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(GC) ecoregion – hosts around 10 million inhabitants and 
supports economic activities, such as tourism, mining, agri-
culture, fishing, and shrimp farming, which pose a threat to 
its rich biodiversity, endemism, high biological productiv-
ity, and its environmental health. The main activities that 
produce trace-metal emissions in the GC ecoregion are gold 
mining and refining, Hg mining, thermoelectric plants, agri-
culture, aquaculture, and deforestation (Páez-Osuna et al. 
2017).

Therefore, it is important to know metal bioavailabil-
ity in organisms of ecological and commercial importance 
from these environments to establish their baseline and 
risks involved for human consumption of these organisms. 
Panopea sp. clams (family Hiatellidae) – considered as a 
delicacy food – are mud-burrowing mollusks of commer-
cial importance for human consumption. In Mexican coasts, 
two species of this genus exist, the Pacific geoduck P. gen-
erosa (Gould 1850) and the Cortez geoduck P. globosa 
(Dall 1898). In Mexico, studies about Panopea clams have 
been focused on age, growth, mortality, cultures, genetics, 
ecology and fisheries (Cortez-Lucero et al. 2011; Suárez-
Moo et al. 2013; Cubillo et al. 2018). Conversely, several 
studies have reported the potential use of bivalves as metal 

Introduction

Metals occur naturally in aquatic ecosystems and are 
leached from soil, rocks, and the atmosphere into natural 
waters. Generally, they do not result in any serious or del-
eterious effects on human health; however, anthropogenic 
activities promote an increase in environmental metal pollu-
tion. Northwest Mexico – particularly the Gulf of California 
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pollution bioindicators in marine ecosystems (Rainbow 
2018; Lu et al. 2019).

Panopea clams are important to study considering that 
they fulfill most of the required features of ideal biomonitor 
organism (sedentary, filter-feeding, abundance, availabil-
ity, and commercial importance) (Páez-Osuna and Osuna-
Martínez 2011) of pollutants. In addition, Panopea clams 
exhibit a longevity higher than other clam species, thus, 
they could reflect a good integration of metal content over 
long periods of time. According to the open literatures, only 
two published studies are available on metal content in Pan-
opea abrupta clams (Oliveira et al. 2011; Tong et al. 2016). 
Therefore, the aim of this study is to analyze Cd, Cu, Hg, 
and Zn in soft tissues (siphon, gills, mantle, and viscera) of 
Panopea clams from the west coast of Baja California (P. 
generosa) and the Upper Gulf of California (P. globosa), 
Mexico. These areas are regularly exploited to satisfy the 
demand for these clams in the regional market of Baja Cali-
fornia, the USA, and surroundings. The hypothesis is that: 
(i) higher levels of Cu and Zn can be found in all the studied 
tissues and (ii) potentially toxic Hg and Cd can be found at 
lower levels in the edible tissue of both species. The siphon 
tissue was contrasted with levels of other commercially 
important clams and with the maximum permissible limits 
(MPL) of standards for safe human consumption.

Methods and Materials

A total of 30 specimens of P. globosa clams were collected 
from Puertecitos, San Felipe (upper Gulf of California), 
while five specimens of P. generosa clams were collected 
from Punta San Antonio, El Rosario (west coast Baja Cali-
fornia Peninsula, Mexico) (Fig. 1) – all captured by autono-
mous diving (December 2015) – according to the Mexican 
regulation (NOM-014-SAG/PESC-2015). The clam shells 
were measured (mm), and total weight (shells and soft tis-
sue, g) was recorded. The condition index (CI; Walne and 
Mann 1975) was calculated with the equation CI = soft tis-
sue dry weight (g) /shell dry weight (g). The organisms were 
dissected and separated in siphon, mantle, viscera, and gill 
tissues, which were weighed, freeze-dried (72 h, -53 ºC, 
0.124 mBar), and their moisture contents were recorded. 
Finally, tissue samples were stored in polyethylene con-
tainers and kept frozen (-20 ºC) until digestion. Glassware 
and polyethylene containers were previously acid cleaned 
(Bergés-Tiznado et al. 2015). Specimens were analyzed 
individually, aliquots of samples (0.260 ± 0.008 g of dry 
tissue) were pre-digested by duplicate at room temperature 
with 5 mL of HNO3 (concentrated 70%; trace metal grade 
JT Baker). Complete digestion was carried out in Savil-
lex Teflon bombs (120 °C for 3 h). Digested samples were 
diluted with Milli-Q water (volume 20 mL) and stored in 
polyethylene containers. Blanks and reference materials 
DOLT-4 (Dogfish liver; NRC 2008) and NIST-2976 (Mus-
sel tissue) were digested (one in each batch per 25 samples) 
with the same procedure to evaluate accuracy and preci-
sion (Bergés-Tiznado et al. 2015). The analyses were car-
ried out by atomic absorption spectrometry (AAS; Varian 
SpectraAA 220); Cu and Zn with flame detection, Cd with 
graphite furnace detection (Varian GTA110), and Hg with 
cold vapor detection. The recoveries of the certified materi-
als were 88.6 ± 8.3% for Hg, 89.8 ± 9.0% for Zn, 96.4 ± 9.1% 
for Cu, and 104.2 ± 10.4% for Cd. All the metal concentra-
tions were expressed as wet weight (ww) basis.

