Bulletin of Environmental Contamination and Toxicology (2024) 112:53
https://doi.org/10.1007/500128-024-03879-w

®

Check for
updates

Exposure Assessment of Pesticides in Surface Waters of Ontario,
Canada Reveals Low Probability of Exceeding Acute Regulatory

Thresholds

Danielle Desrochers' - Ryan S. Prosser?

- Mark L. Hanson'

- Jose Luis Rodriguez-Gil'3

Received: 24 November 2023 / Accepted: 6 March 2024 / Published online: 2 April 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

The objectives of this study were to: (1) characterize the exposure of aquatic ecosystems in Southern Ontario, Canada
to pesticides between 2002 and 2016 by constructing environmental exposure distributions (EEDs), including censored
data; and (2) predict the probability of exceeding acute regulatory guidelines. Surface water samples were collected over
a 15-year period by Environment and Climate Change Canada. The dataset contained 167 compounds, sampled across 114
sites, with a total of 2,213 samples. There were 67,920 total observations of which 55,058 were non-detects (81%), and
12,862 detects (19%). The most commonly detected compound was atrazine, with a maximum concentration of 18,600
ngL~! and ~4% chance of exceeding an acute guideline (1,000 ngL~"!) in rivers and streams. Using Southern Ontario as
a case study, this study provides insight into the risk that pesticides pose to aquatic ecosystems and the utility of EEDs

that include censored data for the purpose of risk assessment.

Keywords Environmental monitoring - Pesticides - Water quality

Introduction

Pesticides can be transported into aquatic ecosystems
through spray drift, leaching, agricultural tile drainage, or
runoff during precipitation or thaw events (Lewan et al.
2009). A number of jurisdictions have developed programs
to monitor the exposure of surface water to agriculture pes-
ticides (Boye et al. 2019). In Canada, various provinces
have established programs to monitor agricultural pesticides
in surface waters (Raby et al. 2022). Ultimately, the data
collected from these monitoring programs play an important
role in being able to assess the risk that pesticides may pose
to aquatic ecosystems in a particular region (Solomon et
al. 1996; Rico et al. 2021). The largest effort in Canada for
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monitoring pesticides by Environment and Climate Change
Canada (ECCC) has occurred in southern Ontario (ECCC
2011), which contains approximately a quarter of Canada’s
farms (Statistics Canada 2017). Approximately 40% of the
land used for crop production in the province is located in
southern Ontario, and 50% of the province’s production
of soybeans, winter wheat, and corn occurs in this region
(OMAFRA 2017). These data collected by ECCC as part
of the Great Lakes Water Quality Monitoring and Surveil-
lance Program on pesticides is publicly available through
the Government of Canada’s open data online portal (Gov-
ernment of Canada 2018). However, few have attempted to
conduct an exposure assessment of Ontario’s surface waters
to pesticides using the ECCC data, and those that have, have
focused on a limited number of active ingredients (e.g.,
glyphosate) or a specific class of pesticide (e.g., neonicoti-
noid insecticides) (Struger et al. 2008, 2017). Also, these
studies did not construct environmental exposure distribu-
tions (EEDs) for any of the pesticides using the ECCC data
to assess the risk in a probabilistic manner. The construc-
tion of EEDs is critical to being able to conduct a proba-
bilistic risk assessment to quantify the risk of pesticides to
aquatic ecosystems (Solomon et al. 2000). At this time, a
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significant challenge in characterising pesticide exposure
data is what to do with non-detects. A growing number of
studies are beginning to incorporate the censored data [i.e.,
the concentration of the pesticide in the water sample that
was below the method detection limit (MDL) or limit of
detection (LOD)] in their exposure assessment of pesti-
cides in surface waters as opposed to using the conventional
methods of eliminating this data, or using arbitrarily cho-
sen values such as the LOD, half the value of the LOD, or
zero (Wang et al. 2016; Rodriguez-Gil et al. 2018). These
conventionally used methods limit the ability to accurately
assess the presence or absence of pollutants in the environ-
ment and may lead to inaccurate conclusions (Shoari and
Dubé 2018). Thus, it is important that left-censored data be
included in order to effectively assess pesticide exposure in
surface waters (Cantoni et al. 2020). The primary objective
of this study was to use the above-mentioned ECCC data
to assess the exposure of aquatic ecosystems in southern
Ontario, Canada to pesticide compounds through the con-
struction of EEDs that include the censored data for each
compound. We will use the EEDs to predict the probability
of exposure for each compound by site, by site type, and by
year, where data permit. The constructed EEDs will also be
used to determine the probability of exceeding regulatory
guidelines for each compound by site, by site type, and by
year. This study will provide important insight into the risk
that pesticide compounds can pose to aquatic ecosystems
in southern Ontario, and the approach taken here could be
applied in other jurisdictions.

