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Abstract Induced hypothermia can
be used to protect the brain from
post-ischemic and traumatic neuro-
logical injury. Potential clinical ap-
plications and the available evidence
are discussed in a separate paper.
This review focuses on the practical
aspects of cooling and physiological
changes induced by hypothermia, as
well as the potential side effects that
may develop. These side effects can
be serious and, if not properly dealt
with, may negate some or all of
hypothermia’s potential benefits.
However, many of these side effects
can be prevented or modified by
high-quality intensive care treatment,
which should include careful moni-
toring of fluid balance, tight control
of metabolic aspects such as glucose
and electrolyte levels, prevention of
infectious complications and various
other interventions. The speed and
duration of cooling and rate of re-

warming are key factors in deter-
mining whether hypothermia will be
effective; however, the risk of side
effects also increases with longer
duration. Realizing hypothermia’s
full therapeutic potential will there-
fore require meticulous attention to
the prevention and/or early treatment
of side effects, as well as a basic
knowledge and understanding of the
underlying physiological and patho-
physiological mechanisms. These and
other, related issues are dealt with in
this review.
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Introduction

Induced hypothermia is being used with increasing
frequency to provide protection for the brain, spinal cord
and perhaps other organs, such as the heart, against post-
ischemic and post-traumatic injury. A large body of
evidence from animal experiments suggests that hypo-
thermia may be effective in various clinical situations if
applied appropriately and quickly enough. These obser-
vations have been confirmed by an increasing number of
clinical studies showing that hypothermia can be suc-
cessfully used clinically for indications such as post-
hypoxic injury following cardiopulmonary resuscitation

(CPR). These issues and the evidence supporting various
clinical applications of induced hypothermia are dis-
cussed in a separate review.

The expanding use of hypothermia in medicine means
that most intensivists and others working in the ICU are
likely to be confronted with patients who are treated with
artificial cooling. Therefore, it is important that those
employing hypothermia as a medical tool obtain a basic
understanding of the underlying mechanisms, the phys-
iology of temperature regulation and the many physio-
logical changes taking place when a patient is cooled.
Moreover, hypothermia can be a two-edged sword;
although significant benefits can be achieved, there are
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many potential side effects that, if left untreated, can
diminish or even negate the potential benefits. These side
effects, as well as physiological changes associated with
cooling and various practical aspects in inducing hypo-
thermia, are the topic of this review.

Physiology and mechanisms

Physiology of temperature regulation and induction of
hypothermia

The human body can be roughly divided into two thermal
compartments: a “core” compartment, consisting of the
trunk and head, excluding the skin, and a “peripheral”
compartment, consisting of the skin and extremities.
Under normal circumstances core body temperature is
strictly regulated around a set point of 36.60€0.38�C.
Slight variations in this set point occur in the course of a
day; usually body temperature is highest at €18:00 h. The
temperature of the peripheral compartment is less strictly
controlled and, under normal circumstances, is 2–4�C
lower than the core temperature. This difference increases
in cold environments and decreases in warm environ-
ments. The core temperature is regulated by limiting or
increasing heat transfer to the periphery through vasodi-
lation or vasoconstriction; in turn; heat loss from the
peripheral compartment is regulated through changes in
skin perfusion (again through vasodilation or vasocon-
striction) and by increasing or decreasing the production
of sweat. When warm blood flows from the core to the
periphery, heat is transferred from the blood to the
surrounding tissues and to the cooler tissue near the skin.
The rate of conduction from peripheral blood vessels to
the outside depends on the diffusion coefficient, which is
determined by tissue characteristics. For example, fat
insulates about three times as well as muscle, so that
obese patients will lose heat more slowly than those who
are lean [1, 2]. In experiments in healthy volunteers, the

increase in metabolic rate due to shivering is attenuated
by the square root of percent body fat [2]. In addition,
there are differences between different muscle groups in
regard to the intensity of shivering and the amount of heat
that can be generated. Muscles of the trunk region began
to shiver sooner, and at a higher intensity, than those of
the limbs [2].

Apart from sweat production (evaporation), heat loss
can occur via convection, conduction and radiation
(Table 1). The amount of heat loss depends on the
temperature gradient, exposed surface and thermal con-
ductivity. At rest and under normal circumstances 50–
70% of the heat loss in awake patients occurs through
radiation [1, 3]. In sedated patients in the ICU most heat
loss will occur via radiation and convection. When
patients are actively cooled this is often accomplished
by facilitating convection and/or conduction, as well as by
facilitating the transfer of heat from the core to the
peripheral compartment (see below).

