is provided to animals prior to their
infectious challenge [27] or when S. aureus is pre-
exposed to ASA prior to IV challenge [25]. Importantly,
improved microbiologic and embolic outcomes have also
been seen in animals with staphylococcal IE given ASA
after the induction of experimental IE [21, 25]. Recent
human cohort study data [28, 29] indicate the benefits of
ASA in S. aureus IE. Concerns relating to an increased
risk of major bleeding in ASA-treated patients with
S. aureus IE [30] have not been proven to date.

The role of activated platelets in sepsis

Activated platelets contribute to sepsis pathogenesis with
benefits inherent in ASA therapy. Early animal models of
endotoxemia showed prolonged survival time in ASA

pretreated animals through antiplatelet effects [31]. Organ
sequestration of activated platelets plays an important role
in sepsis, and pretreatment with ASA 30 min before
endotoxin challenge in sheep reduced accumulation in the
lungs and liver [32]. Platelet sequestration was not pre-
vented, however, by indomethacin pretreatment in
endotoxin challenged rats [33]. The thrombocytopenia
commonly seen in patients with sepsis may similarly be
contributed to by sequestration of platelets, as has been
demonstrated in human lungs, liver and intestines [34,
35]. Sepsis induces changes in platelet aggregation
although reported changes have been inconsistent,
potentially as a result of the different models studied [36].
In vitro examination of Streptococcus pneumoniae-
induced platelet aggregation showed that this was
dependent on toll-like receptor 2 [37].

Antiplatelet agents other than ASA may also improve
sepsis mediators as clopidogrel given 5 days before
endotoxin challenge reduced TNF-alpha and IL-6 levels
in rats [38], and prevented thrombocytopenia in a mouse
polymicrobial sepsis model [39].

Isolated organ and whole animal models showing
the benefit of ASA and NSAIDs on organ specific
and general effects of sepsis

Bacterial virulence determinants contribute to depression
of cardiac function in septic shock. Staphylococcal a-
toxin is known to reduce myocardial function, with this
effect being prevented by indomethacin (100 lmol/l) or
ASA (500 lmol/l) [40]. When isolated rat hearts were
exposed to LPS, increases in myocyte-derived TNF-alpha
induced a reduction in cardiac contractility but not coro-
nary perfusion. Indomethacin was able to partially reverse
this TNF-alpha-related impairment in myocardial func-
tion [41].

Alveolar macrophages (AM) become activated during
experimental septic shock with an increase in TNF-alpha
production via the NF-jB pathway. Macrophage inhibi-
tory protein-2 (MIP) production is also increased in
activated AM, leading to increased PMN migration into
the pulmonary interstitium. NF-jB inhibition reduced
both TNF-alpha and MIP production by LPS-stimulated
rat AMs [42, 43]. Staphylococcal a-toxin also produces
ventilation perfusion mismatch in perfused rabbit lungs
[44]. This exotoxin-mediated process was inhibited by
ASA. Importantly the vasculature changes resulting in
pulmonary hypertension could also be potentiated by
priming with endotoxin [45]. Activation of AM by LPS
stimulation led to pulmonary vasoconstriction in a per-
fused rabbit lung model [46]. Here, rabbit lungs primed
with LPS then exposed to arachidonic acid showed up to
threefold increases in pulmonary artery pressure. This was
completely reversed by pre-incubation with 1 lmol ASA.
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Resolution of LPS-induced acute lung injury (ALI) in
mice was improved by treatment with ATL administered
at the height of the inflammatory response [47]. ATL has
been shown to be effective in treating as well as pre-
venting ALI (carrageenan and LPS-induced) in mouse
models [12, 47]. COX-2 expression has been shown to
mediate recovery of ALI in mice via reduced leukocyte
recruitment and resolution of epithelial integrity. Selec-
tive COX-2 inhibition blocked these effects, while non-
selective COX inhibition via ASA did not [48].

Many animal models of sepsis have shown beneficial
effects of ASA or NSAIDs, particularly with ibuprofen
[49–52]. Rat-endotoxemia models showed that pretreat-
ment with ASA [51] substantially reduced mortality. In an
ovine endotoxic shock model, ibuprofen given before and
after endotoxin infusion reduced early stage hypovolemia
and hypoxia without effecting late changes [53]. Another
canine endotoxic shock model mirrored the findings of
isolated rat hearts described earlier as ibuprofen was shown
to protect against depression of the cardiac index [52].
Finally, in a rabbit group B streptococcal shock model,
ibuprofen significantly improved short-term survival [54].

Not all animal model data on NSAIDs in experimental
sepsis indicate a beneficial role. COX-2 inhibition
increased mortality in a rodent CLP model, whereas it
improved survival in an endotoxemia model [55]. The
murine CLP model has been shown to have a different
cytokine profile from endotoxemia models with more
prolonged elevation of TNF-alpha, IL-6 and MIP-2 [56].
These differences may account for conflicting results with
NSAID intervention in the different models described
above.

