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the toxicity of UV stabilizers, such as endocrine disrup-
tion, stress response, and neurotoxicity (Kim et al. 2014; 
Martín-Folgar et al. 2018; Tao et al. 2020). In particular, 
benzophenone-3 (BP-3), one of the most widely used UV 
stabilizers (Kim and Choi 2014; Bratkovics et al. 2015), is 
known to inhibit somatic growth, embryonic development, 
and reproduction of the water flea Daphnia magna (Im et 
al. 2022). Moreover, our previous studies have reported the 
combined effect of polyethylene (PE) MP fragments and 
BP-3 on acute toxicity (Na et al. 2021) and chronic toxicity 
(Song et al. 2021) in D. magna.

Most D. magna chronic toxicity studies with MPs have 
been conducted in the standard condition with neonates 
under 24  h old (OECD 211, 2012). However, in the real 
environment, populations consist of different age groups, 
which have different sensitivities to toxic chemicals (Muys-
sen and Janssen 2007; Wagner et al. 2017; Ellis et al. 2020). 
For instance, neonates have shown higher toxicity than 
adults when exposed to insecticides (Ginjupalli and Bald-
win 2013), plastic additives (Shen et al. 2019), pharmaceu-
ticals (Wagner et al. 2017), and microplastic (Eltemsah and 
Bøhn 2019). Therefore, chronic toxicity assessments with 
different age groups are required to better predict the eco-
logical outcome of MPs.

Introduction

Microplastic (MP) pollution is ubiquitous in the aquatic 
environment, from riverine and coastal waters to remote 
lakes and open seas (Ajith et al. 2020; Li et al. 2020; 
Dusaucy et al. 2021). MPs are a growing concern due to 
their potential harms: intestinal damage, oxidative stress, 
neurotoxicity, and behavioral change when ingested by 
organisms (De Sá et al. 2018; Botterell et al. 2019; Gola et 
al. 2021). Furthermore, MPs may introduce chemical addi-
tives into the environment, such as plasticizers, flame retar-
dants, and ultraviolet (UV) stabilizers, which are known to 
be toxic to aquatic organisms (Cole et al. 2011; Koelmans 
2015; Gunaalan et al. 2020). Previous studies have focused 
on plasticizers and flame retardants that are more commonly 
found in plastics, thus the adverse effect of UV stabilizers 
on aquatic organisms is relatively unknown (Gunaalan et 
al. 2020; Carve et al. 2021). Several studies have reported 
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Parental exposure to MPs may induce maternal effects 
that influence offspring fitness, including development, 
somatic growth, and reproduction (Mousseau and Fox 
1998; LaMontagne and McCauley, 2001). Several studies 
have demonstrated the maternal effect in D .magna under 
MPs exposure (Martins and Guilhermino 2018; Liu et al. 
2022; Song et al. 2022). For instance, Liu et al. (2022)dem-
onstrated that parental exposure to polystyrene MPs and 
roxithromycin decreased the reproduction of D. magna in 
the subsequent generation. In addition, Song et al. (2022) 
reported the transgenerational effect of PE MP fragments 
containing BP-3 across four generations. However, there is 
limited knowledge about the maternal effects of MPs in D. 
magna at different ages and broods.

The aim of this study was to investigate the maternal 
effect of PE MP fragments containing BP-3 additive (MP/
BP-3 fragments) on chronic toxicity to D. magna. We evalu-
ated the difference between (1) neonate (< 24 h) and adult (5 
d) exposure groups and (2) the first and third brood groups 
over two subsequent generations. We hypothesized that 
(1) the neonate exposure will induce higher chronic toxic-
ity and maternal effect than the adult exposure and (2) the 
maternal effect will be higher on the first brood than on the 
third brood offspring.

