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used chemicals of environmental concern, because of their 
resistance to be metabolized and potential toxicity (Ashraf 
2017). Both, metals and POPs, have the ability to produce 
reactive oxygen species (ROS), leading to oxidative stress 
responses. After an exposure to chemicals, in the organ-
ism it can be triggered an imbalance between the produc-
tion of ROS and the antioxidant defence, leading finally to 
oxidative damage to biomolecules (Halliwell and Gutter-
idge 2007). The antioxidant defence represents an impor-
tant mechanism of action to prevent, neutralize and remove 
the toxicants from the body (Koivula and Eeva 2010). The 
antioxidant machinery is primary formed by antioxidant 
enzymes, as endogenous molecules, that are intended to 
repair systems (Pamplona and Costantini 2011), and which 
levels have been probed as useful biomarkers in birds (Koi-
vula and Eeva 2010). The importance of birds as bio-indi-
cators of pollution resides in their ability to modulate their 
enzyme activities and detoxification systems depending on 
the pollution levels, and thus adapt for survival in polluted 
areas (Fossi et al. 1991). The alteration of the antioxidant 
enzymes levels in several tissues of seabirds can be used 
as indicative of oxidative stress, since their main function 

Introduction

Metals of anthropogenic origin are very difficult to degrade 
and can become very toxic for living organisms (Duffus 
2001). Not only metals but there are other contaminants 
produced by human activities, such as the polychlorinated 
biphenyls (PCBs) which are included within the group 
of persistent organic pollutants (POPs). POPs are widely 
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In the present study, livers, kidneys and adipose tissue of Yellow-legged Gull (Larus michahellis) were collected. Samples 
were used to determine relationships between heavy metals/metalloids in liver and kidneys (Hg, Cd, Pb, Se and As) or 
persistent organic pollutants in adipose tissue (7 PCBs and 11 organochlorine pesticides) with biomarkers of oxidative 
stress (CAT, GPx, GR, GSH, GST, MDA) analysed in both internal organs. Three possible influencing variables have been 
studied: age, sex and sampling area. As a result, statistically significant differences (P < 0.05, P < 0.01) were only found 
according to the sampling area, with differences among the three studied areas found in both organs. Significant positive 
correlations (P < 0.01) were found in liver (Hg vs. GST; Se vs. MDA) and in kidney (As vs. GR; As vs. GPx; PCB52 vs. 
CAT; PCB138 vs. CAT). The scarcity in correlations suggests that the levels of pollutants found in animals were not high 
enough to trigger an effect at the oxidative level.
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is catalyzing the breakdown of free radicals (Congiu et al. 
2000; Ercal et al. 2001; Pinto et al. 2003; Berglund et al. 
2007).

The main aim of this study is to assess the oxidative 
stress related to metals and PCBs in the seagull Larus 
michaellis. The origin of the animals was considered, since 
some samples came from population control campaigns and 
others were slaughtered in recovery centres (animals with 
no possibilities of survival). The concentrations of 5 metals 
(Hg, Cd, Pb, Se and As) in liver and kidney samples, and the 
concentrations of 18 persistent organic compounds (7 PCB 
congeners: PCB180, PCB52, PCB101, PCB118, PCB28, 
PCB153 and PCB138; and 11 organochlorine pesticides 
(OCP): 4,4’-DDE, 4,4’DDD, DDT, Hexachlorobenzene, 
Heptachlor epoxide, Endrin, Endosulfan, β-HCH, γ-HCH, 
endosulfan sulfate and Dieldrin) in adipose tissue were 
evaluated. A battery of biomarkers of oxidative stress were 
analysed, including antioxidant enzymes activities (GPx, 
GR, CAT, and GST) and products (lipid peroxidation mea-
sured as MDA and GSH), in order to establish some corre-
lations between the pollutants concentrations and oxidative 
stress levels in L. michahellis.

