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Abstract Objective: To examine
the effect of intratracheal heparin
instillation on Legionella pneumo-
phila-related acute lung injury (ALI)
and systemic dissemination. Design:
Prospective, controlled experimental
study. Setting: University research
laboratory. Interventions: A/J mice
received 5 µg of sulfated heparin
intratracheally co-instilled with 106

or 108 colony-forming units (CFU)
of a virulent isolate of L. pneumo-
phila. Measurements and results:
ALI was assessed in control groups
(PBS and PBS-heparin) and on
days 1, 2 and 3 post-infection, in
terms of the lung wet-to-dry (W/D)
weight ratios and of lung endothe-
lial permeability to radio-labeled
albumin (Perm-I125). Lung bacterial
loads were measured and systemic
spread was assessed by blood and
target organ culture. The alveolar
inflammatory response was eval-

uated by measuring the cytokine
levels (TNF-α, IFN-γ, IL-6 and
IL-12p70) in bronchoalveolar lavage
fluids (BALF). Co-instilled hep-
arin improved mouse survival after
the 108 CFU challenge (p < 0.01).
On day 2, heparin co-instillation
significantly reduced the W/D ra-
tio and Perm-I125 (p < 0.01 and
p < 0.001 respectively), improved
lung bacterial clearance (p < 0.001),
prevented systemic dissemination
(blood, liver, spleen, kidneys and
brain cultures, all p < 0.05) and
significantly increased IFN-γ and
IL-12p70 levels in BALF (p < 0.05).
Conclusions: Heparin co-instillation
during intratracheal L. pneumophila
challenge has a protective effect on
the alveolar–capillary barrier and
prevents bacterial dissemination.
These results tend to confirm the
competitive inhibition by heparin of
L. pneumophila attachment to lung
epithelium in vivo, and point to the
possible involvement of a heparan-
sulfate adhesin in L. pneumophila
binding to pneumocytes.

Keywords Acute lung injury ·
Heparin · Pneumonia · Legionella
pneumophila · Legionnaires’ disease
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Introduction

Legionella pneumophila, a Gram-negative facultative in-
tracellular pathogen, is the causative agent of legionellosis.
L. pneumophila causes legionnaires’ disease, a severe
form of pneumonia, and Pontiac fever, a milder illness. An
estimated 8,000 to 18,000 people contract legionnaires’
disease in the USA every year [1]. When reaching lung
alveoli after inhalation in aerosols, L. pneumophila at-
taches to and is internalized by alveolar macrophages
and epithelial cells [2–5]. L. pneumophila then replicates
within host cells in a parasitic relationship. The hallmarks
of human bacterial pneumonia are increased alveolar
permeability with edema and gradual impairment of gas
exchanges due to alveolar–capillary barrier injury; these
changes are collectively referred to as acute lung injury
(ALI) [6, 7]. ALI can be studied in murine models by mea-
suring functional parameters such as lung extravascular
water, alveolar – capillary membrane permeability and the
lung inflammatory response [8, 9]. Cytokine production
during L. pneumophila infection has been characterized as
a T1 polarization [10–14].

In the susceptible hosts, pathogens adhere to target
tissues in order to escape mechanical clearance and to
establish an infectious focus from which dissemination
may occur. A number of saccharides can inhibit L. pneu-
mophila attachment to the human respiratory cell line
A549 [15, 16]. Polymeric sulfated saccharide heparin
is among the most efficient competitive inhibitors of
L. pneumophila attachment to A549 cells [15], suggesting
that bacteria bind to sulfated glycosaminoglycans borne
by trans-membrane proteoglycans (PGs) at the surface
of host alveolar pneumocytes. This attachment involves
a specialized microbial surface-exposed adhesin [17].
Adhesion to and subsequent invasion of pneumocytes
could be an important pathway of ALI development and
bacterial dissemination in L. pneumophila pneumonia
and could thus represent an attractive therapeutic tar-
get. To test the hypothesis that pneumocyte adhesion
is central to the pulmonary pathogenicity of L. pneu-
mophila, we examined whether inhibition of bacterial
adhesion to lung epithelia through the use of a known
competitive inhibitor, sulfated heparin, would reduce
L. pneumophila-related ALI, prevent extrapulmonary
bacterial dissemination and modulate host cytokine
responses.