An exploratory analysis of the data was performed 
using R language (3.5.3) for normality tests (Kolmogorov-
Smirnov, Lilliefors, and Shapiro-Wilk W) and homoscedas-
ticity tests (Levene). Since there was a limited number of 
P. generosa specimens (five clams), the ‘bootstrap’ method 
(assuming 1000 observations) was employed (Efron and 
Tibshirani 1991); parametric analyses were used. The differ-
ences among metal concentrations and the studied tissues of 
each species were made by a One-way analysis of variance 
(ANOVA) and multiple comparisons by a Post Hoc Tukey’s 
Honestly Significant Difference (HSD) test. A Student’s T 
test was used to establish differences in the levels of metals 
between each clam species. Pearson Product-Moment cor-
relations (r) were used to determine the association among 

Fig. 1 Study area indicating the sites (black circles) from the coast of 
Baja California where wild Panopea spp. clams were collected
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the study variables; in all cases, the level of significance was 
p < 0.05 (Zar 1999). The non-cancer risk assessments were 
calculated as the individual target hazard quotient (THQ) 
and the hazard index (HI) by comparing and estimate of 
exposure to a reference dose (RfD) for oral exposures (EPA 
2005): THQ = [EF x ED x FIR x C/RfD x BW x AT] x 10− 3 
and HI = ΣTHQ; where EF is an exposure frequency of 365 
days/year; ED is a 70-year exposure period; FIR means the 
food ingestion rate of 0.44 g/day for bivalve consumption in 
Mexico (SEMARNAT 2020); C is the mean concentration 
of the element (mg/kg); BW is the population body weight 
of 75 kg for men and 65 kg for women; and AT is the average 
exposure of 25,500 days. Risk will exist if THQ or HI > 1. 
The RfD (mg/kg BW-day) for Hg (as methylmercury), Cd, 
Zn were taken from the IRIS Assessment Base (EPA, 2022); 
Cu has not been evaluated. Finally, a safe intake was calcu-
lated, according to the provisional tolerable intake per body 
weight (BW) set by the Joint FAO/WHO Expert Commit-
tee on Food Additives (JECFA); the data for each element 
used were (WHO, 2022): Cd 25 µg kg− 1 BWmonth− 1; Cu 
0.5 mg kg− 1 BWday− 1; Methyl-Hg 1.6 µg kg− 1 BWweek− 1; 
Zn 0.3 mg kg− 1 BWday− 1.

Results

Mean total weight (g) of the whole specimens, mean total 
length of the valves (mm), and the CI were statistically dif-
ferent (p < 0.05) between species. Panopea globosa mea-
sured the largest lengths (121–168 mm), whilst P. generosa 
showed the highest weights (550–880 g). Mean CI of P. 
globosa (1.3 ± 0.4) was lower than P. generosa (5.4 ± 0.9). 
The general trend of metal content in both clam species fol-
lowed the order Zn > Cu > Cd > Hg. Panopea generosa accu-
mulated higher concentrations (p < 0.05) of Zn compared to 
P. globosa in all tissues. Nonetheless, levels of Cu in the 
siphon and mantle of P. generosa were higher than P. glo-
bosa, and Cu levels in the viscera and gills were statistically 

the same for both species (p > 0.05, Table 1). Significantly 
negative correlations (p < 0.05) were found among the valve 
length of P. globosa with Zn in the mantle (r = -0.38) and 
viscera (r = -0.40), as well as Cu in the siphon (r = -0.38).

Concerning Cd and Hg, significant differences were 
found (p < 0.05) in the Hg bioaccumulation between both 
species with higher levels of Hg in gills, mantle, and vis-
cera of P. globosa compared to P. generosa. According to 
the organ/tissue distribution, these clams show the trend 
of metal accumulation viscera ≥ mantle ≥ gills > siphon 
(Table 1).