Materials and Methods
Source of Data

Surface water samples were collected from the Great Lakes
(Ontario, Canada) and their tributaries over a 15-year
period and analyzed by ECCC’s Water Quality Monitoring
and Surveillance Division. We accessed and downloaded
these pesticide concentration data and associated metadata
on February 22, 2020 from the Great Lakes Water Qual-
ity Monitoring and Aquatic Ecosystem Health Data, spe-
cifically the Great Lakes Water Quality Monitoring and
Surveillance Data (ECCC 2018). Summaries of the data can
be found in the University of Guelph Research Data Reposi-
tory at https://doi.org/10.5683/SP3/3TRFVI.

Data Clean-Up and Formatting
Data clean-up, formatting, processing, and analyses were

performed using RStudio version 1.3.1056 and R ver-
sion 4.0.2. Clean-up of the dataset included editing and
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recoding compounds that were doubled due to spelling dif-
ferences or different naming conventions. For example, both
“Dichlorprop” and “2-(2-4-Dichlorophenoxy)-Propionic
Acid” appeared throughout the dataset, and were recoded
to “(Dichlorprop (2,4-DP)”. CAS Registery Numbers were
compiled based on the provided compound name then
added to the main pesticide dataset. The final cleaned-up
CSV files of the pesticide datasets can be found in the Uni-
versity of Guelph Research Data Repository at https://doi.
org/10.5683/SP3/XYS5WIS. All concentrations and their
associated method detection limits (MDL) were converted
to ngL~! for consistency. Later steps in the data analy-
ses required concentration data to be reported as a range
between two concentration values. For this purpose two
new columns were created in the dataset (labelled “upper”
and “lower”) (Rodriguez-Gil et al. 2018). In the case of
quantified samples above the limit of detection (listed in
the original ECCC dataset with an “NA” value in the “flag”
variable, i.e. no special flags), the upper and lower values
were set as identical and equal to the measured concentra-
tion. For samples below the MDL (i.e. the analytical limit
of detection (LOD), flag = “<”) the lower value was set to
zero and the upper concentration value was set to the value
of the MDL. Samples with trace amounts (originally listed
as flag = “T”’) were treated in the same manner. Due to sam-
ples being collected for a variety of purposes and analyzed
by different agencies, many of the MDLs of compounds
changed over the duration of this dataset so care was taken
to ensure each sample was clearly linked to the right MDL
for its specific analysis.

Dataset Summary

Sampling of 167 distinct compounds was performed from
2002 to 2016 across 114 unique sites in the Great Lakes
watershed, Ontario, Canada (Table S1, Fig. 1). Of these
114 sampled sites, there were five site types: (a) rivers or
streams —94 sites, (b) ponds —9 sites, (c) wetlands —7
sites, (d) lakes — 3 sites, and (e) groundwater — 1 site. The
total number of sites sampled each year fluctuated, with the
most sampled in 2007 at 40 sites and only eight sites in 2011
(Table S1). The total number of years individual sites were
sampled varied from 1 to 14 years, half of which were only
1 year, and none were sampled for the entire 15-year dura-
tion of this dataset (Table S2). Since there were no sample
IDs associated with the data in this dataset, we defined a
sample as a unique combination of site and date. With this
definition, the dataset contained 2,213 unique samples.
The most consistent sampling occurred from 2004 to 2008,
with 2007 having the greatest number of samples taken in a
year (256 samples) and 2011 the least (67 samples) (Table
S1). The top 10 most sampled sites ranged from 55 to 193
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Fig. 1 The 114 individual sites of this dataset sampled by ECCC in the Great Lakes watershed, Ontario, Canada. Each of the five site types is

represented by a different symbol (see legend).

collected samples (Table S2). Lastly, over the 15-year data-
set, the top 25 most sampled compounds ranged from 971 to
1,095 samples, based on the number of measurements of a
compound in the total 2,213 samples (Table S3 to S5).

