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Lactic acid was first discovered in sour milk by the
Swedish chemist Carl Wilhelm Scheele in 1780 [1].
Since then the role of lactate (lactic acid) has fascinated
physiologists, biochemists, and intensive care physicians.
Hyperlactatemia is one of the most common metabolic
abnormalities in critically ill patients, and numerous stud-
ies have established the use of blood lactate levels and/or
lactate clearance as a diagnostic, therapeutic, and prog-
nostic marker of tissue hypoxia in circulatory shock [2,
3, 4]. Lactate can accumulate when lactate production is
increased and/or lactate utilization diminished [5]. Both
overproduction and decreased lactate clearance appear
to be operative in most patients. In certain disorders the

origin of elevated lactate is clear. For example, plasma lac-
tate levels may transiently be as high as 15 mmol/l during
a grand mal seizure [6], and it proportionally reflects the
cumulative oxygen debt in hemorrhagic shock [7]. In this
context, lactate was traditionally considered a metabolic
dead-end waste product of glycolysis due to hypoxia. This
lactate paradigm, however, has recently been challenged,
and both the source of lactate production and its role as
a mobile fuel have been reinvestigated [8, 9] particularly in
complex disorders such as systemic inflammation and sep-
sis [10, 11]. If ATP produced by oxidative phosphorylation
and ATP coming from glycolysis are similar molecules,
intracellular architecture and complex metabolic networks
favor a channeling of energetic metabolism. Several lines
of evidence do suggest that numerous membrane enzymes
(including the Na+/K+-ATPase) electively consume gly-
colytic ATP. Lactate overproduction in sepsis therefore
may not necessarily be related to anaerobic metabolism
(i.e., tissue hypoxia) but may also be produced during
adequate oxygen provision due to epinephrine effect on
Na+/K+-ATPase activity [11, 12, 13]. In this process ADP
generated by the Na+/K+-ATPase accelerates aerobic gly-
colysis, and thus increases lactate concentration. Another
important discovery is the recognition of lactate acting as
a mobile metabolite distributed via the systemic circula-
tion to various organs, tissues, and cells for oxiation or
recycling, allowing the maintenance of ATP provision [8,
9, 10]. Finally, lactate also represents a signaling molecule
involved in the regulation of cellular redox state and
oxidative defense [14].

A contribution to Intensive Care Medicine now pro-
vides further insights into this enigmatic molecule. In their
complex experimental study in a short-term, lethal model
of endotoxic shock in anesthetized and ventilated rats
Levy et al. [15] sought to determine whether (a) muscle
lactate production is linked to β2-adrenergic stimulation,
and (b) limited systemic lactate availability alters car-
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diovascular performance. The first hypothesis was tested
using selective blockade of the β2-adrenergic pathway in
the tissues by ICI-118551 administration via microdial-
ysis catheters, which allowed the authors to determine
that local muscle lactate production is indeed related
to an epinephrine-stimulation via β2-adrenoreceptors
of Na+/K+-ATPase-mediated aerobic glycolysis. To test
the second hypothesis systemic lactate deprivation was
achieved by intravenous administration of either the
selective β2-inhibitor (ICI-118551), dichloracetate (DCA),
an activator of pyruvate dehydrogenase or the combination
of these two drugs.

The authors found that inhibition of β2-adrenoreceptors
significantly reduced the otherwise progressive endotox-
emia-induced increase in local muscle lactate production,
thereby supporting the notion that stimulation of lactate
production by epinephrine is secondary to Na+/K+-ATPase
activation. Most strikingly, limited availability in circulat-
ing lactate concentrations induced both by ICI-118551 and
DCA was associated with altered heart bioenergetics, as
documented by decreased ATP and phosphocreatine con-
tent in the heart. Moreover, a further decrease in lactate
availability resulting from the combined administration of
ICI-118551 and DCA caused a pronounced low flow state
with profound hypotension and early lethality. Importantly,
the correction of this systemic “lactate deficit” by adding
sodium lactate to ICI-118551 or DCA reversed the hemo-
dynamic disturbances, thus supporting the authors’ con-
clusion that the obtained results are truly related to lactate
deprivation.