An experimental A/J mouse model of L. pneumophila
lung infection was set up for this study. L. pneumophila-
induced ALI was studied in mice that received a single
intratracheal dose of heparin by measuring the lung
wet-to-dry lung tissue weight ratio and by assessing alveo-
lar–capillary barrier permeability. Bacterial clearance was
assessed by measuring the lung bacterial load over time.
Extrapulmonary dissemination was assessed by testing
blood and target organs (liver, spleen, kidneys and brain)
for L. pneumophila. The cytokine response was assessed

by measuring IFN-γ, TNF-α, and IL-6, -10, and -12p70 in
bronchoalveolar lavage fluid.

Materials and methods

Animals

Female pathogen-free 8- to 9-week-old A/J mice (Harlan
UK Laboratory, Oxford, UK) were used for all experi-
ments. They were housed in the Lille University Animal
Care Facility and provided with food and water ad li-
bitum. All the experiments were approved by the Lille
Institutional Animal Care and Use Committee.

Bacteria and culture conditions

The clinical strain L. pneumophila serogroup 1 strain
Lens wild type was kindly provide by the French National
Reference Center for Legionella. This epidemic strain,
which was recently sequenced, caused the largest outbreak
of community-acquired legionnaires’ disease in France
(2003–2004), with a high case fatality rate (21%) [18, 19].
It was grown on buffered charcoal-yeast extract (BCYE)
agar with L-cysteine (bioMerieux, Marcy l’Etoile, France)
for 48 h. For mouse challenge, colonies were resuspended
in sterile phosphate buffered saline (PBS) at 2 × 107

colony-forming units (CFU)/ml or 2 × 109 CFU/ml
according to the group.

Preparation of a heparin instillate

Lipopolysaccharide-free sulfated heparin sodium salt
with an average molecular weight of 6,000 Da extracted
from porcine intestinal mucosa (Sigma-Aldrich, USA)
was added to PBS and to PBS bacterial suspension at
a concentration of 100 µg/ml corresponding to 5 µg of
heparin per mouse, 30 min prior to instillation.

Mouse challenge

A/J mice were infected by intratracheal (i.t.) inoculation,
in dorsal recumbence, after sevoflurane anesthesia (Servo-
rane™, Abbott, UK). A 24-G animal feeding needle was
used to instill 50 µl of bacterial suspension (106 or 108 bac-
teria per mouse). Negative control mice received 50 µl of
sterile PBS or PBS-heparin in the same conditions.

Bacterial cultures

Immediately after the instillation (T0) and on days 1, 2
and 3, groups of mice were exsanguinated by intracardiac
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puncture. The lungs, liver, spleen, kidneys and brain were
aseptically removed. The organs were homogenized in
sterile containers with 1 ml of sterile PBS, serially diluted,
and cultured on Legionella BCYE agar plates for 3 days at
37°C. The results were expressed in CFU/ml.

Bacteria were also quantified 5 h post-infection. Mice
were killed humanely, and bronchoalveolar lavage (BAL)
was performed by cannulating the trachea with a 22-G
catheter and 1.5 ml of sterile PBS. The BAL samples were
filtered (5 µm pore size) to eliminate resident phagocytes.
They were then serially diluted and cultured on Legionella
BCYE agar plates for 3 days at 37°C.