Assessment of Detection Trends Over Time

The percent of samples containing non-detects played a
vital role in the following steps of our EED distribution fits,
since data subsets containing < 10% detection would yield
unreliable model fits. Additionally, we wanted to investigate
the role that changing MDLs over the studied period played
in the observed detection frequencies. For this purpose we
compiled temporal information on raw number of samples
collected/detected as well as the proportion of samples with
quantified/non-detects throughout the period of study for
each compound (Figures S1 and S3). These figures also con-
tain a representation of the MDL and its changes over time
for each compound.

Environmental Exposure Distributions (EEDs)

Exposure distribution analysis was conducted on four sets
of data: (1) each combination of site type (e.g. rivers and
streams, ponds, etc.) and compound; (2) each combination
of individual site and compound, and; (3) each combination
of site, compound, and year, and; (4) all samples collected
for a compound. For each of these sets of data, the following
steps were taken. First, detection frequencies were calcu-
lated by dividing the number of samples with concentra-
tion values above the LOD (i.e. where the compound was
detected) by the total number of samples taken (within each
of the above-listed data subsets). Then, prior to model-
ling, the data were subset to those with greater than 10%
detection frequency to provide the model with an appro-
priate minimum number of quantified samples required
for an accurate fit. Environmental exposure distributions
(EEDs) were generated by fitting the models to six differ-
ent distributions (Lognormal, Gamma, Exponential, Pareto,
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Weibull, and Log-logistic), using the fitdistcens function in
the R package fitdistrplus (Development Core Team 2008;
Delignette-Muller and Dutang 2015). This function allows
for both quantified data and censored data to be plotted and
fitted to the various distributions. Thus, including the “non-
detect” samples in the analysis. For each EED, the best fit
of the six plotted distributions was chosen based on the low-
est Akaike information criterion (AIC), then fitted via non-
parametric bootstrapping using the bootdistcens function of
package fitdistrplus (1000 iterations) (Development Core
Team 2008). Lastly, the same function was used to calculate
95% confidence intervals, only for the “all samples” dataset.

Acute Water Quality Benchmark Selection and
Assessment

Water quality benchmark concentrations for acute and
chronic scenarios were compiled from three sources: the
Canadian Council of Ministers of the Environment (CCME)
Canadian Environmental Quality Guidelines, the United
States Environmental Protection Agency’s (USEPA) Office
of Pesticide Programs (OPP) Aquatic Life Benchmarks, and
the European Union’s Environmental Quality Standards
(European Union, 2008; USEPA 2019; CCME 2020). Of
the 167 compounds, acute benchmark concentrations were
found for 104. Compounds for which no acute benchmark
concentration was found were removed from the dataset for
the risk assessment portions. The lowest USEPA aquatic life
benchmarks for acute scenarios categorized by fish, inver-
tebrates, nonvascular plants, and vascular plants, or CCME
water quality guideline was chosen as a conservative
approach. Additionally, some of the USEPA concentrations
are preceded by a “greater-than” symbol, or a “less-than”
symbol, representing that the benchmark was derived from
values that may overestimate or underestimate toxicity
(USEPA 2019). There was one compound for which the
smallest USEPA value had a “less-than” symbol (atrazine)
and five compounds that had a “greater-than” symbol (i.e.,
acifluorfen, dacthal, dinotefuran, flonicamid, and nicosulfu-
ron). Ultimately these symbols were removed and values
kept as is for the analysis. For the majority of compounds,
99 of 104 total, the USEPA acute benchmark concentrations
was selected. For 4 compounds, the CCME Environmental
Quality Guideline was chose. Lastly, for the remaining com-
pound, hexachlorobenzene, the EU maximum allowable
concentration environmental quality standard for inland
surface waters was selected. The full list of compounds,
their chosen acute benchmark source, and acute bench-
mark concentrations can be found in the SI (Table S6). For
each compound we calculated the percentage of samples
that exceeded their associated acute benchmark concentra-
tion when the samples with non-detects were included and
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when they were removed (i.e., total number of samples with
concentration which exceed the acute benchmark concen-
tration, divided by the total number of samples taken for
that compound, or divided by the total number of samples
in which the compound was detected). The EEDs generated
for (a) each compound at each site; and (b) each compound
at each site type, were used to calculate the percentage of
the generated distributions which exceeded the associated
acute benchmark concentration for each compound.