Taken together these data allow two considerations.
First, evidence is now accumulating that during endo-
toxemia/sepsis not only is lactate produced as a result
of tissue hypoxia, but also that its formation relates
to exaggerated epinephrine-driven aerobic glycolysis
through Na+/K+-ATPase stimulation. Second, the ob-
served detrimental consequences of lactate starvation on
heart energy metabolism and hemodynamic performance
clearly support the role of lactate as an important fuel
for tissue energetics, further forcing the perception of
increased lactate formation as an adaptive event aimed
at counteracting the energetic crisis [9]. In this context,
particularly the heart is an organ extremely susceptible to
derangements in substrate delivery. The myocardium is
a highly oxidative tissue that produces more than 90% of
its energy from mitochondrial respiration. Optimal cellular
energetics and hence the contractile capacity of the heart
are determined by many factors, including adequate
delivery of oxygen and substrates, the oxidative capacity
of mitochondria, and adequate amounts of high-energy
phosphate and the phosphocreatine/ATP ratio. Under
physiological conditions the heart is a metabolic omnivore
able to use a wide range of substrates, which include fatty
acids, glucose, lactate, and other oxidizable substrates [16,
17]. In healthy heart 60–90% of the acetyl-coenzyme A

comes from β-oxidation of fatty acids and 10–40% from
the oxidation of pyruvate that is derived from glycolysis
and lactate oxidation [16]. Unfortunately, only limited data
are available regarding the preferential use of either lactate,
glucose, fatty acids, or other substrates in this organ during
sepsis, particularly when all these potential substrates are
available. Hence the important issue illustrated by Levy et
al. [15] is that we now have better idea of what happens
to animals challenged with endotoxin that are unable to in-
crease their lactate production. In support of this notion,
evidence derived from studies in failing hearts indicates
that switch away from chief myocardial energy substrates
(fatty acids β-oxidation) to glycolysis may preserve or even
improve myocardial performance [18, 19]. A switch from
lipid to preferential carbohydrate oxidation improved the
relationship between myocardial oxygen consumption and
mechanical work [20], i.e., the mechanical yield of the
caloric energy expenditure. This effect mirrors the higher
yield of the mitochondrial respiration when glucose is used
as a fuel, which is the metabolic adaptation to conditions
of limited oxygen availability [21]. Moreover, the overex-
pression of the lactate transporter MCT1, i.e., the mono-
carboxylate transporter protein shuttle system allowing the
entry of lactate into the cells, in an experimental model
of heart failure also suggests such a metabolic adaptation
favoring preferential lactate metabolism [22]. Finally, the
notion that lactate is an important fuel for myocardial en-
ergy metabolism particularly under conditions of compro-
mised substrate supply is also supported by the findings
of both experimental and human studies: high lactate lev-
els preserved hemodynamic functions in hemorrhaged rats
and dogs [23, 24], and exogenous lactate increased cardiac
index in patients after cardiac surgery [25].

Although we have learned a great deal from the study
by Levy et al. [15], the findings should be interpreted
in the context of the limitations of the study. As for all
short-term rodent models of acute, lethal endotoxemic
shock, clinical relevance of the result remains equivo-
cal. Without better assessment of cardiac function or
precise knowledge of the real ATP turnover and the fate
of myocardial lactate metabolism, it is not possible to
interpret somewhat contradictory findings, i.e., heart ATP
and phosphocreatine content markedly decreased, but
strikingly this was not affiliated with compromised aortic
blood flow when the two drugs are given separately.
Hence further studies are needed to determine the exact
molecular mechanisms responsible for changes in my-
ocardial metabolic phenotype that occur during sepsis and
shock.

In conclusion, the study by Levy et al. [15] moves for-
ward the concept of lactate acting as an important fuel in
shock states. We are just beginning to understand the mul-
tifaceted role of lactate in critically ill patients, which may
ultimately result in new approaches targeted at increasing
the energetic efficiency of the heart and other organs. To
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“feed a tired energy-starved horse” rather than “whip the
horse” with inotropic and vasopressor agents seems to be
a worthwhile road ahead [26].
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