Evaluation of alveolar–capillary barrier injury

Albumin flux across the endothelial barrier was mea-
sured with a method initially described for use in a rat
model [20]. Briefly, 0.5 ml of 125I-labeled bovine serum
albumin (1 µCi) (HAS; CIS Biointernational, Gif-sur-
Yvette, France) was injected intraperitoneally 2 h before
intraperitoneal injection of pentobarbital sodium (Sanofi,
Libourne, France), followed by sternotomy, exsanguina-
tion and lung removal. Radioactivity and the hemoglobin
(Hb) concentration were measured in blood. The lungs
were weighed and radioactivity was counted prior to
homogenization and centrifugation (Polytron, PT 1600E;
Fischer Bioblock Scientific, Switzerland). The Hb content
of the supernatant was also measured. Blood and lung-
homogenate samples were then desiccated to calculate
extravascular lung water. The wet-to-dry weight ratio
(W/D) of each pair of lungs was determined from the
difference between the wet weight and the dry weight
(measured after 7 days in a 37°C incubator) [8]. A perme-
ability index was used to express the permeability of the
alveolar–capillary membrane [20].

Cytokine levels in BAL fluid

At T0 and on days 1 and 2 post-inoculation, groups
of mice were killed humanely and their lungs were
lavaged with two 0.8-ml aliquots of sterile PBS. BAL
fluid was filtered and immediately frozen at –80°C after
collection. It was then concentrated down to 50 µl by
ultrafiltration on a Millipore Ultrafree-0.5 filter device
(Biomax-5 membrane). BAL cytokines were quantified
with BD™ Cytometric Bead Array (CBA) technology
(Becton-Dickinson), which employs a series of particles
with discrete fluorescence intensities to simultaneously
detect multiple soluble analytes in a small sample volume.
The BD™ CBA Mouse Inflammation Kit was used as
recommended by the supplier to quantitatively measure
gamma interferon (IFN-γ), tumor necrosis factor alpha
(TNF-α), and interleukin-6 (IL-6) and -12p70 (IL-12p70)
levels in the different samples. Briefly, each concentrated

BAL sample was incubated for 2 h at room temperature in
the presence of mixed antigen-coupled beads (50 ml) and
Phycoerythrin Detection Reagent (50 ml), followed by
two washes. Bead fluorescence was then measured using
the BD FACSArray™ Bioanalyzer. The median relative
fluorescence intensities were converted into cytokine
concentrations by using nine-point calibration curves
created by serially diluting cytokine standards.

Experimental groups

The experimental groups were: the controls instilled with
sterile PBS or PBS containing 100 µg/ml of heparin (n = 5
per group) and the infected groups challenged i.t. with
L. pneumophila strain Lens with or without 100 µg/ml of
co-instilled heparin (n = 8 per group). Groups of animals
were killed humanely at T0 and on days 1, 2 and 3. All
the experiments were conducted in duplicate, except for
bacterial load assay in blood and peripheral target organs.

Statistical analysis

Mortality rates were compared between groups by using
the log-rank test with Kaplan–Meier analysis. Bacterial
loads in blood and organs were compared with the χ2

test (with Yates correction if necessary) and BAL fluid
culture results with the Mann–Whitney U test. Quantita-
tive parameters were compared using two-way analysis
of variance (ANOVA). Post hoc comparisons used the
Bonferroni’s test (Version 4.00, Graph Pad Prism, USA).
Data are expressed as means ± standard error of the
mean (SEM). P values below 0.05 were considered as
significant.

Results
Effect of co-instilled heparin on mouse survival

A set of in vitro work demonstrated that heparin in-
hibits L. pneumophila adhesion to human bronchial and
alveolar cell lines [15, 16]. This effect was observed
in a concentration-dependent manner with a maximum
efficacy at 100 µg of heparin in the medium culture (data
not shown). For this reason, this dose only was tested
in the study, which was not designed to be an in vivo
dose-response study.