Induction of hypothermia

If hypothermia develops (either accidentally or intention-
ally induced), the body will immediately try to counteract
this disturbance in homeostasis. The initial response will
be to decrease heat loss, mainly through increasing
sympathetic tone and through vasoconstriction in the skin.
This response complicates attempts to induce therapeutic
hypothermia by external cooling (see below). In addition,
heat production will be increased through shivering and,
in later phases, through the increased metabolism of fats,
carbohydrates and proteins. Shivering can lead to in-
creases in oxygen consumption of between 40% and
100% [4, 5, 6], an undesirable effect particularly in
patients with neurological and/or posthypoxic injury.
These responses can be counteracted by the administra-
tion of sedatives, anesthetics, opiates and/or paralyzing
drugs (see below). Sedation and anesthesia also increase

Table 1 Mechanisms of heat loss

Mechanism Definition Influencing factors

Radiation Transfer of heat between the separated surfaces of two objects
with different temperatures via electromagnetic (infrared) radiation,
without direct contact between the objects and without a heat trans-
fer medium. Accounts for 50–70% of heat loss in awake patients

Independent of temperature of surrounding air;
depends on temperature and emissivity of
surrounding objects

Conduction Direct transfer of heat from one surface to a second, adjacent
surface. Amount of heat loss is closely related to contact surface;
in standing patients heat loss through conduction is negligible, but
this increases in the sitting or lying position

Difference in surface temperatures; insulation
between these surfaces

Convection Transfer of heat from a surface to the surrounding air. Accounts for
20–30% of heat loss at room temperature in the absence of wind

Difference in temperature between surface and
air; (speed of) movement of air (“wind chill
factor”)

Evaporation Heat loss derived from the evaporation of water from skin & lungs.
Accounts for €15% of heat loss (5% from the skin, 10% from the
lungs) under non-sweating circumstances

Influenced by saturated vapor pressure at skin,
temperature & the air
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peripheral blood flow, thereby increasing the transfer of
heat from the core to the periphery. As explained above,
the rate of heat loss is determined by the temperature
gradient, body composition and the conductive properties
of the environment. For example, water is a much better
conductor of heat than air and, thus, wet skin will transfer
heat much more easily than dry skin. Heat loss is further
increased by the use of alcohol-based, rather than water-
based, solutions.

It should be noted that the capacity and effectiveness
of the mechanisms to control body temperature decrease
with age. Younger patients will therefore react earlier and
with greater intensity and effectiveness to changes in
body temperature than older patients. In addition, older
patients have a lower rate of metabolism, often a lower
body mass index (BMI) and less effective vascular
response (i.e., less vasoconstriction). Thus, in general,
the induction of hypothermia in younger patients will be
significantly more difficult than in older patients. Induc-
tion of hypothermia in younger patients often requires
high doses of sedatives to counteract the above-mentioned
counter-regulatory mechanisms. Similarly, achieving hy-
pothermia through surface cooling in obese patients will
take more time due to the insulating properties of fat. This

implies that the surface cooling of obese patients will be
more difficult and require significantly more time to
achieve target temperatures.

Metabolic and cellular effects of hypothermia

Hypothermia affects many intracellular processes. Some
of these are directly related to its protective effects; these
aspects are discussed in more detail in Part 1 of this
review. Here we will focus on those features that are
relevant to physiological and pathophysiological changes
induced by cooling. These changes are listed in Tables 2,
3 and 4.

Hypothermia leads to a lowering of the metabolic rate.
Indeed, in the past it was assumed that the protective
effects of hypothermia were due solely to the slowing of
cerebral metabolism, with associated decreases in con-
sumption of glucose and oxygen. It has since become
clear that other mechanisms are involved, which probably
play a much greater role than the changes in metabolic
rate. These issues are discussed in Part 1 of this review.
Nevertheless, the effects on metabolism are significant
and probably do play a part in providing neuroprotection.

Table 2 Physiologic effects of mild to moderate hypothermia.
These effects occur, to varying degrees, in most or all patients when
hypothermia is induced. The temperature limits below which these

effects occur are estimates and are influenced by age and co-
morbidity (especially cardiovascular disease)

System Temperature Effect

Physiological attempts to
increase temperature

30–35�C In awake patients: generation of heat: shivering, peripheral vasoconstriction, increased
muscle activity, increased oxygen consumption, increased rate of metabolism

�30�C ‘Hibernation’: shivering ceases, marked decrease in rate of metabolism
Metabolic 30–35�C # Oxygen consumption

# Carbon dioxide production
# Metabolism
" Fat metabolism: ) " Glycerol, free fatty acids, ketonic acids, lactate; metabolic acidosis

�35�C # Insulin sensitivity # insulin secretion
Endocrine �35.5�C " Levels of adrenaline and noradrenaline

�33�C " Levels of cortisol
Cardiovascular �36->35�C Tachycardia

�35�C Bradycardia
�34�C Slight increase in blood pressure (average 10 mmHg)
�32�C Mild arrhythmias in some patients
�33�C ECG changes: increased PR-interval, widening of QRS-complex, increased QT interval
�28–30�C "" Risk of tachyarrhythmias, beginning with atrial fibrillation
�35�C " central venous pressure and # cardiac output
�35�C " or = mixed venous saturation

