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Introduction

In the United States sepsis annually affects 700,000
people and accounts for about 210,000 deaths. Respira-
tory failure has long been known to be a frequent oc-
currence of this pathological condition and to represent a
major contributor to the high associated mortality [1].
This contribution discusses of the effects of sepsis and
septic shock on respiratory muscle function and focuses
on some of the possible mechanisms involved in the
genesis of these effects.

For nearly a century sepsis has been defined as the
systemic host response to infection. A consensus defini-
tion was formulated a decade ago [2], and the list of
symptoms has recently been updated [3]. Sepsis is now
defined as infection with evidence of systemic inflam-
mation, with at least two of the following: increased or
decreased temperature or leukocyte count, tachycardia,
and rapid breathing. In this context septic shock is defined
as a state of acute circulatory failure characterized by
persistent arterial hypotension unexplained by other
causes [3]. Interestingly, the spectrum of responsible
micro-organisms seems to have shifted from Gram-neg-
ative bacteria in the late 1970s to Gram-positive ones at
present [4]. This is an important fact to point out since
studies evaluating the effects of sepsis and septic shock on
respiratory muscle function have been performed in ani-

mal models of sepsis, where Gram-negative bacteria have
mainly been used as the infectious agent.

The diaphragm is the primary muscle of respiration,
and severe dysfunction of the diaphragm, consisting of
decreased maximal force production and increased sus-
ceptibility to fatigue, has been documented in animal
models of sepsis. A large number of studies have exam-
ined the effects of endotoxemia and other sepsis models
on diaphragm contractility in spontaneously breathing
animals.

Respiratory muscle dysfunction during sepsis

Twenty years ago Hussain and associates [5] first dem-
onstrated in spontaneously breathing dogs that endotoxic
shock resulted in respiratory muscle fatigue, which in turn
was the main factor responsible for respiratory failure and
death in this experimental model of septic shock (Es-
cherichia coli administration). Occurrence of respiratory
muscle dysfunction in endotoxic shock has also been re-
ported by our laboratory in mechanically ventilated rats
[6]. In this study we observed decreased diaphragmatic
strength restricted to the transdiaphragmatic pressure
(Pdi) generated at high frequencies of phrenic nerve
stimulation (50 and 100 Hz) while both twitch and low
frequency Pdi and muscle relaxation rate remained un-
changed. Endurance capacity of the diaphragm was cur-
tailed in endotoxemic animals. Contractile dysfunction
was associated with a decreased diaphragmatic resting
membrane potential. This phenomenon, which has been
reported in critically ill patients with various diseases [7]
and in septic animal models [8], could impair action po-
tential generation resulting in failure of neuromuscular
transmission due to a postsynaptic membrane depolar-
ization and an impaired propagation of electrical excita-
tion along diaphragmatic fibers.

A major common point between the two studies cited
above is that blood pressure was significantly reduced in
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septic animals. It is well known that blood pressure is a
major determinant of muscle metabolic substrate delivery
and contractile function. The results of Hussain and
coworkers [5] are very similar to those reported by Aubier
and coworkers [9] in nonseptic hypotensive sponta-
neously breathing dogs. The similarity in findings raises
the question of the role of hypotension in the patho-
physiology of the immediate effects of sepsis on respi-
ratory muscle function, which could be of particular im-
portance in the context of septic shock.

Murphy and associates [10] evaluated the role of
Gram-positive bacterial products in muscle dysfunction in
4-week-old piglets. These authors investigated in spon-
taneously breathing animals the effects on diaphragmatic
strength of a continuous infusion of group B streptococ-
cus at a level that caused a decrease in cardiac output, but
which avoided hypotension. Diaphragmatic strength was
evaluated by measuring Pdi generated during bilateral
phrenic stimulation. The main result of this study was that
Pdi remained unchanged in septic animals over a 4-h
period. However, another study from the same laboratory
[10] showed that increasing the dose of streptococcus
while avoiding significant hypotension resulted in a
transitory but significant decrease in diaphragmatic
strength. Hurtado and coworkers [11] investigated the role
of hypotension in peripheral muscle dysfunction during
sepsis. These authors evaluated the effects of a similar
level of septic and nonseptic hypotension on peripheral
muscle metabolism and strength generation in rabbits.
Blood pressure decreased by approx. 22% of baseline
values in both groups of animals. This study showed that
by the end of the experiment (180 min after the onset of
hypotension) hind-limb force was significantly reduced in
septic animals for all the frequencies of stimulation.
However, a similar reduction was observed in nonseptic
animals. Taken together, these studies suggest that both
hypotension and bacterial products make individual con-
tributions to the genesis of the immediate deleterious ef-
fects of sepsis on respiratory muscle function. It is unclear
whether septic hypotension has none, additive, or syner-
gic effects (in terms of diaphragm dysfunction) with re-
spect to nonseptic hypotension. To our knowledge, no
data are available in the literature examining at the same
time both septic and nonseptic hypotension. One can
imagine that an animal model supporting both septic and
nonseptic hypotension would be extremely difficult to
manage.