Pharmacokinetic data relating to low-dose ASA

The in vitro concentrations required to produce NF-jB
inhibition indicate that 100 mg ASA/day cannot mediate
sepsis outcomes via this pathway. However, multiple
clinical trials in healthy hosts have shown that 81 mg of
ASA per day is sufficient to increase ATL [57, 58]. The
ASA concentration required in vitro to achieve 50 %
inhibition of NFjB is 5.67 mM [15]. The steady-state
ASA blood concentration in healthy human volunteers
following 7 days of 160 mg ASA daily is only 0.31 mM
[59]. Maximal concentrations after 7 days of the same
dose were 2.99 mM [59]. Maximal ASA concentrations
seen after a single dose of 325 mg enteric-coated ASA
were 3.99–7.92 mM [60]. First order kinetics apply to
ASA up to doses of 400 mg [61]. The pharmacokinetics
and pharmacodynamics of ASA in critically ill patients
has not been defined as yet, but a prospective trial is
underway. (http://www.anzctr.org.au/trial_view.aspx?id=
343088). As ASA absorption is rapidly achieved from the
stomach, reduced splanchnic blood supply consequent on

sepsis and hypotension will impact relatively minimally
[62].

Studies of ASA and NSAIDs in inflammation
in humans

A recent human endotoxin challenge study showed that
high-dose ASA (425 mg bd) inhibited endotoxin-induced
changes in platelet plug formation [63]. Other human-
endotoxin challenge studies failed to show benefits of
ASA on different aspects of the sepsis cascade. LPS-
induced coagulation was not inhibited by ASA with no
reduction in thrombin formation or TF production [63,
64]. Expression of endothelial cell adhesion molecules
such as e-selectin and von Willebrand factor antigen that
recruit inflammatory cells were not reduced by pre-dosing
with 1,000 mg ASA [65]. Mean serum ASA levels in the
experimental subjects were *0.2 mM at the time of
endotoxin challenge [64, 65], which is substantially lower
than 5.67 mM ASA concentration shown to block NF-jB
activation in vitro [15], but clearly in the range required
for ATL activation. Interestingly, a placebo-controlled
human endotoxemia model study of ibuprofen use
showed TNF-alpha and IL-8 responses were significantly
higher in ibuprofen-treated subjects [66].

Two randomised controlled studies have shown that
low doses of ASA trigger ATL. These studies have both
been in healthy volunteers [57, 58]. The benefits of low-
dose ASA (75 mg) were recently illustrated using a
human skin blister model of inflammation in healthy
subjects [9]. In this model, low-dose ASA’s anti-inflam-
matory effect was due to reduced neutrophil migration
mediated by ATL synthesis and nitric oxide secretion.
Here, ATL was increased in blister fluid 24 h after ASA
dosing [9]. Other septic cascade pathways affected by
ATL have not been adequately explored.

Clinical experience of NSAIDs and ASA in sepsis
(Table 1)

A large-scale randomised controlled sepsis trial of ibu-
profen was performed involving septic patients treated
with 48 h of intravenous ibuprofen [7]. In the study,
ibuprofen treatment led to substantial reductions in sepsis-
induced prostacyclin and thromboxane excretion. Reduc-
tions in temperature, lactic acid levels and oxygen
consumption were also shown in the ibuprofen-treated
group. There was no significant improvement in the inci-
dence or duration of septic shock, but a non-significant,
3 % absolute reduction in mortality was found in ibupro-
fen-treated patients [7]. In a post hoc subgroup analysis of
the small group of patients who entered the study with
hypothermic septic shock and who had the highest
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mortality, ibuprofen was associated with a survival benefit
(36 % absolute risk reduction) [67]. Ibuprofen-treated
patients in the sub-analysis were significantly younger
than placebo-treated controls as there had been no ran-
domisation stratification for temperature [67].

The failure of the ibuprofen study in sepsis [7] pre-
dominantly relates to its small sample size based on
exaggerated estimates of reduction in mortality as it was
powered to show an unrealistic 35 % reduction in mor-
tality. Subsequent trials showing small mortality
improvements in sepsis have required far greater sample
sizes [68]. The study groups were well matched for dis-
ease severity [7]. Adequate therapy for proven blood
stream infection was provided in both groups, but there is
no quantitation of the suitability of treatment for non-
blood stream infection, which may have introduced a bias
between the study groups. The 2-day ibuprofen regimen
may also have been insufficient. As is a perennial issue in
sepsis trials, the inability to identify patients early in their
disease may have limited the effect of ibuprofen as the
effects of the established sepsis cascade may have been
too great to respond to COX inhibition. Lastly, with
subsequent knowledge of ATL’s inflammation-resolving
effects, it may be that ASA is a superior agent to ibu-
profen for management of sepsis.

A number of recent, observational studies have shown
potential benefits of ASA or anti-platelet drugs in patients
with sepsis. Septic ICU patients with no increased bleeding
risk were observed in a single-centre study to have lesser
mortality if they were treated with antiplatelet agents, most
commonly ASA [69]. A smaller series of patients with
community-acquired pneumonia was studied by the same
investigators, who showed reduced length of hospital stay
in those treated with antiplatelet agents [70]. Fears that
ASA or NSAIDs may predispose to severe sepsis do not
seem to be borne out [71]. A large cohort study of ICU
patients has shown an association between administration
of ASA to patients within 24 h of the onset of SIRS or sepsis
and reduced mortality. These patients had been treated with
ASA prior to hospitalisation [72]. These studies [69, 70, 72]
showed that 25–37 % of patients in the ICUs examined
were administered ASA or antiplatelet agents.