Renal �35�C " Diuresis, tubular dysfunction, electrolyte loss & electrolyte disorders
Hematological �35�C # Platelet count, impaired platelet function, impaired coagulation cascade

�33�C # White blood cell count, impaired leukocyte function
Gastrointestinal �35�C Impaired bowel function/impaired intestinal motility/ileus, mild pancreatitis (occurs very

frequently!) " liver enzymes
Immune suppression �35�C Impaired neutrophil and macrophage function; suppression of pro-inflammatory mediator

release; ) increased risk of infection (mainly pneumonia & wound infections)
Neurological �30–31�C # Consciousness, lethargy, coma
Pharmacokinetics �35�C Altered clearance of various medications (data available for muscle paralyzers, propofol,

fentanyl, phenytoin, pentobarbital, verapamil, propanol and volatile anesthetics (reduced
clearance), but in all likelihood applies to many other types of medication)
No effect on gentamycin clearance in animal experiment
No effect on neostigmine effect or clearance in healthy volunteers
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In addition, these changes in metabolism occur in all
organ systems; this means, for example, that there will be
a decrease in oxygen consumption and carbon dioxide
production (which implies that ventilator settings should
be adjusted), a reduction in feeding requirements, etc.
Metabolism is reduced by between 5% and 7% per
Celsius degree reduction in body temperature [7, 8, 9].
Cerebral blood flow is also decreased, but, when correct-
ed for the decrease in metabolism, the net result is a
relative increase.

Many hypothermia-induced metabolic changes occur
relatively quickly, within the first few hours. These
include changes in energy metabolism and decreases in
adenosine tri-phosphate (ATP) demand. Other changes,
such as a rise in lactate levels, occur over a longer period
of time (>3 h). Induction of hypothermia also leads to an

increase in membrane stability, with decreased perme-
ability of cellular membranes, the blood-brain barrier and
blood vessel walls [10, 11, 12, 13, 14]. One of the
consequences of this is a decrease in edema formation,
that appears to be one of the ways in which hypothermia
can protect against neurological injury. In addition,
hypothermia can prevent or mitigate the excessive influx
of Ca2+ into the cell, as well as decrease accumulation of
the excitatory neurotransmitter glutamate in the extracel-
lular space [15]. Calcium influx and glutamate accumu-
lation are key elements in the destructive cascade that can
follow a period of ischemia; calcium influx into the cell
can lead to mitochondrial dysfunction and the activation
of various enzymes which can cause additional cell injury
and death [15]. Hypothermia also leads to a decrease in
intracellular acidosis (although the extracellular pH usu-

Table 3 Frequently occurring
changes in laboratory measure-
ments induced by hypothermia.
The extent of these changes
depends on the degree of hy-
pothermia; the lower body
temperature, the more pro-
nounced the changes in labora-
tory values will be

Frequency Effect

Almost always Mild to moderate increase in serum amylase levels (300–600 �/l)
Mild thrombocytopenia (platelet count 100–150x1012)
Increase in serum lactate levels (2.5–5 mmol/l)

Frequent Moderate to severe thrombocytopenia (platelet count 30–100x1012)
Rise in serum glucose levels (due to decreased insulin sensitivity and decreased
insulin secretion)
High serum amylase levels (600–1200 �/l)
High serum lactate levels (5–7 mmol/l)
Decrease in levels of potassium (K), magnesium (Mg), phosphate (P), calcium (Ca)
Leukocytopenia (WBC (2–3x109/l)

Occurring
regularly

Mild increase in liver enzymes (particularly SGOT and SGPT)
Metabolic acidosis (due to increase in lactate levels and increased production of free
fatty acids, ketones and glycerol)
Slightly increased APTT and APTT

Occurring
occasionally

Manifest acidosis, lactate levels �7 mmol/l
Severe leukocytopenia (WBC <2x109)
Increase in serum amylase �1200 �/l
Severe thrombocytopenia (platelet count �30x1012)
Manifest coagulation disorders with marked increase in APTT and PTT

Table 4 Potential side effects
of hypothermia. These are ef-
fects that occur relatively fre-
quently during induction of hy-
pothermia and that are often
unwelcome. Many of these ef-
fects can be prevented or coun-
teracted, or the effects mitigat-
ed. Physicians applying thera-
peutic hypothermia should be
aware of these potential side
effects

Frequency/ degree of risk Effect

High risk Coagulopathy: increased bleeding time, increased APTT/CT, thrombo-
cytopenia, thrombocytopathia
Impaired coagulation cascade
Electrolyte disordersa (loss of K, Mg, P, Ca)
Hypovolemia (due to increased diuresis/hypothermia-induced diuresis)b