Materials and Methods

Study Areas and Species

The study area is located in the north-west of Spain, in three 
zones, A Coruña (Galicia), Pontevedra (Galicia) and Gijón 
(Asturias). Two of these areas are already known by having 
potential problem of pollution. In Pontevedra, some stud-
ies have demonstrated the persistence of local Hg pollution 
(Besada et al. 1997; Beiras et al. 2002). Authors compared 
Hg concentrations in different coastal areas of Galicia, find-
ing higher metal levels in the Rias of Pontevedra. More-
over, sediments and sludge produced in estuaries containing 
Cd as the main heavy metal makes Pontevedra one of the 
most polluted areas (Vizuete et al. 2022). Regarding Gijón, 
there is a factory that uses Pb for the manufacturing of acer, 
being a potential source of this metal. On the other hand, the 
potential contamination in A Coruña should also be consid-
ered since it houses an important fishing port.

Animals were divided into groups depending on the age: 
adults (n = 63), juveniles (n = 22), and chicks (n = 24) based 
on the colour of plumage and other physical characteristics 
(i.e.: adult gulls have yellow legs, yellow beak with red 
spot-on tip and yellow eye), while juvenile gulls have pink 
legs, dark beak, and eye of brown colour). Gulls were also 
grouped according to sex (55 males, 54 females). Both sexes 
are similar in plumage, although males have larger sizes 
compared to females. L. michahellis is found throughout 

Spain and much of Europe. This species shows adaptability 
in its chosen habitat. In general, it can reside in a variety 
of locations, such as marshes, beaches and coastal inlands. 
These gulls have a non-selective feeding, their diet includes 
fish, amphibians, molluscs, small mammals, carrion…etc. 
There are two main food sources: the dumps and discarded 
waste produced by fishing activity. Gulls have a pernicious 
effect on other bird colonies, a negative effect on vegetation 
of the cliffs and the water quality, and also generate noise 
problems, dirt and damage buildings. This species can be 
considered sedentary in most of the regions they inhabit, 
because they remain close to their breeding colonies over 
the whole year, while in other areas they trace the courses of 
the great rivers to enter inland (SEO 2018).

Sampling Method

Gulls were collected during the period of 2014–2016 in 
two regions of the north-west of Spain (Galicia and Astur-
ias). The samples obtained have two different origins: the 
samples of the one group were collected in the wildlife 
recovery centers and they were from birds that entered there 
mainly because of physical injuries, provoked by electro-
cution or fall from the nest due to inexperience in flying. 
Only birds held at the rehabilitation center for less than 5 
days before dying were used. The second group consisted 
of animals from population control campaigns duly autho-
rized in Galician and Asturian cities, with no apparent signs 
or symptoms of injury or disease. During necropsy, several 
parameters such as mass measurements (g), organ weights 
(g), bill development and physical condition were registered. 
Age was determined based on the colour of the plumage, 
as there is a significant colour range to pure white adults, 
and 1-year-old juvenile gulls can be discerned from adult 
using plumage characteristics (Grant 1986). Sex was deter-
mined through observation of the gonads during necropsy. 
After sampling, the remains were destroyed hygienically 
by incineration, under current European legislation. After 
necropsy, all samples (from 109 animals) were immediately 
frozen and stored at − 20 °C until their preparation for anal-
ysis of metals and POPs, or -80 °C when tissues were used 
for biomarkers evaluation. Metals and biomarkers were 
analysed in all the livers and the kidneys (109 animals: A 
Coruña n = 21, Pontevedra n = 58, Gijón n = 30). OCPs and 
PCBs were evaluated in the adipose tissue (n = 31: A Coruña 
n = 10, Pontevedra n = 11, Gijón n = 10).

Liver and Kidney Metals Analysis

Hg, Cd, Pb, Se and As levels were analysed in the liver and 
kidneys of gulls. Briefly, 3–4 g of tissues were dried in an 
oven for 72 h at 65 °C. The metal levels were analyzed at 
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the Elemental and Molecular Analysis Laboratory of the 
Research Support Service (SAIUEX, accredited by ISO 
9001:2008; University of Extremadura), by means of ICP-
MS (Model 7900. Agilent Tech). Limit of detection (LOD) 
and of quantification (LOQ) were determined according 
to the ICH-Q2 guideline on method validation (Guideline 
2005), after analyzing repeated blanks with the same proce-
dure used for the samples, determining the standard devia-
tion. The dilution factor and the weight of the samples were 
considered to calculate the final values of both parameters 
(LOD < 0.003 mg/kg and LOQ < 0.009 mg/kg). The coeffi-
cient of variation for replicate samples (n = 5) were lower 
than 5.3%. Analytical blanks were included in all the run 
batches of samples (Vizuete et al. 2022).