Mixture Toxicity Assessment

A cursory assessment of the risk posed by mixtures of
pesticides in individual samples was completed for each
individual class of pesticides under the assumption that a
concentration addition (CA) framework would be appli-
cable within a particular pesticide class due to a shared, or
similar, mode of action (Backhaus and Faust 2012). First,
for each entry in the database, a hazard quotient (HQ) was
calculated by dividing the measured concentration by the
applicable acute water quality benchmark (see previous
section) for that chemical. This was only possible for those
compounds for which a benchmark value was available. For
instances where the analytical results were below the MDL,
a surrogate value of 2 MDL was used for the HQ calcula-
tion. Then, we categorized each pesticide in the database
within a standardized class (a.k.a. subactivity) as defined
in the British Crop Production Council’s Compendium of
Pesticide Common Names (formerly Alan Wood’s Compen-
dium of Pesticide Common Names) (BCPC 2024). Finally,
HQ values for each individual sample (as described earlier)
were grouped by pesticide class/subactivity and summed up
to create a Hazar Index (HI) for the mixture of compounds
belonging to that class in that particular sample (EC 2012).
Generally a HI value higher than 1 would indicate potential
concern (EC 2012).

Results and Discussion
Detection Frequencies

In the overall dataset, of the 67,920 total observations, pes-
ticides were detected in 12,862 samples (19%), and pesti-
cides were not detected in 55,058 (81%). A total of 61 of the
167 compounds had detection frequencies of > 10% for all
samples collected, ranging from 10.3 to 91.4% (Table S7),
for full list of detection frequencies see Tables S7 & S8. The
top 10 overall most detected compounds include: atrazine
(91.4%), the three most widely used neonicotinoid insec-
ticides in Canada — clothianidin (75.7%), thiamethoxam
(72.3%), and imidacloprid (67.3%), and other prominent
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herbicides used in Canada, and Ontario (2,4-D — 78.6%,
dicamba — 69.5%) (Table S7) (PMRA 2020). It is interesting
to note that the fungicides in the top ten; metalaxyl (77.3%),
propiconazole (74.1%), boscalid (72.3%), and azoxystrobin
(68.6%), are not used in very large quantities across Ontario
(OMAFRA 2008; Farm & Food Care Ontario, 2015). The
interpretation of these data, however, needs to consider
the detection limit of the analytical method employed.
Throughout the 15-year dataset, several method detection
limits were used, either increasing or decreasing the limit of
detection and consequently impacting the observed detec-
tion frequencies. For example, simazine, which was among
the top 25 most sampled compounds and had an overall
detection frequency of 25.8%, with an increase in detection
frequency from 8.3% in 2006 to 63.1% in 2008, and steadily
decreasing again for the following years (Table S7, Figure
S1). However, this is coupled with detection limits dropping
by approximately an order of magnitude over the 2007—
2009 period which had obvious impacts in the frequency
of detection (Tables S8, S9, & Figure S1). The same is seen
with the samples and detection frequencies of metolachlor
(overall 59.9% detection). When the method detection limit
drastically improved between 2008 and 2009, the percent
sample detection increased along with it (Figure S1). Dis-
cussions about temporal patterns in contaminant environ-
mental exposures are frequent in the literature (e.g. Gilliom
et al. 2006; Stenred 2015), however these comparisons are
often made without taking into consideration any changes in
MDL during the period of study, which can lead to errone-
ous interpretation of patterns in detection frequency data.

