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Ntim et al. 2015). The rapid development and application 
of nanoparticles has resulted in increased input of these 
materials into the environment, including into aquatic and 
marine ecosystems since. estuaries and coastal areas are 
considered to be theoretical endpoints of contaminants such 
as NPs (Magesky and Pelletier 2018). Their widespread 
use has raised concern about their potential toxicity for a 
variety of aquatic and terrestrial organisms, including algae, 
invertebrates, plants and fish (Marambio-Jones and Hoek 
2010; Fabrega et al. 2011; Magesky and Pelletier 2018; 
Zhang et al. 2018; Batista et al. 2020). It has been proven 
that exposure to Ag NPs can have negative effects on fish 
and several marine invertebrates, affecting both growth and 
survivability (Handy et al. 2008a; Shaw and Handy 2011; 
Abbott Chalew et al. 2012; Gomes et al. 2013; McCarthy 
et al. 2013; Magesky et al. 2016). In this context, the need 
for fast and reliable screening and detection methods for Ag 
NPs in environmental matrices is becoming a priority. The 
most recent analytical development for the detection, quan-
tification and characterization of metallic NPs is the use of 
inductively coupled plasma mass spectrometry operating 
in single particle mode (sp-ICPMS). This methodology is 
sometimes supported by the use of a field flow fractionation 
system (AF4-ICP-MS), to first separate the NPs from the 

Introduction

Nanomaterials are defined as materials of size between 1 
and 100 nm (Handy et al. 2008b). Ag nanoparticles (NPs) 
are found in numerous applications such as disinfectants 
of manufacturing areas (including those in contact with 
water) (Adamek et al. 2018), antibacterial uses in water 
treatment, fabric softener, clothing, soft toys, wound dress-
ing, kitchen utensils and appliances, among others (Shaw 
and Handy 2011). An important application of Ag NPs is 
represented by their use in food packaging. Recent stud-
ies under different experimental conditions have shown 
that Ag is potentially transferred from packaging to food 
in the form of NPs(Echegoyen and Nerín 2013; von Goetz 
et al. 2013; Jokar and Rahman 2014; Artiaga et al. 2015; 
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remaining matrix prior to analysis (Loeschner et al. 2013; 
Lee et al. 2014; Navratilova et al. 2015; Peters et al. 2015; 
Gagné et al. 2012) reported the first application of atomic 
absorption spectrometry to discriminate between Ag NPs 
and ionic form of Ag. The main limitations of these tech-
niques are the time consuming sample preparation and the 
optimization of multi-step procedures including partial 
digestion and selective separation of NPs prior to element-
specific instrumental detection (Tiede et al. 2009; Blasco 
and Picó 2011; Silva et al. 2011). Additionally, transfor-
mation of Ag NPs can occur during the multi-step sample 
preparation, causing biased results (Silva et al. 2011). High 
Resolution Continuous Source Atomic Absorption Spec-
trometry (HR-CS-AAS) has recently proven to be a power-
ful analytical tool in the detection of metallic nanoparticles 
(Resano et al. 2010, 2016; Leopold et al. 2017; Gruszka et 
al. 2018, 2021). Studies involving the use of SS-CS-HR-
AAS were recently published for various matrices such as 
different food samples (Feichtmeier et al. 2016) and spiked 
dried parsley (Feichtmeier and Leopold 2014). As no sam-
ple preparation is required, the use of direct methods has 
drastically reduced the analysis time, representing a suitable 
alternative for the fast screening of Ag NPs in environmen-
tal monitoring. Most of these works based the detection of 
Ag NPs (and/or the distinction from ionic form of Ag) on 
observation of the absorbance peak, specifically the time at 
which maximum absorbance is observed (Feichtmeier and 
Leopold 2014). In this context, the aim of the present work 
was (1) to develop a method for the detection of AgNPs 
in marine invertebrates using SS-HR-CS-AAS, and (2) to 
apply the developed methodology to marine mussels and, 
for the first time, to sponges, preliminary exposed to Ag+ 
and different sizes of Ag NPs. The method proved to be very 
appropriate for fast screening of Ag NPs in environmental 
and seafood monitoring studies.