OCPs and PCBs Analysis

POPs were analysed in adipose tissue. Briefly, 0.7 g of the 
tissue was chopped, mixed with 7 ml of n-hexane, homog-
enized and frozen overnight, allowing the fat to precipitate. 
The supernatant was added with H ⁠2SO ⁠4, shaken in an orbital 
shaker, sonicated and centrifuged, and the acid-containing 
phase discarded. The resulted extract was evaporated, re-
suspended in n-hexane and then used for OCPs and PCBs 
concentration measurements. A Bruker Scion 456 triple 
quadrupole gas chromatograph mass spectrometer was 
used to analyze the samples. To verify the suitability and 
performance of the procedure, the accuracy was estimated 
by means of recovery experiments, analyzing blank adipose 
tissue samples spiked at five concentrations levels of PCB 
and OCP mixtures. The LODs for PCBs and OCPs ranged 
between 0.006 and 0.079  µg/kg and 0.070–1.124  µg/kg 
lipid weight (lw), respectively. The LOQs were 0.159 µg/
kg for PCBs and 3.2 µg/kg for OCPs. It was not possible 
to observe any correlation between OCPs and the assessed 
biomarkers, therefore, the study focused on the PCBs (CBs 
28, 52, 101, 118, 138, 153, and 180). More information 
about can be found in Vizuete et al. (2018).

Biomarker Analyses in Liver and Kidney

Oxidative stress biomarkers (malondialdehyde (MDA), glu-
tathione-S-transferase (GST), glutathione reductase (GR), 
glutathione peroxidase (GPx) and catalase (CAT)) were 
analysed in the spectrophotometer (BioTek) and reduced 
glutathione (GSH) was analysed in the fluorometric (Syn-
ergy™ HT).

Approximately 0.5 g from each sample of liver or kidney 
were weighted and placed in a tube. Then, 3 ml of phos-
phate buffer (PBS; 0.1  M pH = 7.4) were added to carry 
out the homogenization. Samples were kept on ice during 
the process, to allow slow thawing. The homogenization 

was performed with a homogenizer 20HS rod (PCU Kine-
matica). Finally, the samples were centrifuged at 4000 rpm 
for 5 min (Centronic S-577). The supernatant obtained was 
divided into two aliquots, the first one was added with 0.1 
mL of PCA at 70% and centrifuged (4000 rpm, 15 min, 4 ºC 
(DIGICEN 21R)) to determine the concentration of MDA 
and GSH. The second one was centrifuged at 12,000 rpm 
for 20 min, at 4 ºC to determinate the rest of the oxidative 
stress biomarkers. Lipid peroxidation, estimated as thiobar-
bituric acid-reactive substances (TBARS), was determined 
by the methodology described by Recknagel et al. (1982). 
GSH levels were evaluated following the fluoromethric 
method reported by Hissin and Hilf (1976).

CAT activity was evaluated following the methodol-
ogy described by Clairbone (1985). The GST activity was 
determined using the method described by Habig et al. 
(1974). GPx activity was evaluated following the protocol, 
reported by Mahondas et al. (1984) with modifications. An 
adaptation of the method of Cribb et al. (1989) was used to 
measure GR activity. Total protein contents were measured 
in the tissue homogenates following the Bradford (1976) 
method. Activity/levels were expressed in relation to grams 
of protein in the homogenates.

Statistical Analyses

Data was analysed using statistical software Prism 5 version 
5.03 for Windows (GraphPad software, Inc., CA). Results 
were expressed as mean ± SEM, and the level for statistical 
significance was defined as p < 0.05. Data did not show a nor-
mal distribution and the variances were not homogeneous, 
thus a non-parametric Kruskal-Wallis test was applied (Zar 
1984). Differences among colonies were determined with 
the Dunn´s test. Correlations (metals-biomarkers, PCBs-
biomarkers) were evaluated by a Spearman test.