Environmental Exposure Distributions (EEDs)

Once filtered to greater than 10% detection, the combina-
tions of “samples” in each set of data were reduced drasti-
cally to: (a) each combination of site and compound — from
6,067 to 1,352 combinations; (b) all samples taken of a com-
pound by site type — from 365 to 95 combinations; (c) each
combination of site, compound, and year — from 10,966 to
2,732 combinations, and; (d) all sites where a compound
was sampled — from 891 to 308 combinations. Table S10
summarises the most relevant centiles of the EEDs calcu-
lated from the “all samples” dataset (at least 10% detection
frequency), ordered by the estimated 50th centile concen-
trations, giving insight into the compounds that appeared
more commonly at higher concentrations. Arranged this
way, glyphosate-Pond (2,004 ngL~!), glyphosate-River
or stream (383 ngL~!), and aminomethyl phosphonic acid
(AMPA)-River or stream (159 ngL~!) were the three com-
pound-site type combinations showing the greatest “aver-
age” concentrations in the dataset. The upper centiles can
provide further information on the observed, or expected,

peak concentrations for each compound-site type combina-
tion (e.g., in 5% or 1% of the observed cases, for the 95th
and 99th centiles, respectively). When the list of relevant
centiles is reordered by the 99th centile values glyphosate-
River or stream (55,190 ngL~"), aminomethyl phosphonic
acid-River or Stream (27,288 ngL~"), and glyphosate-Pond
(16,051 ngL~") show the greatest 99th centile concentra-
tions. The 99th centile concentrations generated from the
EEDs can be compared with measured values to see how
likely are the observed maximum concentrations. There
were 45 cases where the maximum measured concentration
was less than or equal to the estimated 99th centile con-
centration (e.g. glyphosate-River or stream, atrazine-Lake,
metolachlor-Pond, chlorimuron-Groundwater, and dichlor-
prop (2,4-DP)-Pond). This can indicate that the fitted distri-
butions likely capture uncommon peak exposure events for
these compound.

On the other hand, the rest of compounds in the list had
maximum measured concentrations that were greater than
the estimated 99th centile concentration, indicating that the
occurrence of high concentrations such as those observed
are rare events (less than 1% of the measured samples).
This included 10 of the 14 compounds which had mea-
sured maximum concentrations that exceeded their respec-
tive water quality benchmarks (the remaining four had
less than 10% detection and do not have associated EEDs
— azinphos-methyl, chlorpyrifos, naled, and malathion).
Where the maximum measured concentration was greater
than the estimated 99th centile, these events can point to the
potential existence of higher peak concentrations missed in
sampling or indicate outliers in the sampling. This distinc-
tion is particularly difficult to interpret for the Groundwater,
Lake, Pond, and Wetland cases (34 of 45) due to the limited
number of samples taken at these site types (Tables S1 &
S11). In either case, these examples point to a common limi-
tation in the basic design of monitoring programs based on
grab samples, the difficulty of capturing pulses or transitory
high-concentration events (Chow et al. 2020).