Materials and methods

MilliQ water with resistivity ≥ 18 MΩ was used throughout 
the entire experimental work to both dilute standard solu-
tions and to rinse the injection system. The Ag nanoparti-
cles dispersions (sizes 10, 20, 40 and 60  nm) in aqueous 
solution at concentration of 20 mg L− 1 as well as the Ag 
ionic solution at 1000 mg L− 1 were obtained from Sigma 
Aldrich. For optimization of temperature programs, the 
solutions were diluted to a final concentration of about 3 µg 
L− 1 using MilliQ water. The Certified Reference Materials 
(CRM) SRM 2976 (mussels’ tissue, purchased by NIST, 
USA) and DORM-3 (dogfish muscle, from NRCC, Canada) 
were used during the experiments and optimization of the 
temperature program. Ag detection was carried out using 

a High-Resolution Continuum Source Atomic Absorption 
Spectrometer (ContrAA 700, Analytic Jena, Germany). This 
instrument is equipped with a graphite furnace atomizer, a 
Xenon short-arc lamp (GLE, Berlin, Germany) operating in 
“hotspot” mode as the radiation source, a high-resolution 
double echelle monochromator (DEMON), and a linear 
CCD array detector with 588 pixels, 200 of which are used 
for monitoring the analytical signal and performing back-
ground corrections. The CS SS HR AAS instrument oper-
ates with a transversely heated graphite tube atomizer and 
an automated solid sampling accessory (SSA 600). The 
solid sampling device incorporates a microbalance with a 
declared precision of 0.001 mg. The samples and standards 
were introduced using solid sampling graphite platforms. 
Argon with a purity of 99.999% (Air liquid, France) was 
used as purge and protective gas. The most sensitive Ag line 
at 328.07  nm was used for silver detection and measure-
ment. The peak was integrated in peak volume mode using 3 
pixels around the core line. All background corrections were 
conducted using the IBC (Iterative Background Correction) 
model available in the instrument software.

Two exposure experiments on living organisms were 
carried out: one on mussels and one on sponge samples. 
Mussels (21 specimens of Mytilus edulis) were manually 
collected in Arcachon Bay (Atlantic southwest coast of 
France). Sponges (16 specimens of Acanthella acuta) were 
collected by scuba diving in the Bay of Villefranche-sur-
Mer (French Mediterranean coast). All the organisms were 
transported to the lab and transferred alive into aquariums, 
where they were left for 15 days to acclimate under flowing 
seawater. Both sponges and mussels were fed twice per day 
during the acclimatation and the exposure experiments. The 
experiments for each of the investigated species (mussels 
and sponges) involved 4 different aquaria: an aquarium with 
control samples, an aquarium spiked with Ag+ solution, 
and aquaria spiked with 10 and 60  nm Ag NPs solutions 
respectively. The 10 and 60 nm sizes were selected because 
they showed the biggest difference (one from another) dur-
ing preliminary experiments involving liquid standards. 
Between 3 and 6 specimens of mussels or sponges were 
placed in closed circuit aquaria and included for each exper-
iment. The spike concentration for each aquarium was set 
as 5 µg L− 1, and the exposure experiment was carried out 
as follows: each aquarium was spiked with the mentioned 
Ag+ or Ag NPs concentration for 12 h, then the organisms 
were fed with phytoplankton, the seawater was replaced 
with a clean portion, and the 5 µg L− 1 spike was renewed. 
This cycle was repeated twice per day, and the total time of 
exposure was set at 96 h. The organisms were then carefully 
rinsed with clean seawater and euthanized by deep freezing 
(-18  °C). Subsequently samples were freeze-dried, manu-
ally ground in a mortar, and analyzed by HR-CS-AAS. This 
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experimental set up guaranteed the exposure of sponges and 
mussels to a continuous concentration of the respective con-
taminant, correcting for possible decrease in bioavailability. 
Additionally, with this set up, we prevent possible Ag deple-
tion as a consequence of accumulation by the phytoplankton 
used to feed the sponges. Following the concept previously 
proposed by Feichtmeier and Leopold (Feichtmeier and 
Leopold 2014) and Feichtmeier et al. (Feichtmeier et al. 
2016), the main parameter considered in the interpretation 
of our results was the so called “atomization delay” (tad), i.e. 
the time at which the maximum absorbance is registered for 
each peak. In theory, Ag+ and Ag NPs will show measurably 
different tad, which makes differentiation between these two 
silver forms possible. The difference was defined as:

	 ∆tad = tad(Ag+) − tad(AgNP)

(1) where tad(Ag+) and tad(AgNP) are the atomization delays 
(in s) measured for samples containing Ag+ and Ag NPs, 
respectively. The differences were expected to be visible 
in liquid standards but also in spiked samples, as the inter-
action between the analytes and the sample matrix should 
influence the atomization delay.

Results and discussion

First, the temperature program was developed and opti-
mized using liquid standard solution containing Ag+ and Ag 
NPs of different sizes. Then, some biota CRMs in which the 
Ag content was not detectable, were spiked with Ag+ and Ag 
NPs in order to observe a possible matrix effect. This was a 
necessary step, as no CRM certified for Ag NPs is available 
on the market. The third and final step of the experimental 
setting involved the exposure of living organisms (mussels 
and sponges) to Ag NPs (10 and 60 nm) and to the Ag+ solu-
tions, followed by the respective analyses. The main objec-
tive during the optimization of temperature programs was to 
maximize the observed difference in tad, Δtad. The optimized 
temperature programs used in this study are presented in 
Table 1 S (supplementary material). As expected, the use of 
a matrix modifier influenced the results. Specifically, even 
a permanent modifier such as Ir (often used in GF AAS) 
had the negative result of reducing the Δtad through thermal 
stabilization of the analyte. The experiments were therefore 
conducted without the use of matrix modifiers and using 
graphite platforms not pre-treated with Ir coating. Another 
factor which appeared to improve the separation between 
the two tad was the atomization temperature. Specifically, 
the results showed that a better separation between the two 
peaks can be obtained when decreasing the atomization 
temperature. Figures  1 and 2  S (supplementary material) 