Rise in serum amylase
Changes in drug effects & drug metabolism
Insulin resistance

Low risk Manifest bleeding, severe coagulation disorders (possibly higher risk in
trauma patients and/or patients who already have bleeding problems for
other reasons; hypothermia-induced coagulopathy may increase extent
and severity of bleeding in these cases. See discussion in “Practical
aspects and side effects”)
Airway infections
Wound infections and healing
Myocardial ischemia

Rare Manifest pancreatitis
Intracerebral bleeding

a Depends on category of patients; higher risk in TBI and SAH, lower risk in post-anoxia/CPR
b Risk appears to be significantly higher in patients with TBI than in patients following CPR
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ally decreases slightly during cooling, due to increased
levels of lactic acid, glycerol, free fatty acids and ketonic
acids; see below).

Hypothermia also influences the immune system, with
an inhibition of neutrophil and macrophage function,
suppression of inflammatory reactions and inhibition of
the release of pro-inflammatory cytokines [16, 17, 18].
This effect on immune response may contribute to
hypothermia’s neuroprotective effects, but, of course,
increases the risk of infections (see below). Other anti-
inflammatory mechanisms include the prevention or
mitigation of reperfusion-related DNA injury, lipid per-
oxidation and leukotriene production as well as a decrease
in the production of nitric oxide [19, 20]. In addition,
hypothermia decreases reperfusion injury and free radical
production [19].

Practical aspects and side effects

Induction of hypothermia causes a large number of
physiological changes in the circulatory and respiratory
systems, coagulation system, drug metabolism, etc. (listed
in Table 2). For the successful use of hypothermia,
awareness of these physiological effects and pathophys-
iological mechanisms is of key importance. The failure to
demonstrate positive effects of hypothermia in some
clinical trials may be partly due to insufficient regard for
side effects causing the (partial) negation of protective
effects. In addition, unawareness of hypothermia’s phys-
iological consequences may lead to over-treatment. For
example, even mild hypothermia induces decreases in
cardiac output, mild acidosis, a rise in lactate levels and a
moderate increase in levels of amylase. These changes are
normal, do not signify any deterioration in the patients’
condition and do not require treatment. Naturally, such
changes can sometimes be unwanted, such as shivering
with its associated rise in oxygen consumption and patient
discomfort. Many of these physiological effects can be
counteracted by appropriate medication, such as seda-
tives, analgesics or paralyzers. The use of therapeutic
hypothermia will usually require ICU admission and
monitoring and often (but not always) sedation and
intubation.

The physiological and pathophysiological effects of
cooling largely depend on the degree of hypothermia. For
example, a significant risk for severe arrhythmias occurs
only at temperatures below 28–30�C. Such low temper-
atures are now rarely employed in induced hypothermia,
although they are used more frequently in specific
surgical procedures, such as major vascular surgery. This
review will focus on the effects of mild to moderate
hypothermia (31–35�C).

The physiological adaptations to hypothermia, changes
in laboratory values and potential side effects are listed in
Tables 2, 3 and 4. These changes depend to varying

degrees on the patients’ age, underlying disease, co-
morbidity etc. Some of these changes can be suppressed
or prevented by medication, appropriate sedation or other
factors.

Cardiovascular and hemodynamic effects

Hypothermia is initially associated with sinus tachycar-
dia, after which bradycardia develops. This is partly due
to decreases in metabolism and partly to the direct effects
of hypothermia on the heart. Various ECG changes may
occur (listed in Table 2). The risk of arrhythmias during
mild or moderate hypothermia is very low, but increases
significantly when the temperature drops below 30�C.
The initial arrhythmia is usually atrial fibrillation, which
can be followed (at temperatures �28�C) by the risk of
ventricular flutter or fibrillation. An additional problem is
that arrhythmias in deeply hypothermic patients are
difficult to treat, as the myocardium becomes less
responsive to defibrillation and anti-arrhythmic drugs.
When therapeutic hypothermia is applied, therefore, great
care should be taken to keep temperatures at 30�C or
more, as the risk of clinically significant arrhythmias
increases exponentially below this temperature level.

Initially, the induction of mild hypothermia increases
myocardial oxygen demand relative to supply; the mech-
anism is probably a hypothermia-induced increase in
plasma levels of adrenaline and noradrenaline leading to
an increase in cardiac output and oxygen demand [21].
With further reductions in temperature, decreases in heart
rate and the slowing of metabolism will reduce cardiac
afterload and oxygen demand. Mild hypothermia decreas-
es cardiac output by about 25% and leads to increased
vascular resistance and a rise in central venous pressure.
During severe hypothermia (�30�C) left ventricular
contractility itself may decrease, inducing systolic and
diastolic dysfunction. In healthy subjects mild hypother-
mia (35.5�C) has been shown to increase coronary
perfusion [21, 22]. However, one study reported that, in
patients with pre-existent coronary artery disease, coro-
nary vasoconstriction may occur during hypothermia [22].
This difference is presumed to be caused by endothelial
dysfunction associated with atherosclerosis [21]. This
would imply that there is a theoretical risk of myocardial
injury during the induction of mild hypothermia in
patients with cardiovascular disease, especially in the
phase when cooling is initiated and the heart rate
temporarily increases.