Results and Discussion

Table  1 shows metal concentrations, enzyme activities, 
reduced glutathione and lipid peroxidation levels in liver 
and kidney of L. michahellis. Table  2 shows the concen-
trations of PCBs and 4,4-DDE found in adipose tissue 
(compound showing concentrations < LOQ are not shown). 
The distribution of Cd, Pb and Se in liver and kidney were 
higher in kidney than in liver. This pattern has been already 
reported for Cd (Bianchi et al. 2008; Abdullah et al. 2015). 
The levels of Hg were similar in liver and in kidneys, albeit 
slightly higher in kidneys. Regarding the biomarkers, higher 
levels were found in liver than in kidneys for GST, CAT 
and GPx. On the other hand, levels of MDA, GSH and GR 
were higher in kidneys. No sex or age-related differences 
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study in mallards, it was reported that 2.8 mg/kg of Se in 
liver decreased survival and growth and increased MDA 
concentrations (Hoffman et al. 1989). These levels of Se 
in the liver are lower than those found in the present study 
(7.18 ± 0.32 mg/kg) in L. michahellis. This difference could 
justify the positive correlation between MDA and Se (Table 
S1), and possible harmful effects of this element in the sam-
pled seagulls. The relationship between metals and MDA 
levels has also been found for other metals. For example, 
Osičková et al. (2014) found a correlation between lead (Pb) 
and MDA in the liver of Coturnix coturnix japonica when 
they were exposed to Pb (through insertion of Pb shots 
(1.5 g)). In the present study, Pb levels were much lower 
(0.55 mg/kg), which can explain the lack of correlations and 
liver damage in gulls. MDA-Pb correlations were not found 
in kidney neither for mallards nor in the present study. The 
liver is a major detoxifying organ and the main source of 
ROS generation in birds, being the first organ showing dam-
age (Paskova et al. 2011; Vitula et al. 2011).

Reduced Glutathione (GSH)

In metal-induced oxidative stress, glutathione metabolism 
has an essential role because the functional thiol group of 
glutathione serves as a binding site for many metals (Pinto 
et al. 2003). The levels of GSH (Table 1) in the liver were 
lower than in kidneys (1.13 ± 0.07 and 1.34 ± 0.11 nmol/
mg protein, respectively). There is a diversity of results 
found in literature regarding this specific biomarker. In this 
sense, the exposure to metals has been associated to tGSH 
increased levels in different species of birds, such as Shaox-
ing ducks, mallards and starlings, whereas other studies did 
not find any difference on tGSH levels in birds inhabiting a 
contaminated area respect to the same species of a selected 
reference area (Koivula and Eeva 2010). In this sense, the 
samples of the present study did not show any correlation 

in the biomarkers were found when they were treated in 
global for the 109 animals. However, some differences were 
found related to the sampling area. Results are shown and 
discussed below for each biomarker.

Malondialdehyde (MDA)

Malondialdehyde (MDA) is a byproduct derived from lipid 
peroxidation that gives information about oxidative impair-
ment through the measure of TBARS (thiobarbituric acid 
reacting substance) levels (Pinto et al. 2003). MDA levels 
were lower in liver (1.25 ± 0.09 nmol/mg protein) than in 
kidneys (1.82 ± 0.12 nmol/mg protein). Statistically signif-
icant differences were found related to the sampling area 
(liver: Pontevedra > Gijón > A Coruña (Fig.  1); kidneys: 
Pontevedra > Gijón = A Coruña (Fig. 2)). Regarding the cor-
relation analysis, MDA was only correlated to Se levels in 
the livers of gulls. This result agrees with the positive cor-
relation found in willets (Catoptrophorus semipalmatus) 
from the San Diego, CA, USA, between hepatic Se concen-
tration and MDA (Hoffman 2002). After a dietary exposure 

Table 1  Metal concentration (mg/kg dw), lipid peroxidation levels (nmol/mg protein), reduced glutathione (nmol/mg protein), enzyme activities 
(nmol/min/mg protein), in liver and kidney samples of Larus michahellis