Regardless of high detection frequencies in these com-
pound-site combinations — over half of these cases had
greater than 40% detection — there is an elevated uncertainty
around the estimated centiles attributed to the low number
of samples taken since none were sampled more than 19
times, and several less than 5 times (Tables S1 & S11).
For the river or stream cases, detection frequencies were
between 11.5% and 40.7% with number of samples ranging
from 26 to 401 (Table S11). Due to the larger number of
samples, there is greater confidence that these are accurately
modelled. Despite this, none of these cases with measured
maximum concentrations greater than the 99th centile had
99th centile values which exceeded the acute water quality
benchmarks.
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Where conventional methods of characterizing environ-
mental exposure distributions would have either removed or
substituted the censored data, the above constructed EEDs
explicitly included them, providing a more accurate rep-
resentation of the probability of exposure to specific pes-
ticides in the monitored surface waters (Wang et al. 2016;
Rodriguez-Gil et al. 2018). The elimination method inher-
ently ignores left-censored data, which is not missing data.
The substitution method includes those data, hence improv-
ing the estimates, however it is still based on an arbitrary
choice. Both cases place greater emphasis on the higher
detected values, skewing the EED to the right, which can
overestimate the exposure. Monitoring databases typically
include a large amounts of censored data due to low envi-
ronmental concentrations or the use of methods with not
enough sensitivity, as was the case with the ECCC data-
set — 12,862 detects (19%) and 55,058 no-detects (81%).
Additionally, they may include samples analyzed at several
laboratories with different analytical methods and MDLs,
or lower MDLs over the years as instrumentation improves.
Over the 16 years of data collection there were 66 com-
pounds which fit this criteria (e.g. both 2,4-D and MCPA
have five different MDLs, three different analytical methods
each; metolachlor: six MDLs and two analytical methods).
Of 167 compounds analyzed, 101 had a single MDL used
for the entire duration of the dataset, but only 38 of the 62
for which we had generated EEDs for all sample by site type
(Tables S9 & S11). Incorporating the censored data in the
analysis can easily accommodate these changes and yield
a more accurate assessment of the distribution of exposures
for compounds analyzed and, therefore, can help improve
our assessment of the risk they may pose.

Nonetheless, no method is perfect. Due to the uncertainty
associated with the estimated centiles generated in these

types of EEDs, the application of this method to datasets
with greater than 80% censoring and low sampling effort
should be done with caution, even though this type of mod-
elling analysis is generally robust (European Food Safety
Authority 2010; Antweiler 2015).

Exceedances of Water Quality Guidelines

Of the 104 compounds for which benchmark data was
available, 14 had maximum measured concentrations that
exceeded their associated acute water quality guideline
values (fungicides: pyraclostrobin; herbicides: atrazine,
dicamba, diuron, imidacloprid, methylclorophen oxypropi-
onic acid (MCPP), and metolachlor; insecticides: azinphos-
methyl, chlorpyrifos, diazinon, naled, endosulfan sulphate
total, malathion, and permethrin total) (Tables S12 — S17).
The selected acute benchmark concentrations were com-
pared to the generated EEDs of all samples collected for a
compound by site type. Twelve compound-site type com-
binations resulted in greater than 0.01% exceedance of the
acute water quality benchmark (seven herbicides-site type
combinations, four insecticides-site type combinations, and
one fungicides-site type combination). These EEDs are
shown in Figure S2. Table 1 lists the associated percent of
samples in the distributions that exceeded the selected water
quality guidelines (>0.1%), alongside the percent exceed-
ance of the detected and censored samples themselves. Note
that for a number of these compounds (e.g. imidacloprid)
we observed “exceedance” of the water quality guidelines
by non-detect samples. This can occur when the MDL is
higher than the water quality benchmark and hence a pre-
cautionary exceedance is flagged.

The protection of 95% of the species 95% of the time
is a commonly used protection goal in environmental risk

Table 1 Each compound-site type combination with associated acute water quality benchmarks where the percent of samples in the distributions
that exceeded the benchmark was greater than 0.1%, alongside the percent exceedance of the detected and censored samples themselves (the full

list of exceedances can be found in Table S12).

Compound Site type  Benchmark Exceedance of  Detected samples Non-detect samples
Source Conc. themodel (%)  No.of  No.of Exceed No.of  No. of Exceed
(ngL™h samples exceedances (%) samples exceedances (%)

Endosulfan Riveror CCME Acute 60 7.24% 22 2 9.09 32 0 0

sulfate total stream (2.56-11.63)

Imidacloprid ~ Riveror ~ EPA Acute 385 6.03% 629 56 8.9 283 129 45.58
stream Invertebrates (4.84-7.21)

Atrazine Riveror  EPA Acute Non- 1,000 4.27% 921 46 4.99 83 0 0
stream vascular Plants (3.33-5.24)

Diazinon Riveror  EPA Acute 105 2.85% 108 25 23.15 785 0 0
stream Invertebrates (2.01-3.74)