On the other hand, there is strong evidence from
animal studies that the induction of hypothermia during or
following myocardial infarction can decrease the infarct
size [23, 24, 25, 26, 27, 28, 29, 30]. Hypothermia has been
used in one clinical study in 42 patients with acute
myocardial infarction undergoing emergency percutane-
ous coronary intervention [31]. Twenty-one patients were
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treated with hypothermia for 3 h after reperfusion, the
other patients served as controls. The hypothermia group
had a trend to smaller infarct sizes and fewer major
adverse cardiac events, though these differences did not
reach statistical significance in this small number of
patients. Although firm conclusions regarding the benefits
for cases of myocardial infarctions cannot yet be drawn,
these data do at least suggest that hypothermia did not
adversely effect outcome in these patients with coronary
artery disease.

Coagulation

Hypothermia induces a mild bleeding diathesis, with
increased bleeding time due to its effect on platelet count
[32, 33], platelet function [32, 33, 34], the kinetics of
clotting enzymes and plasminogen activator inhibitors
[35, 36] and other steps in the coagulation cascade [36,
37, 38]. It should be pointed out that the laboratory results
of standard coagulation tests such as prothrombin time
and partial thromboplastin times will remain normal,
because these tests are usually performed at 37�C in the
lab. Tests will be prolonged only if they are performed at
the patient’s actual core temperature [39]. However, in
spite of the above-mentioned abnormalities, the risk of
significant bleeding is very low, even in patients with
traumatic brain injury (TBI) [40]. None of the clinical
trials in patients with TBI, subarachnoid hemorrhage,
stroke or post-anoxic coma have reported increased
intracranial bleeding associated with cooling. These
observations are confirmed by data from animal exper-
iments showing decreased extravasation of hemoglobin
during hypothermia [12]. Overall, few bleeding compli-
cations were seen in any of the major clinical trials using
hypothermia, and risks of bleeding should therefore not
preclude the use of hypothermia if deemed appropriate.
Platelets and/or fresh frozen plasma can be administered
to improve coagulation if necessary.

Coagulation disorders may be a greater problem in
trauma patients. Here the use of therapeutic hypothermia
is somewhat controversial and a potential conflict be-
tween ‘protecting the brain and protecting the body’ may
arise. Various studies have reported an association be-
tween hypothermia and adverse outcome in trauma
patients [41, 42, 43]; this link has given hypothermia an
ominous reputation among trauma surgeons and has led to
recommendations of the aggressive re-warming of trauma
patients. However, its should be pointed out that most of
these studies were uncontrolled and retrospective, and in
most cases no multivariate analysis was performed to
correct for potential confounders [review of this issue:
44]. One study that did perform multivariate analysis,
correcting for factors such as presence of shock (associ-
ated with both hypothermia and adverse outcome, and
therefore a potential confounder) concluded that hypo-

thermia is a marker, but not a cause, of adverse outcome
[45]. Thus, although hypothermia does induce a degree of
coagulopathy, its reputation in trauma patients may be
partly undeserved; the use of therapeutic hypothermia in
trauma patients should, therefore, not be automatically
excluded. This view is underscored by observations that
active re-warming of hypothermic patents with TBI may
adversely affect outcome [46]. We therefore recommend
that the use of hypothermia be considered in trauma
patients who meet inclusion criteria as set out in Part 1 of
this review (for example, patients who have undergone
CPR with unclear neurological outcome) provided they
do not have active bleeding and are hemodynamically
stable.

Infection

Evidence from clinical and in vitro studies shows that
hypothermia can impair immune function. Indeed, (as
discussed above) inhibition of inflammatory responses
may be one of the mechanisms through which hypother-
mia exerts neuroprotective effects. Hypothermia inhibits
the release of various pro-inflammatory cytokines [16,
17] and suppresses chemotactic migration of leukocytes
and phagocytosis [47]. Hypothermia-induced insulin re-
sistance and hyperglycemia may further increase infection
risks (see below). Thus, there are plausible mechanisms
for an immunosuppressive effect of hypothermia.