Liver Kidney
Metal N Mean ± SEM Median (range) Mean ± SEM Median (range)
Hg 109 2.95 ± 0.21 2.5 (16.39–0.39) 2.98 ± 0.18 2.62 (0.22–11.32)
Cd 109 4.13 ± 0.59 2.61 (0.11–50.9) 18.56 ± 2.46 9.25 (0.15–149.6)
Pb 109 0.55 ± 0.07 0.41 (0.03 ± 7.89) 2.50 ± 0.78 0.95 (0.07–79.81)
Se 109 7.18 ± 0.32 7.34 (0.31 ± 15.91) 10.91 ± 0.41 10.95 (0.73–23.29)
As 109 6.05 ± 0.39 5.34 (0.39 ± 23.56) 5.28 ± 0.75 3.85 (0.45-81)
Biomarker N Mean ± SEM Median (range) Mean ± SEM Median (range)
MDA 109 1.25 ± 0.09 1 (0.1–6.29) 1.82 ± 0.12 1.41 (0.25–8.29)
GSH 109 1.13 ± 0.07 1.1 (0.02–3.83) 1.34 ± 0.11 1.03 (0.09–7.76)
GST 109 219.6 ± 10.46 200 (34.17–551.3) 199.3 ± 10.74 174 (39.44–528.9)
CAT 109 1.05 ± 0.1 0.82 (0.8–7.6) 0.35 ± 0.24 0.31 (0.01–1.28)
GR 109 0.03 ± 0.001 0.03 (0.01–0.08) 0.06 ± 0.003 0.06 (0.02 ± 0.27)
GPx 109 0.22 ± 0.02 0.2 (0.02–0.98) 0.21 ± 0.01 0.19 (0.04–0.85)

Table 2  Concentration of PCBs and OCPs (expressed in µg/kg lw) in 
adipose tissue samples of L. michahellis (n = 31)
PCB N Mean ± SEM Median (range)
PCB 180 31 297.8 ± 91.63 78.80 

(7.17–1824)
PCB 52 31 0.33 ± 0.09 0.16 (0-2.73)
PCB 101 31 1.69 ± 0.46 0.83 (0.16–11.52)
PCB 118 31 35.09 ± 10.62 9.25 (1.23–241.6)
PCB 28 31 1.12 ± 0.34 0.29 (0.07–7.16)
PCB153 31 446.8 ± 139 129.6 

(14.92–2865)
PCB 138 31 209.2 ± 61.39 51.02 

(8.47–1253)
4,4-DDE 31 178.1 ± 51.80 46.94 (5.7–1230)
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Fig. 2  MDA, GSH, GST, CAT, GR and GPx levels in kidney of Yellow-legged gulls from three different zones: Pontevedra (n = 21), A Coruña 
(n = 58) and Gijón (n = 30). Statistical significance *: p < 0.05; **: p < 0.01

 

Fig. 1  MDA, GSH, GST, CAT, GR and GPx levels in liver of Yellow-legged gull from three different zones: Pontevedra (n = 21), A Coruña (n = 58) 
and Gijón (n = 30). Statistical significance *: p < 0.05; **: p < 0.01
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Catalase (CAT)

The activity of catalase was 1.05 ± 0.10 µmol/min/mg protein 
in livers and 0.35 ± 0.24 µmol/min/mg in kidneys, which are 
generally considered as low levels. However, it should be 
considered that GPx is the main enzyme used by L. micha-
hellis and other birds to catalyse H2O2(Hernández-García 
2010; Koivula et al. 2011). Cd exposure has been shown 
to increase H2O2 levels in rat pituitary membrane (Pillai et 
al. 2002). This relationship could not be proven in the pres-
ent study, since no correlations were found, maybe because 
Cd levels were not high enough to provoke an effect at the 
oxidative stress level. Only a slight negative correlation 
was stablished in kidneys between CAT and PCB52, with a 
positive correlation found with PCB138 (Table S1). These 
correlations did not suggest a strong impact of PCB on the 
oxidative stress, as was shown by Elia et al. (2005), who 
mentioned that variations in antioxidant response of carp 
seem to be linked more to biological status than to the pres-
ence of PCBs congeners in the liver. The presence of POPs 
in the organism is usually related to the adipose tissue, being 
only released in the blood torrent in specific circumstances 
(as starving periods or weight loss) (La Merrill et al. 2013). 
In the present study, the physical status of animals did not 
suggest this impairment and, in general, levels of POPs 
found in adipose tissue were not high. Thus, these can be 
the reasons for the lack of effects on the tested biomark-
ers and their correlation related to PCBs. Statistically sig-
nificant sampling area-related differences were found (livers 
(Fig. 1): A Coruña = Gijón > Pontevedra (p < 0.01); kidneys 
(Fig. 2): Pontevedra = Gijón > A Coruña).