Discussion

The order of metal distribution between tissues agrees with 
most literature on metal content in the tissues of different 
aquatic organisms (Frías-Espericueta et al. 2009) since the 
digestive gland (in viscera) in clams is the main organ for 
metal accumulation. These results are of particular impor-
tance since the siphon is the organ/tissue mainly consumed 
by humans. As it was expected, higher levels of Zn and Cu 
are related to the known role of essential metals, which pro-
vide some component of biochemical or enzymatic systems. 
The negative correlations between valve length and essen-
tial metals imply that, as the clams grow the levels of Zn and 
Cu decrease. This tendency has been reported previously 
for other bivalves, indicating that a metal-bivalve species-
specific relationship exists. The observed decrease in older 
organisms could be due to a combination of growth dilution 
and the effect of the use of these metals in the reproductive 
cycle (Delgado-Alvarez et al. 2019).

Cadmium exhibited higher levels (p < 0.05) in the siphon 
and gills of P. globosa than P. generosa. Groslin (2004) 
explains that the gills, kidney, and digestive gland (these 
last two located in the viscera of Panopea) are considered 
as the most important bioaccumulation sites. Trace metals 
are commonly sequestered by metallothioneins in the gill, 

Species
Tissues

n Hg Cd Cu Zn

P. generosa
Siphon
Gills
Mantle
Viscera

5 0.013 ± 0.002a,1

0.013 ± 0.009a,1

0.017 ± 0.004a,1

0.019 ± 0.004a,1

0.38 ± 0.19a,1

0.54 ± 0.14a,1

0.59 ± 0.17a,1

0.97 ± 0.19b,1

2.61 ± 2.81a,1

2.31 ± 0.71a,1

10.19 ± 6.07a,b,1

10.84 ± 6.10b,1

12.28 ± 5.02a,1

14.31 ± 5.02a,1

50.34 ± 19.43b,1

39.16 ± 11.77b,1

P. globosa
Siphon
Gills
Mantle
Viscera

30 0.014 ± 0.005a,1

0.029 ± 0.021b,1

0.033 ± 0.009b,2

0.082 ± 0.030c,2

0.63 ± 0.21a,2

0.82 ± 0.33a,1

0.62 ± 0.29a,1

1.21 ± 0.45b,1

0.70 ± 0.67a.2

1.55 ± 1.48a,1

2.65 ± 3.78a,2

7.64 ± 11.42b,1

5.55 ± 1.05a,2

7.27 ± 1.38a,2

5.79 ± 2.46a,2

10.10 ± 4.17b,2

Different superscript letter indicates significant differences (p < 0.05) of mean concentrations among the 
tissues of each species; different superscript number indicates significant differences (p < 0.05) of mean 
concentrations between species; n, number.

Table 1 Metal concentrations 
(mean ± standard error (SE), µg/g 
wet weight) in the siphon, gills, 
mantle and viscera of two clam 
species

 

1 3

1137



Bulletin of Environmental Contamination and Toxicology (2022) 109:1135–1141

related to the distinct species (metabolism) involved and the 
different exposure and sampled dates. Gutiérrez-Galindo 
et al. (2014) explained that high Cd levels have a natural 
origin associated to upwelling. However, these compari-
sons should be considered with caution, since oysters and 
mussels live in a habitat attached to mangrove roots or to 
rocks, which are exposed to water movement. In contrast, 
Panopea clams are the largest burrowing clams and spend 
all their lives inside the sediment. Moreover, they are one of 
the longest-living animals of any type with a typical lifes-
pan of 140 years (Cortez-Lucero et al. 2011). Accordingly, 
the metabolic capacity to remove and/or excrete metals 
from their tissues is highlight, when compared with other 
bivalves. Conversely, Cd levels resulted higher than those 
reported for other clam species also from the Moroccan 
coasts (Maanan 2008), and from other sites inside the Gulf 
of California (Table 2).

Copper concentrations resulted higher than all the other 
clam species (Table 2), such as Chione gnidia and L. ela-
tum from Mexican coasts (Méndez et al. 2002), Chione sp. 

mantle, and digestive gland tissue or by lysosomes in the 
digestive gland and kidney cells (Rainbow 2018). These 
results (Cd, Cu, and Zn) were higher, compared with metal 
content in the edible muscle of P. abrupta collected in 
Alaska (Table 2; Oliveira et al. 2011), which may reflect 
the differences in natural processes (climate, weathering and 
upwelling events) and the pollution degree between both 
environments (subtropical and polar).