Flumetsulam  Riveror  EPA Acute 3,100  0.28% 178 0 0 401 0 0
stream Vascular Plants (0.12-0.5)

Metolachlor Riveror  EPA Acute Non- 8,000 0.26% 612 3 0.49 392 0 0
stream vascular Plants (0.15-0.41)

Permethrin Riveror  EPA Acute 19.5 0.18% 12 1 8.33 72 0 0

total stream Invertebrates (0-1.64)
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assessment (Solomon and Takacs 2001). As such, bench-
mark concentration values will aim to protect 95% of the
species, for example by deriving this value from the concen-
tration hazardous to 5% of the species as determined from a
species sensitivity distribution (Newman et al. 2000; Post-
huma et al. 2001). With benchmark concentrations aiming
to protect 95% of the species, situations where exceedances
from these levels are maintained below 5% would satisfy
the overall protection goal. For the overall studied dataset,
we can then see that for the time frame covered by the data,
the risk posed by most of the individual chemicals satisfied
that goal, with only endosulfan and imidacloprid exceed-
ing it by a small margin at 7.24% and 6.03% of the cases
respectively.

To examine these acute exceedances more closely, we
looked at each combination of unique sampling site and
compound to see if there were any specific sites of concern.
There were 31 compound-site combinations in the gener-
ated EEDs that exceeded the acute water quality guidelines
in greater than 5% of the samples (Table S18). Of these,
12 of the 31 occurrences of exceedances were for atrazine,
and sites of concern that are found more than once across
this list were: Sturgeon creek (n=4), Prudhomme creek (old
vineland creek) (n=3), Richardson’s creek (n=3), and Two
mile creek (n=3), all located in southern Ontario. These
sites are associated with intense agricultural practices and
more focused monitoring is likely needed in these areas.

The availability of tools to incorporate censored data has
improved substantially in recent years, yielding the need
for “proxy” methods (e.g. substitution) that can introduce
bias in exposure assessments obsolete. Moving forward, the
adoption of methods able to incorporate non-detects in any

probabilistic exposure assessment is encouraged. To facili-
tate this, the support of the environmental chemistry com-
munity will be needed. In the reporting of monitoring data,
clear description of method detection limits (e.g. MDLs,
LODs, LOQs), for each compound, sample, etc. must be
provided. Of course, no data analysis technique will ever be
able to address issues arising from limitations in the design
of the sampling program itself, particularly for compounds
such as pesticides characterised by pulsed applications and
often quick water column dissipation rates — especially in
lotic systems. Drawing a clear picture of the exposure to
these compounds might require high-frequency sampling
approaches when trying to characterise acute exposures
or time-integrated sampling approaches (e.g. passive sam-
plers) for a chronic exposure assessment.

Mixture Toxicity Assessment

A total of 12 pesticide classes (or subactivities as listed
in the BCPC database) were represented within the data-
set. Pyrethroids represented the most diverse group with
12 chemicals, followed by aliphatic organothiophosphates
(n=5), and triazoles (n=5). Table 2 lists the distribution of
HI values for the subsets of combinations of site type (e.g.
lake, wetland, etc.) and subactivity for which the number of
samples with a HI> | was greater than zero. SI Figures XX
show the distribution of HI values for each subactivity and
site type. A total of 13 subactivities (7 insecticides classes,
5 herbicides classes, and 1 fungicides class) are represented
in this list with nitroguanidine insecticides (represented by
neonicotinoid insecticides such as imidacloprid, or clothian-
idin) being the only class where HI values>1 were found

Table 2 Distribution of Hazard Index (HI) values for each combination of chemical class (i.e. subactivity) and site type where a Hazard Index
greater than 1 were observed. The number of samples considered within each combination is presented in the column “n”. (The complete distribu-

tions of HIs for each class/site type are presented in SI Figure 4).