Glutathione Reductase (GR)

The GR activity levels obtained in the present study were 
0.03 ± 0.0001 nmol/min/mg protein and 0.06 ± 0.003 nmol/
min/mg protein in livers and kidneys, respectively. Hoffman 
et al. (2000) reported increased GR activities in goslings 
fed with 48%-Pb contaminated sediment (mean hepatic 
concentration of 6.57 ppm Pb) and they suffered from lipid 
peroxidation. On the contrary, Mateo and Hoffman (2001) 
found that young mallards and Canada geese exposed to Pb-
contaminated sediments showed increased lipid peroxida-
tion and GSH levels but there were no visible effects on GR 
activity. In the present study, a slight correlation was found 
between GR and As in kidneys (Table S1). Regarding the 
differences among sampling areas, for this enzymatic activ-
ity it was only observed for the kidneys between animals 
sampled in A Coruña and Pontevedra (p < 0.05).

between GSH and the studied contaminants. There were sta-
tistically significant differences in both livers and kidneys 
between samples from Gijón and A Coruña (p < 0.05) or 
Pontevedra (p < 0.01) (Figs. 1 and 2). Samples from Gijón 
always showed higher concentrations of metals, followed 
by A Coruña and, finally, Pontevedra. It was not possible to 
find any correlation between GSH and any of the five metals 
studied, neither with any of the PCBs. Moreover, Isaksson et 
al. (2005) did not find great variation in GSH levels between 
rural and urban adults of great tit (Parus major). They sug-
gested as a possible explanation that the basic levels of GSH 
in adult birds were already high enough to accommodate 
the increased antioxidant defence, that is, without increas-
ing the supply of GSH in the plasma, or simply that there is 
some environmental or physiological limitation in the levels 
of GSH that adults reach in the habitats.

As previously mentioned, in the present study it was 
not possible to find any correlation between GSH and any 
metal, however Hoffman (2002) found a positive strong 
correlation between Se concentration and GSH peroxidase 
activity in the livers of diving ducks from the San Fran-
cisco Bay, CA, USA (r = 0.63, p < 0.05), finding a negative 
strong correlation between hepatic Se and GSH (r = − 0.740, 
p < 0.05). Accordingly, the present study showed a negative 
(not significant) correlation between GSH and Se (r=-0.16, 
p = 0.09) (Table S1).

Glutathione-S-transferase (GST). In the present study, 
the activity of GST was very similar in both organs (Table 1), 
although the levels in liver were slightly higher (219 ± 10.46 
nmol/min/mg protein) than in kidneys (199.3 ± 10.74 nmol/
min/mg protein). The GST activity was different depending 
on the sampling area. Indeed, significant differences were 
found in the livers and kidneys between Pontevedra and 
Gijón, and also in kidneys between A Coruña and Ponteve-
dra. When the relationship between GST and the selected 
contaminants was studied (Table S1), only one negative cor-
relation was found between the enzymatic activity and Hg 
(p = 0.02). Other authors have reported correlations between 
different enzymatic activities (GR, CAT and GST) and met-
als in nestling pied flycatchers living near a sulphide ore 
smelter in Sweden (Berglund et al. 2007). They found an 
increase in hepatic GR and CAT, specifically influenced by 
Pb and Fe, suggesting increased oxidative stress as a con-
sequence of the polluted area, but not significantly elevated 
lipid peroxidation and GST. However, Mateo et al. (2003) 
found that mallards exposed to Pb showed increased oxi-
dative stress by having decreased GST activity. Altogether 
shows a species-dependent enzymatic activity.
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In this sense, animals from Pontevedra showed higher lev-
els of MDA and lower levels of GSH and GST (Table S3). 
The same results were observed when the comparison was 
performed between adults and juveniles of Pontevedra and 
adults and chicks from Gijón. The decrease in lipid peroxi-
dation has generally been attributed to the increase in GSH, 
since this is the substrate for all defense mechanisms against 
lipid peroxidation. The increase in GSH is related to the 
stimulation of the detoxification mechanism (such as GST 
activity) (Ookhtens and Kaplowitz 1998). As mentioned, 
these relationships can be observed in the present study 
(Table S3), where the animals from Pontevedra showed 
higher levels of MDA (lipoperoxidation), with decreased 
levels of GSH and GST in relation to what was observed 
in the Gijón seagulls. These results could be related to a 
greater and more efficient detoxification mechanism in 
Asturian gulls than in those from Pontevedra. The differ-
ences were observed in both liver and kidney, obtaining 
similar results when the statistical analysis was performed 
on the geographic location-sex pair than when it was done 
taking into account the geographic location-age pair. These 
pairs were also applied to the metals and PCBs results, but 
no differences were found, so that it was not possible to 
establish a relationship between contaminants and the effect 
at the oxidative level.