It is important to highlight that the mean Hg concentration 
of both clam species was lower, compared to other studied 
species (Table 2). The Cd content in Panopea species from 
this study was lower than other bivalves as oyster C. gigas 
and mussel M. galloprovincialis from the coastal region of 
Morocco (Maanan 2008), which could be related to the last 
study site, since it is the most urbanized and industrialized 
area. Similarly, Cd content in P. generosa and P. globosa 
were lower than mussel M. californianus (15.0 µg/g, dw) 
sampled previously from a nearby zone where P. generosa 
clams were collected (San Quintín, Mexico; Gutiérrez-
Galindo et al. 2014). Such differences could have been 

Species Hg Cd Cu Zn Site
Venerupis decussatus1 0.08–0.6 1.4–3.7 67.2-157.3 67.2-157.3 Coastal region, 

Morocco
Panopea abrupta2 - 0.4–0.6 0.9–9.2 29–265 Ketchikan, Alaska
Ruditapes philipinarum3 0.2–0.3 0.4–0.8 6.1–7.6 - Ria Aveiro, Portugal
Mya arenaria4 - 1.6 12.4 80.0 Gdansk bay, Poland
Scrobicularia plana5 - 8.5 136 1883 Peel estuary, United 

Kingdom
Tridacna maxina6 - 1.07–1.86 2.26–3.06 14.39–14.49 Red Sea, Egypt
Macoma balthica7 - 9.4 224 1510 Severn estuary, 

United Kingdom
Amiantis umbonella8

Protapes sinuosa8
0.5–1.2
0.5–1.2

0.007–
0.013
0.006–
0.014

2.1–3.2
2.0-3.3

2.0-6.6
2.1–6.4

Arabian Gulf, Saudi 
Arabia

Ruditapes philippinarum9

Solen marginatus9
0.2-1.0
0.15–2.25

0.3-1.0
0.3–1.2

7.7–13.1
10.5–18.1

76–151
50–90

Venice lagoon, Italy

Ruditapes philippinarum10 - 0.35 3.02 51.4 Baseline level for 
China

Mexico
Chione sp.11 - 0.8 13.4 44.0 Upper Gulf of 

California
Chione gnidia12

Laevicardium elatum12
- 0.21–1.28 4.8–23.0 92.4–246.0 Guaymas, Sonora

Chione californiensis13 - 0.42 ± 0.14 5.70 ± 0.84 91.8 ± 7.8 Upper Gulf of 
California

Chione californiensis14

Chione subrugosa14
-
-

2.5
2.1

9.9
48.5

377
347

Altata-Ensenada del 
Pabellón lagoon

Corbicula fluminea15

Polymesoda caroliniana15
0.09 ± 0.01
0.15 ± 0.04

0.45 ± 0.11
1.05 ± 0.11

9.0 ± 0.64
11.1 ± 2.8

65.9 ± 10.0
126.7 ± 46.5

Coatzacoalcos 
estuary

Megapitaria squalida16 0.99 ± 0.81 4.5 ± 0.2 8.8 ± 1.3 68.9 ± 37.6 Navachiste lagoon, 
NW

Panopea generosa17

Panopea globosa17
0.06–0.12*
0.09–0.23*

2.0-4.8*
4.2–9.1*

12.8–69.1*
4.4–59.6*

60.9-264.9*
36.1–74.7*

El Rosario, Baja 
California
San Felipe, Baja 
California

Table 2 Metal contents 
(mean ± standard deviation (SD) 
or range) in the soft tissue (µg/g, 
dry weight) of clam species from 
Mexico and diverse sites of the 
world

1Maanan 2008; 2Oliveira et al. 
2011; 3Costa et al. 2020; 4Szefer 
et al. 1990; 5Southgate et al. 
1983; 6Mohammed et al., 2013; 
7Bryan et al. 1980; 8El-Sorogy et 
al. 2016; 9Sfriso et al. 2018; 10Lu 
et al. 2019; 11García-Hernández 
et al. 2001; 12Mendez et al., 
2002; 13Cadena-Cárdenas et al. 
2009; 14Páez-Osuna et al. 1993; 
15Ruelas-Inzunza et al. 2009a; 
2009b; 16Delgado-Alvarez et al. 
2019; 17this study; -, not ana-
lyzed; *average of the soft tissue
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and P. generosa, respectively, to be in danger. The consump-
tion to be at Zn risk must be higher than 3.8 and 1.7 kg ww 
of siphon of P. globosa and P. generosa, respectively. The 
lowest safety daily consumption was for Cd with rations of 
0.1 and 0.2 kg ww of siphon of P. globosa and P. generosa, 
respectively. Average metal levels were higher in the mantle 
than in the siphon for both clams; thus, the daily rations 
calculated for this tissue intake were lower. Mercury health 
effects might be evidenced if an adult consumes more than 
0.5 and 0.8 kg ww of mantle every day of P. globosa and 
P. generosa. Cadmium consumption must be 0.1 kg ww of 
mantle of each species to avoid risk and Cu 13.2 and 3.4 kg 
ww of mantle for P. globosa and P. generosa, respectively. 
Finally, a daily safe consumption of mantle for Zn would be 
3.6 and 0.4 kg ww for P. globosa and P. generosa, respec-
tively. According to the results, daily rations are unreal to 
be consumed by people, and consequently, the intake would 
not represent any adverse health risks.
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