show the peaks obtained when analyzing the Ag+ and Ag 
NPs solutions using 2000 °C and 1000 °C atomization tem-
peratures, respectively. This trend was previously observed 
by (Feichtmeier et al. 2016), who demonstrated the positive 
effect reducing atomization temperature had on Δtad values. 
Feichtmeier et al. determined Δtad ranging from − 0.77 to 
1.39s for a series of different matrices, while in the present 
study it was possible to obtain Δtad values up to -2.9 s. When 
working at 2000  °C atomization temperature, the change 
of the pyrolysis temperature did not significantly improve 
the differentiation between peaks. Therefore, an optimum 
pyrolysis temperature of 300 °C was selected. This observa-
tion was also in agreement with a previous study showing 
that pyrolysis temperature above 400 °C resulted in insignif-
icant differences and generally lower Δtad for different bio-
logical matrices (Feichtmeier et al. 2016). Figure 2 S shows 
that the Δtad values were different for different Ag NPs size. 
Specifically, the lowest Δtad was obtained when analyz-
ing solutions of 10 nm Ag NPs, while the highest Δtad was 
obtained when measuring Ag NPs of 60 nm. The tad repeat-
ability, estimated as RSD on 6 replicates measurements of 
different liquid standards, was found to be between 2 and 
3%. To check the possible interactions of Ag+, Ag NPs with 
the biological matrix, some experiments were carried out on 
solid biota spiked with 20 µL of the solutions. The selected 
biota CRMs had Ag contents below the detection limit of 
the technique, meaning that the solid itself, when analyzed 
by SS-HR-CS-AAS, did not show any detectable Ag peak. 
These materials were therefore suitable to be spiked, and 
to mimic the behavior of the biological matrix during the 
analysis. The spike of either Ag+ or Ag NP solution was per-
formed just before the analysis and added directly on the 
graphite platform containing about 0.2 mg of solid sample. 
The results obtained for these two materials are shown in 
Fig. 1, and the numerical values are reported in Table 2 S 
(supplementary material). As expected, the behavior of the 
peak varied with respect to the analyzed matrix, meaning 
that the obtained Δtad for the SRM2976 were different from 
those measured for DORM-2. The behavior of Ag when 
placed with SRM2976 was much closer to that of the liq-
uid standard. The only exception was the 10 nm mix, which 
when combined with SRM2976, gave a Δtad much lower 
than the value obtained for the liquid standard alone. On 
the other hand, the DORM-3 material mixed with solutions 
containing Ag NPs generally led to a much lower Δtad when 
compared to liquid standards. It was already shown that the 
tad can vary greatly depending on the studied matrix. Spe-
cifically that increasing protein content leads to increased 
atomization delays (Feichtmeier et al. 2016), which then 
leads to a more negative Δtad. Biotic tissues with high protein 
content (e.g., mussels) retain more Ag, causing higher atom-
ization delays. In the case of DORM-3, the Δtad obtained 
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mussels spiked with Ag+ and Ag NPs are shown in Fig. 2. 
The repeatability of the obtained tad was determined by 
measuring at least three times the same mussel specimen, 
and the calculated RSD was between 0.9 and 1.5%, regard-
less of the spiked sample considered. The robustness and 
reproducibility of the method were approved with regard to 
sufficient homogeneity of the micro samples, used for solid 
sampling and also regarding instrumental parameters such 
as individual solid sampling platforms, graphite tubes as 
well as measurements in different days. Replicate measure-
ments with different solid sampling platforms and graph-
ite tubes on several days still allows distinction of Ag NPs 
since the differences in tad were always significant. Limit of 
Detection ( 3s definition) was calculated via the monitoring 
of 10 blank replicates and the concentration of a calibration 
curve and was found to be 0.22 µgkg− 1 using 0.1 mg control 
mussel’s sample, proving the usefulness of the approach for 
LOD, for Ag NPs.

The reproducibility was also evaluated by measuring sev-
eral specimens exposed to the same condition; this was also 
a way to evaluate the so-called intra-specie variability. The 
latter was again calculated as RSD and it was found to be 
in the range of 2–3% for each studied condition (Table 2 S, 

for Ag NPs were in all cases positive, and the atomization 
delays were generally lower than for the mussel spiked with 
the same solution. One exception was the solid spiked with 
Ag+, which presented much higher tad for DORM than for 
SRM2976. These data confirm that the interaction with dif-
ferent matrices, even matrices belonging to the same family 
(i.e., marine organisms) can affect the atomization delay of 
Ag. Even considering these differences, the method devel-
oped in the present study was always capable of distinguish-
ing between Ag+ and Ag NPs spiked samples, proving its 
robustness and flexibility for a rapid screening of these 
analytes. On the other hand, this type of experiment cannot 
guarantee that the homogeneity of the analyzed solid-liquid 
mixture is good enough for an accurate evaluation of the 
results. For this reason, spike experiments were then carried 
out on living organisms, during which the organism has the 
time to physically incorporate the different Ag forms.