Once the first reports on the immediate effects of
sepsis on respiratory muscle function were published,
investigators began to be interested also by the conse-
quences of septic processes lasting several days. Using an
in vivo rat model we evaluated the modifications in dia-
phragmatic function 3 days after Streptococcus pneumo-
niae injection [12] and 2 days after inoculation of E. coli
endotoxin [13]. Both inoculations were performed sub-
cutaneously, and both models of sepsis were nonlethal,

with no change in blood pressure, serum electrolytes and
acid-base status. The results of these studies were similar:
2 or 3 days of experimental sepsis in rats impaired dia-
phragmatic function without affecting muscle mass or
histology. Contractile force in response to phrenic stim-
ulation was reduced without a concomitant decrease in
the electrical activity of the muscle. Muscle relaxation
rate was prolonged, and the diaphragms of septic animals
fatigued rapidly in response to a stimulation regimen that
was without effect on the diaphragms of control animals.

Similar results were reported by Shindoh and
coworkers [14] in E. coli endotoxin-inoculated hamsters.
More recently Krause and coworkers [15] and Matzcuzak
and collaborators [16] showed a decreased diaphragmatic
force in experimental models of pancreatitis, suggesting
that patients suffering from such disease may be suscep-
tible to respiratory muscle failure. Finally, Drew and as-
sociates [17] examined the effects of a chronic infection
lasting several weeks, visceral leishmaniasis, on the
function of the diaphragm and the peripheral muscles
soleus and plantaris. Muscular function was assessed in
vitro. Infected animals (intracardiac inoculation of
Leishmania donovani amastigotes) were maintained for
7–12 weeks until advanced disease characterized by an-
orexia, weight loss, and weakness was evident. Body
weight and the mass of the diaphragm, soleus, and plan-
taris were reduced in septic animals. Absolute contractile
force of the diaphragm and soleus muscles was moder-
ately reduced, and only to the extent that muscle mass was
decreased. Force normalized to muscle mass or cross-
sectional area was not impaired. In contrast, the force of
the plantaris, a fast twitch muscle, was severely reduced
even after correcting for loss of muscle mass. The effects
of leishmaniasis on the diaphragm and soleus muscles did
not differ from those of semistarvation with equivalent
weight loss, but these models of sepsis produced much
greater loss in plantaris force than occurred with semis-
tarvation.

To summarize, the last 20 years have brought multiple
evidence and some explanation regarding the occurrence
of severe dysfunction of the diaphragm in animal models
of sepsis, dysfunction consisting in decreased maximal
force production, and an increased susceptibility to fa-
tigue.

Mechanisms of respiratory muscle
dysfunction during sepsis

The underlying mechanisms of respiratory muscle dys-
function occurring during the early phase and after several
days of sepsis are certainly different. They encompass
energetic and metabolic components as well as the im-
plication of mediators such as prostaglandins, cytokines,
reactive oxygen species (ROS), and nitric oxide [18].
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Energetics

From a general point of view respiratory muscle dys-
function is thought to occur when blood supply of ener-
getic subtracts to the muscle is not sufficient to meet the
muscle’s metabolic needs [19]. The efficiency of energy
minus uptake by these muscles depends mainly upon the
total blood flow that reaches them, the conditions of
perfusion of the microvascular network, and the ability of
muscle cells to utilize metabolic substrates. All of these
processes can be altered by the septic condition.

The septic state is characterized by generalized blood
flow misdistribution among the different organs including
the respiratory muscles. However, this phenomenon is
modulated by the degree of contractile activity. Either
immediately or lately after the beginning of the septic
process, blood flow decreases if the diaphragm is at rest
[5] and increases if it contracts [20]. The increase in
respiratory muscles blood flow during septic shock can
reach dramatic levels, resulting in reduced blood flow to
the brain, gastrointestinal tract, and other skeletal muscles
[5]. It is predictable that in this state the function of the
vital organs other than the respiratory muscles is com-
promised. However, in spite of this finding the values for
diaphragmatic blood flow observed during septic shock
are much lower than the maximum reported in normo-
tensive conditions [5]. Therefore, although diaphragmatic
blood flow is significantly increased during sepsis, a
septic-induced limitation to the maximal blood flow is
operational. This limitation can occur at the microcircu-
latory level. Using an in vivo experimental model in rats
we have shown that the number of perfused-diaphrag-
matic capillaries decreases significantly after E. coli en-
dotoxin inoculation [21]. In addition to the microcircu-
latory limitation in metabolic substrates delivery to the
respiratory muscles, the ability of muscle cells to utilize
metabolic substrates is compromised in sepsis. E. coli
endotoxin inoculation in rats induces an impairment in
diaphragmatic mitochondrial respiration associated with
an increased production of hydrogen peroxide [22, 23],
secondary to induction of the inducible isoform of nitric
oxide synthase (NOS II) in the muscle (see below).