A number of studies, mostly in patients with stroke or
TBI, have indeed reported higher risks of pneumonia
when therapeutic hypothermia is used over longer periods
of time (�48–72 h) [48, 49]. However, other studies using
hypothermia for prolonged periods in patients with TBI
reported no increase in infection rates [50, 51]. This may
be attributable to antibiotic prophylaxis or selective
decontamination of the digestive tract (SDD), which were
used in some of these studies [51]. Short-term cooling
(�24 h) does not appear to increase the risk of infection
[50, 52, 53]. Overall, the risk of respiratory tract infec-
tions appears to increase when patients are cooled for 48 h
or more; this problem appears manageable with rigorous
surveillance and, perhaps, prophylactic measures.

Some studies have also reported a higher risk of wound
infections associated with hypothermia [54, 55]. This may
be related to both diminished leukocyte function and
hypothermia-induced vasoconstriction. Animal studies
have shown that the establishment of infection probably
occurs within the first 3 h of bacterial inoculation [55, 56,
57] and is facilitated by local vasoconstriction and
hypoperfusion. This may be important in patients requir-
ing surgery during treatment with hypothermia. More-
over, other wounds, including bed sores and catheter
insertion sites, are more likely to show progression and/or
impaired healing during cooling.
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Hypovolemia, fluid balance and electrolytes

The induction of hypothermia can lead to the loss of
significant amounts of fluids, due to so-called hypother-
mia-induced diuresis [58, 59, 60, 61]. This may be
especially pronounced in patients with TBI, in whom
diabetes insipidus, induced by cranial trauma, and ad-
ministration of medication such as mannitol may exac-
erbate fluid losses [51, 59, 60]. The impact of this may be
significant, especially in patients with TBI or subarach-
noidal hemorrhage (SAH) where even very brief episodes
of hypovolemia or hypotension can significantly, and
adversely, affect outcome [62, 63, 64]. Indeed, any
beneficial effects of hypothermia may be lost due to side
effects if these are not treated proactively and vigorously
[58]. Therefore, close attention should be paid to the
patients’ diuresis and fluid balance especially during
induction of hypothermia (i.e., the phase when the
patients’ body temperature is decreasing, which is the
phase when excessive diuresis and hypovolemia are most
likely to occur [51, 58, 59]). In our center we infuse 500–
1000 ml of saline and electrolytes (see below) in TBI
patients upon initiation of cooling (provided the patients
are young and have no significant counter-indications)
and supplement fluid losses that occur during cooling [51,
58, 59]. However, these problems are much less evident
in other categories of patients, such as those with post-
anoxic coma following CPR [52, 53, 65]. The reason for
this difference is probably that the risk of excessive fluid
loss in TBI patients is caused by a combination of
hypothermia and other factors, such as the administration
of mannitol to decrease intracranial pressure.

Another important problem is induction of electrolyte
disorders. We and others have observed severe electrolyte
disorders (i.e., low levels of Mg, K, P and Ca) during
cooling of patients with TBI [59, 66]. Such electrolyte
disorders can cause cardiac arrhythmias as well as
hypotensive episodes with decreases in cerebral blood
flow. Magnesium may be especially important in this
regard, because of its specific role in mitigating neuro-
logical injuries [67, 68, 69, 70, 71]. Intracellular free
magnesium in the brain declines by up to 60% following
moderate traumatic brain injury in rats [72]. Numerous
animal studies have shown that magnesium depletion
leads to significantly worse outcomes in experimental
TBI; administration of magnesium before or even after
trauma substantially mitigates secondary injury and re-
duces the loss of cortical cells [67, 68, 69, 73, 74, 75, 76].
Magnesium may also play a role in the prevention of
reperfusion injury, which is one of the key mechanisms
underlying secondary neurological injury [76]. In addi-
tion, loss of magnesium is associated with vasoconstric-
tion of cerebral and coronary arteries [77, 78, 79].

Clinical studies in ICU patients have shown that
hypomagnesemia is associated with adverse outcome
[80]. Severe head injury itself is associated with signif-

icant loss of electrolytes including magnesium [71]; thus
many patients with TBI have hypomagnesemia at admis-
sion [71], which subsequently can be significantly exac-
erbated by the induction of hypothermia [59]. Electrolyte
disorders are easily treated or prevented; physicians
utilizing induced hypothermia should be aware of these
risks. It should be noted that serum levels do not always
accurately reflect magnesium status [79], and in our
opinion magnesium levels should be maintained in the
high or high-normal range in all patients with neurolog-
ical injury [70]. Other electrolytes, such as phosphorus
and potassium, should also be monitored closely and
maintained in the high-normal range [70].

Other metabolic effects

Hypothermia decreases insulin sensitivity and insulin
secretion, which can lead to hyperglycemia. Hyperglyce-
mia is associated with increased infection rates, increased
incidence of renal failure and critical illness neuropathy
and various other complications, while prevention of
hyperglycemia and tight control of glucose levels may
decrease morbidity and mortality in ICU patients [81].
These protective effects are due to the prevention of
hyperglycemia per se rather than to the direct effects of
insulin [82, 83]. This underscores the importance of tight
glucose regulation, especially in patients treated with
hypothermia in whom hyperglycemia is more likely to
develop. The amounts of insulin required to maintain
glucose levels within the normal range are likely to
increase during the induction of hypothermia, and physi-
cians applying hypothermia should be aware of this
phenomenon.