Conclusion

The potential effect of pollutants in L. michahellis was 
evaluated through the analysis of several biomarkers of 
effect (MDA, GSH, GST, CAT, GPx and GR), considering 
endogenous and exogenous factors. It was observed that the 
sample collection area may indeed be relevant at the time of 
future biomonitoring studies, according to the differences 
found in the biomarkers analysed depending on the loca-
tion where animals were sampled (Gijón, Pontevedra and A 
Coruña). However, in terms of age and sex, no significant 
differences were found in any of the biomarkers studied. 
In addition, after studying the possible correlations with 
metals and PCBs, there were few cases where statistically 
significant correlations were found. Thus, it was concluded 
that the concentration of metals and PCBs were not high 
enough to provoke the activation of the antioxidant system. 
The results of the present study highlight the need for eco-
toxicological studies to obtain data on specific species over 
a broader range. Higher levels of metals could represent a 
risk to animal health, especially Hg, which was positively 
correlated with GST, or As that was correlated with GPx 
and GR.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s00128-

Glutathione Peroxidase (GPx)

Both liver and kidney samples showed similar GPx activi-
ties, 0.22 ± 0.02 nmol/min/mg protein and 0.21 ± 0.01 nmol/
min/mg protein, respectively. The reaction pathway fol-
lowed by this enzyme involves the use of H2O2 as a sub-
strate. The fact that Cd exposure increases H202 levels (Pillai 
et al. 2002), extrapolated to birds, could explain a possible 
correlation between GPx activity and Cd concentration in 
these animals. Indeed, Espín et al. (2014) found this signifi-
cant correlation in vultures in Alcoy, Spain. However, it was 
not possible to observe a relationship in the present study. In 
liver, results showed a significant difference between Ponte-
vedra and Gijón (p < 0.05). In kidneys, the significant differ-
ences were found in Pontevedra with respect to Gijón and 
A Coruña (p < 0.05). As for GR levels, a slight correlation 
was found between As and GPx in the kidneys (p < 0.05) 
(Table S1).

Correlation Study Applied to Biomarkers

When the Spearman correlation test was conducted among 
the oxidative stress biomarkers (Table S2), some positive 
correlations among several biomarkers were found. In the 
liver, positive significant correlations were found between 
GSH-GST (r = 0.41; p = 0.02), GSH-CAT (r = 0.42; p = 0.02), 
GST-CAT (r = 0.53; p = 0.002), GST-GR (r = 0.38; p = 0.03). 
However, stronger correlations were found in the kid-
neys: MDA-GSH (r = 0.37; p = 0.03), MDA-GR (r = 0.37; 
p = 0.04), GSH-CAT (r = 0.57; p = 0.0009), GSH-GR (r = 0.7; 
p = 0.00001), GSH-GPx (r = 0.58; p = 0.0007), GST-GR 
(r = 0.51; p = 0.0035), GST-GPx (r = 0.38; p = 0.04), CAT-
GR (r = 0.52; p = 0.0026), CAT-GPx (r = 0.53; p = 0.002), 
GR-GPx (r = 0.77; p = 0.0000005). These associations were 
expected, due to the interconnections existing among the 
biomarkers belonging to the oxidative stress system.

Relationships Between Factors

Once the results from all the animals were considered as a 
whole, they were grouped according to pairs of factors: geo-
graphical location-sex or geographical location-age. Then 
we obtained data for: males or females of A Coruña, Ponte-
vedra or Gijón, and adults, juveniles, or chicks of A Coruña, 
Pontevedra or Gijón. Due to the low number of animals in 
some groups, it was not possible to apply a Principal Com-
ponents Analysis, but an ANOVA was performed for each 
one of the biomarkers and contaminants and, furthermore, 
compared among them.

For the 109 samples it was possible to observe statisti-
cal differences between females and males of Pontevedra in 
comparison to females and males from the other two areas. 
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