Survival was recorded for 7 days after i.t. challenge
with non-lethal and lethal doses of L. pneumophila
(106 and 108 CFU respectively) (Fig. 1). The survival
rate on day 7 was 100% with the non-lethal challenge,
regardless of heparin co-instillation. With the lethal
challenge, the survival rate on day 7 was 0% without hep-
arin co-instillation and 30% with heparin co-instillation
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Fig. 1 Effect of co-instilled heparin on mouse survival during 7 days
after i.t. instillation of a non-lethal challenge (106 CFU/mouse) and
a lethal challenge (108 CFU/mouse) of L. pneumophila. N = 10 mice
per group. **p < 0.01 vs. L.p Lens 108. The data were confirmed in
a replicate experiment

Fig. 2 Effect of co-instilled heparin on lung and BAL fluid bacte-
rial loads in L. pneumophila pneumonia. a The number of colony-
forming units (CFU) in lungs at T0 and days 1, 2 and 3. b CFU
were counted on BCYE plates in filtered BAL fluids collected 5 h

post-challenge. The data are means ± standard error (SE) (indicated
by error bars). N = 5 mice in control groups, n = 8 mice in infected
groups. ***p < 0.001 vs. L.p Lens+Hp, **p < 0.01 vs. L.p Lens. The
data were confirmed in a replicate experiment

Fig. 3 Effect of co-instilled heparin on L. pneumophila-related
alveolar–capillary barrier injury at days 1, 2 and 3 post-infection.
a evaluation of the wet-to-dry lung weight ratios (W/D).
b evaluation of endothelial permeability (EP) of the alveolar–
capillary barrier to 125I-labeled bovine serum albumin. The data

are means ± SE (indicated by error bars). N = 5 mice in control
groups, n = 8 mice in infected groups. **p < 0.01 vs. L.p Lens+Hp,
***p < 0.001 vs. L.p Lens+Hp, *p < 0.05 vs. L.p Lens+Hp. The
data were confirmed in a replicate experiment

(p < 0.01). Thus, co-instilled heparin improved the
survival after L. pneumophila challenge.

Effect of co-instilled heparin on lung and BAL fluid
bacterial loads

As previously described with L. pneumophila strain
Philadelphia [10], the number of bacteria in the lungs
increased exponentially until day 2 and started to decline
on day 3 (Fig. 2a). In heparin co-instilled mice, the lung
bacterial load tended to be lower than in L. pneumophila-
instilled mice on day 1 and the difference reached statisti-
cal significance on day 2 (p < 0.001). Lung counts started
to decline on day 3 in both groups. Thus, co-instilled
heparin increased L. pneumophila clearance from lungs.
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To examine whether heparin blocked L. pneumophila
primary adhesion to airway epithelial cells, filtered acel-
lular BAL fluid was obtained 5 h after instillation and
cultured. Bacterial counts were significantly higher in
co-instilled heparin mice than in L. pneumophila-instilled
mice (p < 0.05) (Fig. 2b).

Effect of co-instilled heparin on L. pneumophila-related
alveolar–capillary barrier injury

A dynamic time-course analysis of the extra-vascular
lung water and the protein flux across endothelial barrier
was performed from days 1 to 3 post-challenge with
L. pneumophila. Pharmacokinetics of heparin instilled
into the lungs in a liquid form are not well known, but
those of heparin inhaled into the lungs have been pub-
lished [21, 22]. Therefore, we deduced that the residual
amount of 5 µg of heparin in the lungs past 48 h was
likely to be negligible and we did not pursue the experi-

Fig. 4 Effect of co-instilled heparin on cytokine concentrations
(pg/ml) in bronchoalveolar lavage fluid (BALF) on days 1 and 2 of
L. pneumophila challenge. a TNF-α levels; b IL-6 levels; c IFN-γ
levels; d IL-12p70 levels. The data are means ± SE (indicated

by error bars). N = 5 mice in control groups and n = 8 mice in
infected groups. # p < 0.05 vs. L.p Lens+Hp, *p < 0.05 vs. L.p
Lens, ◦◦ p < 0.01 vs. Hp. The data were confirmed in a replicate
experiment

ments in the control heparin-instilled mice past this time-
point.

In L. pneumophila-instilled groups, the lung W/D
weight ratio doubled on day 2 post-challenge and started
to decline on day 3 (Fig. 3a). Heparin did not affect
this ratio in uninfected mice. In infected mice, however,
co-instilled heparin significantly attenuated the increase
on day 2 (p< 0.01).