Hypothermia also induces mild acidosis through var-
ious mechanisms including increased synthesis of glyc-
erol, free fatty acids, ketonic acids and lactate. These
changes are normal metabolic consequences of hypother-
mia and should not be attributed to complications such as
bowel ischemia.

Shivering

As discussed in “Physiology and mechanisms”, the body
will employ various mechanisms to generate heat, in-
cluding shivering which may increase oxygen consump-
tion and patient discomfort. In ventilated patients this can
be counteracted by the administration of sedatives and
analgesics or, if deemed appropriate, the administration of
muscle paralyzers. Shivering can be attenuated by rela-
tively small doses of opiates; meperidine (pethidine)
appears to be somewhat more effective in this regard due
to a higher activity at the kappa receptor [15]. This means
that lower doses (12.5–25 mg) can be used, which may be
especially important if hypothermia is used in awake
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patients. When using paralyzers and/or opiates is deemed
undesirable, alternatives with which to treat shivering
include the administration of clonidine, neostigmine and
ketanserine. However, care should be taken to avoid
adverse effects; for example, clonidine may aggravate
hypothermia-induced bradycardia.

Miscellaneous

Another important issue is the effect of hypothermia on
drug metabolism and pharmacokinetics. The enzymes that
metabolize most drugs are highly temperature-sensitive
and, thus, drug metabolism is significantly affected by
hypothermia. Clearance of various drugs is decreased and
in most patients doses should be lowered during hypo-
thermia. Unfortunately, few data are available regarding
the effects of hypothermia on the metabolism of specific
drugs. However, the studies that have been carried out
confirm the expectation that plasma levels increase and
the effects of drugs are prolonged. For example, plasma
levels of propofol increase by approximately 30% and of
fentanyl by 15% when individuals are 3�C hypothermic
[55]. A number of the medications for which data are
available are listed in Table 2.

Cooling methods and practical guidelines

Methods to induce hypothermia

There are numerous strategies to cool patients, based on
the four basic mechanisms for heat loss: convection,
conduction, evaporation and radiation. In addition, heat
generation in patients with hyperthermia can sometimes
be reduced by antipyretic agents. However, in patients
with elevated temperature caused by impaired thermo-
regulation (such as central fever or heat stroke) these
agents are often ineffective. Various cooling techniques
have been used in in vitro and clinical studies, including
ice-water circulating blankets, ice bags, air mattresses,
cooling catheters, intravenous infusion of cooled fluids
(4�C) followed by cooling through other methods, the
infusion of extracorporeally cooled blood via the carotid
artery, helmets and cooling caps with cold fluids or
chemical cooling capabilities, ice-water nasal lavage, cold
peritoneal lavage and cardiopulmonary bypass [31, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93]. The methods most
commonly employed in the clinical setting are summa-
rized in Table 5. Cooling caps and coils wrapped around
the head have been used mainly in infants and neonates,
but have also been tried in adults.

Most large clinical trials published so far have used
either water-cooling or air-cooling blankets. Air-cooling
blankets have also been used in general wards in awake
patients [94, 95]. Water-cooling blankets are much more
efficient for cooling than for warming patients, because

Table 5 Methods for inducing
hypothermia

Method Basic
mechanism

Manufacturer

Peripheral cooling
Fansa Convection -
Air-circulating cooling

blankets
Convection “Polar Air” and “Bair Hugger”, Augustine Medical,

Eden Prairie, USA
Ice packs Conduction -
Water-circulating cooling

blankets
Conduction “Blanketrol II hyper-hypothermia”, Cincinnati

Sub-Zero, Cincinnati, USA
Immersion Conduction -
Specially designed beds Conduction “TriaDyne”, Kinetic Concepts International, San

Antonio, USA
Cooling caps Conduction “Frigicap”
Water and alcohol sprays Evaporation -
Sponge baths Evaporation -
Exposure of skin Radiation -

Core cooling
Intravascular catheters Conduction “Celcius Control”, Innercool therapies, San Diego,

USA
“CoolLine” and “Coolgard”, Alsius, Irvine, USA
“SetPoint” and “Reprieve”, Radiant medical,
Redwood City, USA