Site type Activity Subactivity n HI between  HIbetween  Hlbetween  HI>10  Total
0and 0.1 0.1 and 1 1 and 10 Hi>1
Pond insecticides  nitroguanidine 6 0.00 0.00 100.00 0.00 100.00
Wetland insecticides  nitroguanidine 3 0.00 0.00 100.00 0.00 100.00
River or stream insecticides  nitroguanidine 912 64.25 14.14 21.05 0.55 21.60
Lake insecticides  nitroguanidine 10 90.00 0.00 10.00 0.00 10.00
River or stream insecticides  aryl organothiophosphate 893 6.38 87.23 5.60 0.78 6.38
River or stream  herbicides chlorotriazine 1004  66.53 28.69 4.48 0.30 4.78
River or stream insecticides  chlorinated cyclodiene 54 70.37 2593 3.70 0.00 3.70
River or stream insecticides  arylalkyl organothiophosphate 893 20.60 76.48 2.02 0.90 2.92
River or stream insecticides  pyrethroid 84 5.95 92.86 1.19 0.00 1.19
River or stream insecticides  aliphatic organothiophosphate 893 6.05 92.95 0.90 0.11 1.01
River or stream  herbicides chloroacetamide 1004 95.52 4.18 0.30 0.00 0.30
River or stream  fungicides methoxycarbamate 440 97.50 2.27 0.23 0.00 0.23
River or stream  herbicides phenylurea 597 95.81 4.02 0.17 0.00 0.17
River or stream insecticides  organophosphate 839 0.00 99.88 0.12 0.00 0.12
River or stream  herbicides benzoic acid 1066  99.62 0.28 0.09 0.00 0.09
River or stream herbicides phenoxypropionic 1054  99.24 0.66 0.09 0.00 0.09
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in sites other than rivers and streams. This group (neonic-
otinoids) was also the one with the highest percent of sam-
ples with HI> 1, with 100% of samples showing HI> 1 for
wetlands as well as ponds, 21.6% for rivers/streams, and
10% for lakes. However, these estimates likely represent an
overestimation of the risk mixture since all HI> 1 cases for
wetlands, ponds, and lakes, resulted from samples < MDL,
where a 2 MDL value was used for the estimation of the
HI. Even for rivers and streams, for which more data were
available, approximately 2/3 of the samples which resulted
in HI>1 did so based on concentration data<MDL (SI
Figure 4). This issue was noted earlier when discussing the
exceedances for imidacloprid itself and highlights the need
for analytical methods able to quantify concentrations below
water quality benchmark values. After the nitroguanidine
insecticides, aryl organothiophosphate insecticides (e.g.
chlorpyrifos and diazinon) were the group with the highest
percentage of samples with HI> 1 (6.4%). Finally, the last
group where the number of samples with HI>1 exceeded
5% were the chlorotriazine herbicides (atrazine and sima-
zine). For all other pesticide classes the number of samples
resulting in HI>1 was below 5%. The results from this
mixture toxicity assessment generally agree with what was
observed for the individual compounds where imidacloprid,
atrazine, and diazinon showed some of the highest exceed-
ances of water quality guideline values. Although elevated
HI values for some classes appear to be dominated by a few
select chemicals within each class, we tend to see the great-
est increase in risk (i.e., HI) in classes encompassing more
compounds. An example is the nitroguanidine insecticides,
which appear as the class showing the highest percent of
samples with HI > 1, ahead of the chlorinated cyclodienes,
despite endosulfan, the only representative of the chlori-
nated cyclodiene class, being the individual compound with
the highest percent of exceedances of the water quality val-
ues (7.2% as estimated from the EED, Table 1).

With the exception of the nitroguanidine insecticides for
which, as discussed, the risk could be overestimated due to
overly high MDLs, the rest of the chemical classes showed
HI values>1 in less than 6.5% of the samples, generally
remaining below, or fairly close to the overall goal of pro-
tecting 95% of the species 95% of the time (Solomon and
Takacs 2001). Of course, this exercise is only considering
mixture effects within each of these chemical classes, and
it is not considering effects resulting from the combined
effects (additive or otherwise) of various chemical classes
occurring at once. A more complex mixture toxicity assess-
ment approach would be needed to capture these potential
interactions.

Supplementary Information The online  version  contains
supplementary material available at https://doi.org/10.1007/s00128-
024-03879-w.
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