Endothelial permeability measured after IP injection of
125I-labeled albumin increased threefold in the first 2 days
in L. pneumophila-instilled mice and started to decline
on day 3 (Fig. 3b). Consistently with former W/D results,
co-instilled heparin did not affect endothelial permeability
in uninfected mice. In infected mice, however, co-instilled
heparin significantly attenuated the increase in endothelial
permeability on days 2 and 3 (p < 0.001 and p < 0.05
respectively).

Thus, alveolar–capillary barrier injury was roughly
halved on day 2 when heparin was co-instilled with
L. pneumophila, and no rebound effect was noted.
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Effect of co-instilled heparin on extrapulmonary
dissemination of L. pneumophila

In L. pneumophila-instilled mice, bacterial translocation
from the lungs was detectable on day 1 (Table 1). On
day 2, L. pneumophila culture was positive in the liver,
kidneys and spleen (87%, 80% and 71% respectively)
than in blood and brain (about 50% for both). Heparin
co-instillation roughly halved the rates of positive blood
cultures and prevented brain infection on day 1. On day
2, in heparin co-instilled mice, blood, liver, kidney spleen
and brain culture positivity rates were 4%, 20%, 10%,
30% and 0% respectively, representing a drastic L. pneu-
mophila growth restriction in this group (all p < 0.05
versus L. pneumophila-instilled group).

Effect of co-instilled heparin on lung proinflammatory
cytokine levels

On day 2, TNF-α production was significantly higher in
L. pneumophila-instilled group than in control heparin
and heparin co-instilled groups (p < 0.01 and p < 0.05
respectively) whereas no difference in IL-6 levels was
noted (Fig. 4a, b). IFN-γ and IL-12p70 levels increased
significantly more from day 1 to 2 in co-instilled heparin
groups than in heparin control and L. pneumophila-
instilled groups (for both cytokines p < 0.01 and p < 0.05
respectively) (Fig. 4c, d).

Thus, co-instilled heparin led to a dissociated pattern
of inflammation from day 1 to 2, with a minor increase in
the acute-phase cytokine TNF-α and a major increase in
the Th1 cytokines IFN-γ and IL-12p70.

Discussion

In this study, a single intratracheal dose of sulfated hep-
arin co-instilled with a virulent isolate of L. pneumophila
in A/J mouse lungs lowered the mortality rate, protected
the alveolar–capillary barrier, prevented systemic bacterial
dissemination and stimulated Th1 cytokine production.

To characterize the anti-adhesion effect of heparin, we
chose a bacterial inoculum of 106 cells per mouse, which
mimics fairly mild legionnaires’ disease [10]. A single
dose of heparin was instilled along with L. pneumophila
as uptake of this pathogen by host cells occurs within
minutes after entry into the lung alveoli [23].