Materials and Methods

Preparation and Physiochemical Characterization of 
MP/BP-3 Fragments

Virgin PE pellets and BP-3 were purchased from Sigma-
Aldrich, USA. The PE pellets were washed with hexane and 
methanol (J.T. Baker, USA), then rinsed with distilled water 
to eliminate plastic additives (Lee et al. 2014). After dry-
ing in an oven (30 ℃), the BP-3 was incorporated into the 
PE pellets(3% w/w) in a mixing extruder (LME, Dynisco, 
USA). The BP-3 content was chosen based on the study 
by Hahladakis et al. (2018), where they reported that UV-
stabilizer composition in plastic is generally less than 3%. 
Then, the MP/BP-3 fibers were cut into fragments (< 1 mm) 
and ground in a freezer mill (Freezer/Mill 6875, SPEX® 
Sample Prep, USA). The products were dried in a desic-
cator and sieved using a stainless-steel mesh (≤ 20  μm) 
to obtain MP/BP-3 fragments. The morphology and size 
of MP/BP-3 fragments were analyzed under a field emis-
sion scanning electron microscope (FE-SEM, Quanta 250 
FEG, FEI, USA). The BP-3 content in MP/BP-3 fragments 
was analyzed by high-performance liquid chromatography 
(HPLC, Agilent, USA) after extraction in methanol (Song 
et al. 2021).

The leaching of the BP-3 additive was determined by stir-
ring MP/BP-3 fragments (1.0 mg L− 1) in a 2 L M4 medium 
for 48 h. The samples (2 mL) were collected periodically, 
filtered with 0.45  μm PTFE syringe filters (Whatman, 
USA), and analyzed for BP-3 concentration using HPLC, 
as mentioned above.

Multigenerational Chronic Toxicity Testing of MP/
BP-3 Fragments

Daphnia magna clones, provided by the National Institute 
of Environmental Research (Republic of Korea), have been 
cultured since 2019 in accordance with the Organization for 
Economic Cooperation Development (OECD) Test Guide-
line 211 (OECD 2012). Daphnids were incubated in 2 L of 
M4 medium at 20 ± 0.1 ℃ with a light/dark cycle of 16:8 h, 
and the medium renewal was every 3 days. The daphnids 
were fed with the freshwater algae, Chlorella vulgaris 
(5.0 × 105 cells mL− 1; Aquanet, Republic of Korea) daily. 
Female neonates (< 24 h old and ≥ 3rd brood) were used to 
maintain the laboratory culture.

Two generational chronic toxicity tests (n = 15) were 
conducted in compliance with the OECD Daphnia magna 
reproduction test (OECD 2012). The third brood female 
neonates under 24  h old produced by same-aged mothers 
were collected from the laboratory culture for F0 genera-
tion. Each daphnid was grown in a 100-mL glass beaker 
containing 50 mL M4 medium under the same conditions 
as the culture (20 ± 0.1 ℃ and light/dark cycle 16:8 h). The 
daphnids were fed with 5.0 × 105 cells mL− 1 of C. vulgaris 
every day, and the medium was refreshed every two days. 
Only the parental generation (F0) was exposed to 1.0 mg 
L− 1 of MP/BP-3 fragments at neonate (< 24 h old) and adult 
(5 d old) stages. To compare the somatic growth and repro-
duction of daphnids at the same age (21 d old), neonate and 
adult groups were exposed for 21 d and 16 d, respectively. 
For recovery in the F1 generation, the first (F1B1) and third 
(F1B3) brood neonates were grown in a clean M4 medium. 
Growth (adult and offspring body length) and reproduction 
(number of offspring per female, days to first brood) were 
determined for 21 d.

Statistical Analysis

Statistical analyses were performed with SAS version 9.4 
(SAS Institute Inc., Cary, NC, USA). One-way analysis of 
variance (ANOVA) and post-hoc Tukey’s honest signifi-
cance test were used to test the significance of differences 
(p < 0.05) in neonate and adult groups. Student’s t-tests were 
used to measure significant differences (p < 0.05) in the first 
and third brood groups.
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Results and Discussion

Physiochemical Properties of MP/BP-3 Fragments

The shape of synthesized MP/BP-3 fragments was irregu-
lar thin pointy flakes (Fig.  1). The size of the fragments 
was 18.23 ± 8.02 μm (n = 60), which is an edible size for D. 
magna (Rehse et al. 2016; Frydkjær et al. 2017; Canniff and 
Hoang 2018). The amount of BP-3 in MP/BP-3 fragments 
was measured as 2.89 ± 0.20% w/w. In the M4 medium, BP-3 
was gradually released from MP/BP-3 fragments(Fig.  2), 
thus, the leaching was up to 49.1% for 48 h. The leaching of 
BP-3 can further aggravate the toxicity of MP fragments in 
D. magna (Na et al. 2021).