The analyses on mussels exposed to different Ag species 
were performed directly on solid samples. The control mus-
sels didn’t show any detectable Ag peak when analyzed, 
meaning that the Ag content naturally present in the collected 
organisms was not detectable, when applying the developed 
method (Fig. 3 S, supplementary data). Peaks obtained for 

Fig. 1  Peaks obtained for the CRM materials SRM 2976 and DORM-3 spiked with 3 µg L− 1 of either Ag+ or Ag NPs of different sizes
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spiked with Ag+ and Ag NPs. In these samples, the tad found 
for mussels spiked with Ag NPs are consistently higher 
than those found for Ag+, resulting in negative values of 
Δtad. This result is consistent with previous findings, sug-
gesting that Ag was efficiently taken up in the form of NPs, 
and did not undergo any transformation within the mussel 
tissue (Feichtmeier et al. 2016). The difference of behav-
ior between Ag 10 and 60  nm was less clear than in the 
experiment carried out with liquid standard. This might be 
linked to the specific interaction with the biological matrix 
during the time at which mussels were exposed to Ag NPs. 
As expected, the observed behavior was rather different for 
the mussel CRM (SRM 2976) spiked with Ag+ and different 
sizes of Ag NPs. This is easily explained when considering 
the possible low homogeneity and low interaction efficiency 
observed for the spiked solid powder compared to the living 
mussels. The Δtad calculated for the spiked CRM are closer 
to those obtained for liquid standards than to those obtained 

supplementary material). In order to obtain comparable 
results through different conditions, the absorbances had to 
be in the same range, therefore the sample masses of the 
analyzed solid mussels were kept as close as possible and 
around 0.2  mg. Usually this amount of sample generated 
a total integrated absorbance of about 0.8. This adjustment 
was necessary because the total integrated absorbance might 
influence the peak shape, which in return could influence 
the tad. As a first conclusion, the application of the devel-
oped method is valid when a reference measurement of an 
individual specimen spiked with Ag+ is available for com-
parison. This might represent the principal limitation of the 
present methodology and its application for real samples. 
Based on the measurement of a relative parameter (Δtad), the 
Ag+ spike represents a type of one-point calibration for the 
provided qualitative method. The results obtained for mus-
sels allow us to draw a very important conclusion: it is con-
sistently possible to easily distinguish between specimens 

Fig. 3  Peaks obtained for sponge specimens (n = 5) exposed in the aquarium to 5 µg L− 1 Ag+, Ag NPs 10 and 60 nm. Due to the high Ag amount 
present in control samples, these analyses were performed on slurries, to reduce the Ag amount introduced in the furnace and to be able to highlight 
the differences in tad. The represented tad is calculated as average (n=5 specimens) and presented with respective standard deviation. The Δtad were 
calculated using the respective average values of tad: the resulting combined uncertainty didn’t exceed 5%

 

Fig. 2  Peaks obtained for mussel specimens (n = 5) spiked with3 µg L− 1 Ag+, Ag NPs 10 and 60 nm. The analyses were performed directly on 
the solid samples. The represented tad is calculated as average (n = 5 specimens) and presented with respective standard deviation. The Δtad were 
calculated using the respective average values of tad: the resulting combined uncertainty did not exceed 5%
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form of NPs is also highly accumulated in these organisms. 
This aspect certainly deserves further study to better under-
stand the Ag accumulation cycle, as well as the potential of 
sponges as bio-remediation organisms also for nanoparticle 
related pollution.

The present work provides a fast and fit-for-purpose 
method for the distinction and detection of Ag+ and Ag NPs 
by SS-CS-HR-AAS in different marine biological matrices. 
The developed method was successfully applied to solid 
CRMs (mussel and fish homogenate) spiked with Ag+ and 
Ag NPs solutions, and in all cases, it was possible to eas-
ily distinguish between the peaks obtained for the two Ag 
forms. Exposure experiments on living organisms (mussels 
and sponges) were also carried out, and the obtained results 
were very promising, demonstrating that the method can be 
successfully utilized to distinguish Ag+ from Ag NPs in a 
variety of different organisms. Sponges, which had never 
been used for accumulation studies of Ag NPs, proved to be 
particularly promising biological tool for the bioremedia-
tion of marine areas contaminated with Ag NPs.
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