A preliminary in vitro study showed differences in
the ability of some L. pneumophila mutants to attach
to macrophages and respiratory epithelial cells, indi-
cating that some of the mechanisms of attachment are
different [5]. The molecular mechanisms underlying
L. pneumophila invasion of respiratory epithelial cells,
which constitute more than 95% of the surface area of
the alveolar surface area, are poorly known, including the
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nature of the host receptor involved in a non-complement-
mediated uptake. Many microorganisms express adhesins
that bind sulfated glycosaminoglycans (GAGs) borne
by proteoglycans (PGs) at the surface of host epithelial
cells. Bacterial interaction with PGs facilitates epithelial
cell invasion by Neisseria gonorrhoeae and systemic
dissemination of Mycobacterium tuberculosis [24, 25].
L. pneumophila shares many traits with M. tuberculosis,
such as initial pulmonary infection, spread to other tissues,
and the use of professional alveolar phagocytes as a major
site of replication. Interactions with non-phagocytic cells
may also have an important role in the pathogenesis of
legionnaires’ disease. M. tuberculosis complex strains
produce at their surface a protein named heparin-binding
hemagglutinin adhesin (HBHA) [26]. Binding of M. tu-
berculosis to epithelial cells, but not to macrophages, can
be inhibited by anti-HBHA antibodies and by competition
with heparin, which is a highly acidic mucopolysaccharide
with sulfaminic bridges, suggesting that HBHA-mediated
adherence is specific for non-phagocytic cells [26]. In
vitro, heparin inhibited the adhesion of L. pneumophila
to human bronchial and alveolar cell lines by 93% and
60% respectively [15, 16]. These percentages suggest that
more than half of the epithelial cells receptors involved in
L. pneumophila attachment are heparan sulfate molecules.
The main consequence of the anti-adhesion effect of
sulfated heparin may be the trapping of “free” heparin-
coated forms of L. pneumophila unable to adhere to
airway epithelial cells in the alveolar spaces. Two findings
favor this hypothesis: first, filtered BAL fluids cultures
collected 5 h post-infection contained a larger number of
cultivable bacteria when heparin was co-instilled. The 5-h
time point was too early for L. pneumophila replication
to have occurred in alveolar macrophages. Second, the
amount of L. pneumophila released in the lungs during
the first 48 h was lower in heparin co-instilled mice than
in L. pneumophila-instilled mice. This could explain the
limited alveolar–capillary barrier damages in the presence
of heparin, as shown by a 50% decrease in extravascular
lung water and in endothelial permeability to radiolabeled
albumin. Heparin inhibition of L. pneumophila epithelial
adhesion might also explain the lower systemic spread
measured by blood and organ culture. Finally, the larger
amounts of IFN-γ and IL-12p70 in BAL fluid on day 2
may be related to the increased numbers of non-adherent
“free” forms of bacteria in the alveolar spaces of heparin-
treated animals. Indeed, IFN-γ and IL-12p70 are two Th1
cytokines involved in the host response to pathogens, and
particularly in restriction of bacterial growth and clearance

from infected sites [27–29]. The conjunction of all these
factors would tend to limit L. pneumophila pathogenicity
and dissemination, ultimately leading to improved animal
survival.

Although there are no studies in the specific context
of L. pneumophila pneumonia, ALI leads to systemic and
local lung imbalances in coagulant factors, resulting in fib-
rin deposition [30]. In addition, levels of natural antico-
agulants such as activated protein C (APC), antithrombin
(AT) and tissue factor pathway inhibitor (TFPI) decline
during sepsis, owing both to decreased production and to
enhanced breakdown [31]. As heparin is not inert with re-
spect to coagulation, and possibly inflammation too, the
effect of heparin observed in this study at the very begin-
ning of the infectious process could also be due in part to
these effects. However, heparin effects on both coagulation
and inflammation are controversial. In human healthy vol-
unteers, inhaled heparin reduced the level of inflammatory
mediators such as histamine and increased TFPI release
in blood [32]. These data were not confirmed in a smoke
inhalation-induced lung injury model, which could reduce
neither lung dysfunction nor leukocyte accumulation [33].
In fact, exogenous heparin exhibits paradoxical in vitro
functioning, since it is an acceleratory cofactor for anti-
coagulant AT but can also induce its inactivation in patho-
logic conditions reinforcing procoagulant activity [34, 35].
Thus, the in vivo ability of heparin to block fibrin depo-
sition in the lung and thereby to improve lung function is
uncertain [36]. This is why attempts to prevent fibrin depo-
sition in human pneumosepsis have evolved toward natural
anticoagulant systemic supply, such as APC [37, 38].

In the setting of L. pneumophila-related ALI, a strategy
capable of preventing primary bacterial attachment to
airway epithelial cells might limit the pulmonary
pathogenicity of this microorganism. The protective
effect of heparin in vivo indirectly supports the evidence
of a bacterial mechanism of attachment operating through
the binding to pneumocyte surface GAGs. Attempts are
underway to identify L. pneumophila GAG-binding ad-
hesin(s). This would provide the possibility of developing
new specific anti-adhesive therapy that might be a potential
alternative to conventional antimicrobial chemotherapy.
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