Different Chronic Toxicity and Maternal Effects in 
Neonate and Adult Exposure Groups

MP/BP-3 fragments significantly (p < 0.05) reduced the 
growth (body length) and reproduction (number of off-
spring per female) in the adult group of F0 generation rela-
tive to the control (Fig.  2), but not in the neonate group. 
Our previous study reported that pristine PE MP fragments 

(44.39 ± 11.16  μm) were not acutely toxic to neonates 
(< 24  h old) but toxic to juveniles (4 d old) (Song et al. 
2021). Additionally, Liu et al. (2018) demonstrated that the 
oldest daphnids (21 d old) were the most sensitive to poly-
styrene nanoplastics compared to younger individuals (1, 4, 
7, and 14 d old). Considering that the filtering and feeding 
rate of D. magna increase with body size (McMahon 1965), 
faster and greater uptake of adult daphnids may aggravate 
the chronic toxicity of MP/BP-3 fragments. However, the 
bioaccumulation kinetics of MP/BP-3 fragments in D. 
magna should be investigated to evaluate the toxicity dif-
ference between neonates and adult daphnids. On the other 
hand, D. magna, in its early life stage, may have more pos-
sibility of acclimation to MP/BP-3 stress (Klerks and Weis 
1987; Dietrich et al. 2010).

Several studies have reported the negative effects of 
MPs on D. magna reproduction and growth (Martins and 
Guilhermino 2018; An et al. 2021; Trotter et al. 2021). For 
instance, An et al. (2021) demonstrated that polyethylene 
MP fragments (17.23 ± 3.43 μm) reduced the total number 
of offspring and adult body length in D. magna. Ingestion of 
MP particles can hinder the feeding activities of organisms 
and decrease the energy budget for reproduction and growth 

Fig. 2  Chronic toxicity and maternal effect of MP/BP-3 fragments in 
the neonate and adult Daphnia magna in terms of (a) body length and 
(b) number of offspring per female. F0 and F1 indicate parental and 
first generation, respectively, and B3 indicates the third brood. Only 
the F0 generation (neonate < 24 h and adult 5 d) was exposed to MP/

BP-3 fragments (1.0 mg L− 1) until 21 d old, and F1 generation (third 
brood) was recovered in M4 medium (control) for 21 d. All data are 
expressed as mean ± standard deviation (n = 15). Lowercase letters 
indicate significant differences (p < 0.05) among the three treatment 
groups

 

Fig. 1  Scanning electron micros-
copy (SEM) image of (a) MP/
BP-3 fragments and (b) BP-3 
(2.89 ± 0.20% w/w) leaching 
from MP/BP-3 fragments in M4 
medium (1.0 mg L− 1) at 20 ℃ 
for 48 h. All data are expressed as 
mean ± standard deviation (n = 3)
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The first brood of D. magna is generally less stable than 
subsequent broods (Kim et al. 2014). The number of off-
spring of the F1B1 control (46.15 ± 16.09) was significantly 
(p < 0.05) lower than in the F1B3 control (71.2 ± 10.49), 
which is far lower than the number (≥ 60) recommended 
in the OECD guideline (OECD 2012). However, parental 
exposure to MP/BP-3 fragments increased the number of 
offspring per female (71.2 ± 13.74) to the control level in the 
F1B1 recovery group. Under this stress condition, D. magna 
may use more energy for growth and reproduction than for 
defense (Costantini 2014; Im et al. 2019). Indeed, the F1B1 
recovery group reached primiparity significantly faster 
(10.6 ± 0.51 d) than the control group (12 ± 1.22 d), leading to 
higher somatic growth and reproduction. However, the size 
of the F1B1 offspring (818.27 ± 19.00 μm) was significantly 
smaller than that of the control group (828.95 ± 17.96 μm). 
Given that offspring fitness increases with size (Smith and 
Fretwell 1974; Moran and Emlet 2001), the above findings 
suggest that the first brood of D. magna responded to MP/
BP-3 stress by accelerating somatic growth and reproduc-
tion, which resulted in less fit offspring.