For many years it has been recognized that the septic
process is the result of extensive triggering of the body
defense mechanisms by the invading micro-organisms
and their products. Studies performed in the past 15 years
have shown that respiratory muscle dysfunction during
sepsis can be attributed to the actions of endogenously
produced mediators, such as prostaglandins, cytokines,
ROS, and NO.

Mediators

Several studies indicate that prostaglandins play a role in
the development of peripheral skeletal muscle dysfunc-

tion during sepsis [24]. Elevated prostaglandin E2 levels
have been found in peripheral muscles of septic animals
[25, 26], and pharmacological inhibition of prostaglandins
synthesis has been shown to protect septic animals from
peripheral skeletal muscle impairment [24]. In a similar
line, we have found that the cyclooxygenase inhibitor
indomethacin prevents the reduction in diaphragmatic
strength found in E. coli endotoxemic animals [13]. In
addition, this agent prevents peripheral muscles atrophy.
Similar results have been reported by Murphy and
coworkers [27] in septic piglets. The latter study found
that systemic administration of thromboxane A2 mimics
the reduction in diaphragmatic strength observed in septic
animals.

Among cytokines tumor necrosis factor (TNF) a has
received substantial attention in the context of the septic
process. In vitro studies show a dose-dependent decrease
in diaphragmatic strength elicited by incubation of mus-
cular fibers with murine or human TNF-a [28], with a
synergistic effect of interleukin-1b on diaphragmatic
contractility [29]. Furthermore, in vivo TNF-a induced a
significant decrease in diaphragmatic force in dogs be-
ginning 4 h after administration [30]. Inoculation of rats
with E. coli endotoxin induced TNF-a mRNA expression
in the diaphragm along with a decreased force [31], and
pretreatment of the animals with an anti-murine TNF-a
antibody prevented the deterioration in diaphragmatic
contractile properties [31]. Together these findings sug-
gest that TNF-a induces a decrease in diaphragmatic
force generation. Different mechanisms may explain the
effects of TNF-a on diaphragmatic contractility. Wilcox
and coworkers [32] showed a role of prostaglandins and
Reid and associated [33] demonstrated that TNF-a de-
creases force by blunting the response of muscle my-
ofilaments to calcium activation. Whether these effects
are mediated directly by TNF-a or indirectly by the in-
duction of molecules such as ROS or NO (see below)
warrants further investigation.

Reactive oxygen species

ROS are produced by all aerobic organisms as a conse-
quence of oxygen consumption and cell respiration. They
play a role of intracellular mediators at physiological
concentrations, but in stress situations increasing pro-
duction of ROS can lead to cellular injury. During sepsis
the rate of ROS produced by respiratory muscles in-
creases, releasing a large amount of superoxide anion,
hydroxyl radical, and hydrogen peroxide [34]. This en-
hanced ROS production derives from different cellular
compartments: one part of these ROS depends on mito-
chondrial chain respiration impairment following hemo-
dynamic failure [35] while another part comes from
sepsis-activated constitutive skeletal muscle NAD(P)H
oxidase [36]. The participation of ROS in septic dia-
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phragmatic failure has been clearly demonstrated in ex-
perimental models by the protective effect of antioxidant
treatments, such as N-acetylcysteine [13], catalase, and
superoxide dismutase [14]. Among the different ROS
superoxide anion and hydroxyl radical are the two species
that play the central role in reducing fibers calcium sen-
sitivity and altering contractile protein capacity [37]. ROS
reduce skeletal muscle force-generating capacity by in-
hibiting mitochondrial oxygen consumption, especially
during ADP-stimulated (state 3) diaphragm mitochondrial
oxygen utilization [23]. In septic patients an association
has been found between antioxidant depletion, mito-
chondrial dysfunction and organ failure and outcome
[38], underlying the importance of oxidative stress in
generating energetic failure. Oxidants can structurally
alter other, different components of excitation-contraction
coupling system: T-tubules, sarcoplasmic reticulum cal-
cium ATPase, and head of myosin oxidation (leading to
inhibition of actin-myosin binding). Protein oxidation in
skeletal muscle comes early during sepsis and is signifi-
cantly correlated to the decline in mitochondrial respira-
tion. Moreover, oxidized proteins are more sensitive to
degradation. Proteolysis takes part to the development of
muscular weakness observed in sepsis. Finally, myoglo-
bin oxidation decreases oxygen storage capacity of the
muscle.