Infusion of ice-cold (4�C)
fluids

Conduction -

Extracorporeal circulation Conduction Various devices
Antipyretic agents Effect on CNS Various drugs

a Use of fans to cool patients may be associated with increased infection risks
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the temperature difference can be set much higher; during
warming a set temperature above 40–42�C can cause
burns, whereas the skin is much more tolerant of lower
temperatures. As explained in “Physiology and mecha-
nisms”, the speed of inducing hypothermia may be
important in achieving optimum effects. The times
required to achieve target temperatures have varied
considerably in the clinical trials published so far, ranging
from approximately 2 h [51, 52] to around 8 h [46, 53] or
even longer [49]. These time periods depend on patient
factors (nature of the underlying disease or injury, age,
sex, BMI), countermeasures to prevent shivering and heat
generation, and on technical aspects such as the cooled
surface, temperature of the blankets or air, cooling
capacity, etc. In a recently published study in patients
with TBI we were able to induce temperatures of 34�C or
below in 95% of our patients within 2 h, by using two
cooling blankets (above and below the patient) with the
water temperature set at 4�C until the core temperature
was 33�C or less (the target temperature being 32�C), and
by using water and alcohol sprays and exposing the areas
of skin that were not directly cooled [51]. Heat transfer
from core to periphery may also be facilitated by the use
of vasodilatory medication.

An even quicker method was described in a prelim-
inary report by Bernard et al. [96], who used large
volumes (30 ml/kg) of ice-cold (4�C) intravenous fluid
(lactated Ringer’s solution) to cool 22 comatose survivors
of out-of-hospital cardiac arrest quickly. These authors
were able to decrease core temperature from 35.5 to
33.8�C within 30 min with no adverse consequences, and
concluded that this was an inexpensive and effective
method of initially inducing mild hypothermia. We have
used this method in selected cases in our own clinic with
good results and no adverse effects.

A new development is the availability of intravascular
cooling catheters such as the CoolLine, SetPoint and
others (Table 5). These are central lines with two or three
balloons filled with temperature-controlled saline, allow-
ing direct intravascular (and, therefore, core) cooling via
the subclavian, superior caval or femoral vein. Experience
with these catheters has been relatively limited so far,
although they are rapidly gaining in popularity. Initially,
two small feasibility trials in six [90] and eight patients
[91] reported that it was an effective, relatively quick
method to induce and maintain hypothermia, and that it
was less labor-intensive than the ‘conventional methods’
listed above. Of note, no thrombus formation on these
catheters was observed upon removal in these studies.
Endovascular cooling has also been used to induce brief
periods of hypothermia in 20 non-sedated patients under-
going percutaneous coronary intervention with the aim of
reducing infarct size [31]. A larger trial using this device
to cool 51 patients with hyperthermia in a neurosurgical
ICU has recently been published; the authors reported that
the device was safe and effective in inducing hypothermia

[92]. However, no studies have yet been published in
which these devices have been used for longer-term
(>24 h) cooling.

Yet more novel approaches include the use of selective
brain cooling [86], peritoneal cooling [88] and ice-water
nose cooling [93]. Experience with these methods is
limited to animal studies and/or small case series [93].
Treatment with paracetamol or acetaminophen may serve
as an accessory method to lower temperature, especially
in patients with hyperthermia, although their effectiveness
in patients with neurological injury is limited [94].

Practical guidelines

Therapeutic hypothermia can be used in various types of
neurological injury and perhaps for other indications, such
as the prevention of reperfusion injury. The use of
hypothermia will often require intubation, mechanical
ventilation, sedation and, at times, pharmacologic paral-
ysis to prevent shivering. A major problem induced by
these measures is that they may significantly hamper
neurological assessment of the patient; thus patients
should be carefully monitored for, for example, the
development of seizures, which may present much less
clearly. As outlined in “Practical aspects and side effects”,
the induction of hypothermia can cause a number of side
effects; however, many of these can be prevented or
attenuated. Fluid balance should be carefully monitored
and hypovolemia and hypotension avoided, especially in
patients with TBI or SAH. Electrolyte disorders (espe-
cially hypomagnesemia) and arrhythmias should be pre-
vented, if necessary by the early or prophylactic admin-
istration of anti-arrhythmic agents. This also applies to
hyperglycemia, which should be combated through inten-
sive insulin therapy and frequent monitoring.

Infections should be prevented by early or even
prophylactic treatment with antibiotics. Bleeding compli-
cations can be avoided by the timely administration of
platelets or fresh frozen plasma, particularly if surgical
interventions or invasive procedures are performed. From
this perspective, realizing hypothermia’s full therapeutic
potential presents a great challenge to ICU physicians,
requiring first-rate quality in many aspects of intensive
care. This applies not only to intensivists but, in equal
measure, to ICU nurses and others caring for critically ill
patients in the ICU. Hypothermia-induced vasoconstric-
tion of the skin and increased risk of wound infections
will increase the risk of bed sores, as will the sedation and
paralysis often required in these patients. The risk of
respiratory tract infections may increase, requiring extra
vigilance and interventions by the nursing staff, physio-
therapist and others. Infections should be treated promptly
and aggressively. The use of selective decontamination of
the digestive tract should be considered in these patients.
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