Recent studies have concentrated on the possibility
that ASA may prevent ALI in patients at high risk for this
manifestation of sepsis or trauma. A population-based
study involving a tightly defined group showed reduced
ALI and ARDS in patients admitted to the medical ICU
who had been receiving ASA [73]. A substantially larger
study of a more heterogeneous ICU population from 22
US and Turkish hospitals failed to confirm this beneficial

Table 1 Summary of clinical studies on associations between SIRS/sepsis outcomes and acetyl salicylic acid (ASA)/NSAID/antiplatelet
agent use

Study design Comparison Sample
size

Outcomes associated with
ASA/NSAID/antiplatelet treatment

References

Randomised controlled trial
Multicentre, ICU trial, USA.

Patients with sepsis
Indomethacin 10 mg/kg IV qid

versus placebo for 48 h
455 No significant reduction in 30-day

mortality. No adverse effects of
ibuprofen

[7]

Observational studies
Single centre, Germany

Consecutive ICU admissions
Antiplatelet agents (25 % of cohort)

versus none. ASA \160 mg/day
was antiplatelet agent in 80 %

615 Reduction in death during ICU
admission. Odds ratio 0.19 (95 % CI
0.12–0.33) on multivariable analysis

[69]

Single centre, Germany.
Consecutive community
acquired pneumonia hospital
admissions

Antiplatelet agents (20 % of cohort)
versus none. ASA in 84 %

224 Reduced hospital length of stay. Trend
to reduced need for ICU admission

[70]

Single centre, Australia.
Consecutive ICU admissions

ASA versus none. 37 % cohort on
ASA, \150 mg in 96 %

7,945 Propensity analyses showed reduced
mortality among patients with SIRS
-6.2 % (-9.5 to -3.5 %); with
sepsis -14.8 % (-18.9 to -8.6 %).
Increased risk of renal injury 3.3 %
(2.5–5.0 %)

[72]

Single centre, USA.
Consecutive ICU admissions

Antiplatelet (49 % of cohort) agents
versus none. ASA in 90 %

161 Reduced acute lung injury in patients
with at least one major risk factor for
condition. Odds ratio 0.34
(0.13–0.88)

[73]

Multicentre, USA and Turkey.
Consecutive ICU admissions

ASA (25 % of cohort) versus none 3,855 No reduction in acute lung injury after
propensity analysis for ASA use
performed

[74]

Multicentre, USA. Consecutive
ICU admissions

Statin and ASA versus ASA alone 575 ASA potentiated effect of statins in
reducing acute lung injury and sepsis

[75]

The observational studies all involved patients who had been taking the agents listed prior to hospitalisation
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association, although a trend to reduced ALI remained in
ASA-treated patients [74]. The apparent beneficial effects
of statins in preventing sepsis and ALI in another ICU
cohort were both potentiated by concomitant ASA use
[75]. Studies to date, including the ibuprofen trial [7],
provide evidence of clinical equipoise for the effect of
ASA in critically ill patients.

There may be deleterious effects of salicylates or
NSAIDs in sepsis. Renal impairment is a common and
serious side effect of NSAID use [76]. Increases in
bleeding due to salicylates and ASA are also of major
concern although they are not shown to increase follow-
ing low doses of ASA. For instance, there was no overall
increase in gastrointestinal bleeding risk in large-scale
primary prevention studies involving ASA in participants
taking B70 mg/day [77]. It is difficult to be precise about
the risk of bleeding in ASA-treated critically ill patients
because of a paucity of data.

Potential treatment strategies for prevention
or treatment of sepsis

The substantial body of literature reviewed from cellular,
animal models and the trends from human studies suggest

that ASA and NSAIDs may have beneficial roles in sepsis
and that further study is warranted. Sepsis prevention and
reduction of infectious disease mortality may be shown in
planned analysis of current ASA primary prevention
studies [78]. Targeted prevention could also be consid-
ered in high-risk populations such as hospital inpatients
with the aim of reducing the frequency and severity of
nosocomial sepsis. Finally, ASA may be shown in future
interventional trials to be beneficial in treating established
sepsis. The demonstrated impact of low-dose ASA on
human models of inflammation [9] suggests that this
agent rather than other NSAIDs is probably the best agent
to consider for sepsis interventions. ASA alone stimulates
ATLs with their anti-inflammatory and pro-resolution
effects on sepsis [5], avoiding the greater toxicity of
NSAIDs in the critically ill and potential deleterious, pro-
inflammatory effects of selective COX-2 inhibition [48].
Properly targeted treatment with low-dose ASA could
hold promise as a relatively safe, extremely cheap agent
to use in sepsis even if it is shown to have only modest
overall clinical benefit.
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