Nitric oxide and its metabolites

NO is a secondary messenger molecule which participates
in numerous biological processes, including vasodilata-
tion, neurotransmission, and bronchodilatation. NO is
synthesized by a group of enzymes referred to as NOS
which are responsible of the conversion of l-arginine to
l-citrulline and NO in presence of oxygen. Three NOS
isoforms (I–III) have been identified so far, and they all
are expressed in respiratory muscles, particularly in dia-
phragm [39, 40, 41]. In animal models of sepsis it has
been extensively demonstrated that NOS II expression is
induced in the diaphragm, both at mRNA and protein
levels, with a resultant increase in NO production [41, 42,
43]. Several lines of evidence suggest that impaired dia-
phragmatic contractility is a result of NO overproduction
during sepsis. Boczkowski et al. [41] were the first to
propose a link between in vivo induction of diaphragmatic
NOS II and its involvement in the genesis of diaphrag-
matic contractile dysfunction after E. coli endotoxin in-
oculation in rats. First, this study showed that the time
course of NOS II induction in diaphragmatic myocytes
and that of the decrease in diaphragmatic force are sim-
ilar, and, second, that inhibition of NO synthesis by either
Nw-monomethyl-l-arginine (l-NMMA), an inhibitor of
NOS activity, or dexamethasone, an inhibitor of NOS II
induction, significantly improves the decrease in dia-
phragmatic force observed in endotoxemic animals.

Similar results have been reported by El-Dwairi et al. [44]
using S-methylisothiourea as NOS activity inhibitor. In an
attempt to define the exact role of the different NOS
isoforms in lipopolysaccharide (LPS) induced diaphrag-
matic contractile injury, two studies by Comtois and
collaborators [45, 46] investigated their role in genetically
engineered mice, knockouts (KO) for either NOS II or
NOS I. Taken together, the findings of these studies
suggest that both NOS I and NOS II isoforms play pro-
tective roles in attenuating LPS-induced reduction in di-
aphragmatic contractile function, despite leading, re-
spectively, to a decreased and an increased NO synthesis.
Interestingly, another study in NOS II KO mice [47],
showed that LPS injection induces less tyrosine nitration
than in wild-type mice, although deficiency for NOS I or
NOS III does not affect this protein modification. This
points out the great importance of the environment in
which NO is synthesized. However, the mechanism(s) by
which NO participates in the alteration of diaphragmatic
contractile function remain(s) to be determined.

NO by itself has a deleterious effect on mitochondrial
respiration, with the inhibition of several enzymes such as
aconitase and cytochrome oxidase [48, 49]. This effect of
NO may contribute to poor oxygen extraction observed in
sepsis and thus participate in altered muscular function.
Moreover, NO can produce its deleterious effects by its
reaction with superoxide anion to form peroxynitrite an-
ion (ONOO�), a very strong oxidizing agent [50], which
targets various molecules such as thiols, lipids, and pro-
teins containing aromatic amino acids, and irreversibly
inhibits several mitochondrial enzymes such as aconitase,
NADH and succinate dehydrogenases, and superoxide
dismutase [51, 52, 53]. Several authors have described
peroxynitrite formation in the diaphragm of endotoxemic
animals [41, 44, 47], mainly in the mitochondrial and
membrane fractions of LPS-treated rats diaphragm [47], a
treatment with l-NMMA leading to a diminished nitration
of diaphragmatic mitochondrial proteins [22]. Finally,
studies on the role of peroxynitrite on diaphragmatic
contractile function show that in vitro exposure of mus-
cular samples to peroxynitrite itself or peroxynitrite-
generating agents leads to a decreased force generation
[54]. It must be pointed out, however, that exogenously
generated peroxynitrite, considering its short half-life at
physiological pH [55], may not react in the same way as
endogenously produced peroxynitrite. The exact rela-
tionship between peroxynitrite generation and contractile
function impairment is not entirely clear, but one possible
explanation lies in the oxidating and nitrating properties
of peroxynitrite which can lead to the alteration of pro-
teins involved in the contractile process, such as actin [56]
and the sarcoplasmic reticulum Ca2+-ATPase [57].

One mediator of interest could be cGMP, as it is
widely known that NO activates the soluble guanylyl
cyclase, leading to cyclic GMP synthesis [58]. Kobzik et
al. [40] demonstrated that agents able to increase intra-
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