Conclusion

Contrary to the initial hypothesis, MP/BP-3 fragments 
induced greater chronic toxicity and maternal effect in adults 
than in neonates, inhibiting the growth and reproduction in 
both F0 and F1 generations of D. magna. On the other hand, 
the maternal effect of MP/BP-3 fragments was higher in 
the first brood neonates than in the third brood neonates, 
enhancing growth and reproduction in the F1 generation. 
This study demonstrates different MP toxicity and maternal 
effects in D. magna at different ages and broods, providing 
insight into the ecological risk of MPs. However, further 
studies are required over multiple generations to identify the 
transgenerational effect of MPs containing plastic additives.

(Cole et al. 2013; Murphy and Quinn 2018). Moreover, 
the irregular shape of MP fragments can result in intersti-
tial damage and a longer retention time in the gut (An et al. 
2021; Silva et al. 2021). Recent studies emphasize the poten-
tial harm of plastic additives in MPs (Schrank et al. 2019; 
Zimmermann et al. 2020; Koelmans et al. 2022). BP-3 is 
known to act as an endocrine-disrupting chemical (Kim and 
Choi 2014; Wang et al. 2016), possibly by mimicking the 
ecdysone hormone (Ozáez et al. 2014). Ecdysone is a type 
of steroid hormone that regulates molting and development 
in insects and invertebrates, including D. magna (Pan et al. 
2021). In particular, Lambert et al. (2021) observed that 
BP-3 significantly altered the expression of genes related 
to endocrine activity in D. magna, leading to a significant 
decrease in the number of offspring and body length. Song 
et al. (2021) also reported that BP-3 significantly decreased 
the embryonic development of D. magna.

Parental exposure to MP/BP-3 fragments did not influ-
ence the life-history traits of the F1 generation in the neo-
nate group (F1B3). However, the number of offspring 
significantly (p < 0.05) decreased in the adult group of the F1 
generation relative to the F1 control (Fig. 2b), indicating a 
maternal effect of MP/BP-3 fragments. Parental exposure in 
the adult group may influence the fitness of progeny (Beyer 
and Hambright 2017; Shaw et al. 2017), possibly leading 
to reduced reproduction in the F1 generation. In addition, 
the adverse effect of MPs may be exacerbated since the 
BP-3 additive is known to hinder development in D. magna 
embryos (Song et al. 2021). Moreover, the embryos (F1 
generation) in the brood chamber can be directly exposed to 
MP/BP-3 fragments during parental exposure. Several stud-
ies have reported that MPs were found in the brood cham-
ber (Guilhermino et al. 2021) and in developing embryos 
(Rosenkranz et al. 2009) of daphnids.

Different Maternal Effects in the First and Third 
Brood of Neonate Exposure Group

As discussed in the previous section, parental exposure of 
MP/BP-3 fragments to neonates did not influence the life-
history traits of the third brood (F1B3). However, this expo-
sure significantly (p < 0.05) increased the body length and 
offspring number of the first brood of D. magna (F1B1) 
relative to the control (Fig. 3). Several studies have reported 
increased maternal effect on the first brood of D. magna. For 
instance, Ellis et al. (2020) demonstrated that the first brood 
of offspring was the most sensitive to parental exposure to 
silver and titanium oxide nanomaterials. Additionally, Liu 
et al. (2012) reported that the third brood offspring showed 
enhanced recovery after parental exposure to the pesticide 
buprofezin compared to the first brood.
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