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Abstract
This study explored occurrence of phthalic acid esters (PAEs) in protected agriculture soils and assessed their potential health 
risks to humans. Results showed that DEHP and DBP were the most abundant PAEs congeners, with mean concentrations 
of 318.68 μg/kg and 137.56 μg/kg, respectively. DOP and BBP concentrations were relatively low, and DMP and DEP were 
not detected in all samples. DBP concentrations were higher than the allowable concentration standard value. Additionally, 
soil pH and organic matter were key environmental parameters which may play the vital roles to the occurrence of organic 
pollutants. Heath risk assessment results indicated that dermal contact was the predominant human exposure route under 
non-dietary conditions, and children obtained higher health risk scores than adults. In summary, the overall health risk scores 
were at an acceptable level. These results provide insights for assessing soil environmental safety and ecological risks in 
protected agricultural soil.
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Phthalic acid esters (PAEs) are anthropogenic plastic addi-
tives used to enhance the strength and plasticity of the 
target product, incorporated into various plastic products, 
such as toys, beverage containers, polyvinyl chloride (PVC) 
pipes, pharmaceutical, and personal care products (PPCPs), 
medical equipment, and agricultural films (Erythropel et al. 
2014; Kang et al. 2021). PAEs present the hydrophobic 
properties and can easily dissociate from plastic products 
into different environmental matrices, owing to loose cova-
lent bond between PAEs and plastic products (Song et al. 
2019). Therefore, PAEs are ubiquitous in the environment 
and are alleged endocrine disruptors, posing a substantial 
threat to organisms, including human beings (Wang et al. 
2021a, b; Chang et al. 2021). Due to concerns over the det-
rimental effects and possible health risks promoted by PAEs, 
six PAEs homologs including bis (2-ethylhexyl) phthalate 
(DEHP), di-n-butyl phthalate (DBP), butyl benzyl phthalate 
(BBP), diethyl phthalate (DEP), di-n-octyl phthalate (DOP), 
and dimethyl phthalate (DMP) were nominated as priority 

pollutants by various countries, such as the United State, and 
China (USEPA 1980; Gao et al. 2018). Furthermore, DEHP 
was also listed in class 2B (possibly carcinogenic to humans) 
by the International Cancer Research Institute (ICRI) of the 
World Health Organization (WHO).

According to a recent study, approximately 300 million 
tons of PAEs are manufactured every year (Garcia and Rob-
ertson 2017). The global concern of PAEs contamination 
has become more conspicuous as emissions from product 
life cycles are ongoing (i.e., manufacture, usage, disposal) 
(Wang et al. 2013). In China, many protected agricultural 
areas (approximately 37,000  km2) were created and built 
to increase vegetable yield and quality. However, as they 
can improve flexibility, strength, and elasticity of plas-
tic polymers, PAEs (20%–60%) were added to agriculture 
films (shed and mulch films), which were frequently used 
for agricultural activities (e.g., protecting crops) (Lü et al. 
2018). As a result of this practice, PAEs leach from the plas-
tic and enter the soil while crops are developing, possibly 
increasing the health risk to humans (Zhang et al. 2015; Shi 
et al. 2019). The exposure risk to humans promoted by PAEs 
should be given special attention since high temperatures 
and relative humidifies are conditions maintained during 
protected agriculture activities, possibly enhancing PAE 
leaching to soils (Wang et al. 2013). Studies showed that 
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exposure risk of PAEs to human could evaluate by differ-
ent methods and models. Wang et al. (2018) calculated the 
average daily dose of the human body under the non-dietary 
pathway through a health risk assessment model, and found 
that ingestion and dermal adsorption is the major pathways 
for human exposure to PAEs in soil. Additionally, the assess-
ment of eco-toxicological effect of PAEs indicated that the 
environmental risk of PAEs in soil at different depths was 
acceptable (Wang et al. 2015).

At present, PAEs have gradually become the second larg-
est environmental pollutants in the world (Lü et al. 2018), 
and they are also the most abundant semi-volatile organic 
compound (SVOCs) in agricultural soils in China (Cai et al. 
2008). Therefore, the environmental pollution problems and 
risk effects caused by PAEs have attracted more and more 
attention and become a research hotspot in the environmen-
tal field. In this study, we investigated the spatial distribution 
of PAEs and the ratio of homologs in typical protected agri-
cultural soils from northern China, and then studied envi-
ronmental risk of PAEs in soil and the potential health risk 
of PAEs to the humans. In summary, the results of this study 
will provide a better reference for humans in soil cultivation 
and management.

Materials and Methods

Fangcun is located on the Shandong Peninsula in northern 
China and has a temperate monsoon climate. The annual 
average temperature is 11–14°C, and the annual precipita-
tion is 550–950 mm occurring primarily in summer. Fang-
cun is the largest tomato planting production base with 
many protected agriculture areas in the Shandong Penin-
sula. In this study, 12 representative soil samples (0–20 cm) 
were collected randomly from protected agriculture areas 
in Fangcun using a five-point sampling method (Table S1; 
Fig. S1). Stones, plant residues, and broken plastic films on 
the soil surface were removed during sample collection. The 
collected samples were stored in pre-cleaned brown glass 
bottles, sealed, and taken back to the laboratory for pre-
treatment. Samples were stored at − 20°C until analysis to 
reduce errors.

Six PAEs standards (DEHP, DBP, DOP, BBP, DEP, and 
DMP) were obtained from Sigma-Aldrich, and the cor-
responding structure information were shown in the sup-
plementary (Table S2). Acetone and n-hexane (High-per-
formance liquid chromatography grade) were purchased 
from Tianjin Comio Chemical Reagent Co., Ltd., and other 
chemicals were of analytical grade.

The soil samples were air-dried, ground, and sieved 
through a stainless-steel sieve (20-mesh). For the extrac-
tion, 10.00 g of soil was placed in a glass conical flask, 
and six PAEs were extracted with 30 mL of a 1:1 mixture 

of acetone: n-hexane. An ultrasonic-assisted extrac-
tion method was applied in this study, as described 
in previous research (Li et  al. 2020). A gas chroma-
tography–mass spectrometry method with a TG-5MS 
(30  m × 0.25  mm × 0.25  µm) flexible quartz capillary 
column was used to quantitatively analyze the PAEs. 
Selected reaction monitoring (SRM) and splitless injec-
tion mode were used, with a flow rate and injection volume 
of 1.2 mL/min and 1 µL, respectively. The transmission 
line and electron impact (EI) ion source temperatures were 
300°C, and the column temperature program was selected 
based on parameters previous studies (Li et al. 2020).

Soil organic matter (SOM), pH, alkali hydrolyzable nitro-
gen (AN), available phosphorus (AP), available potassium 
(AK), moisture content (SMC), soil texture (SCP), total 
nitrogen (TN), and the total salt content (SSA) of the soil 
samples were determined according to the methods in “Soil 
Agrochemical Analysis” (Lu 2000; Li et al. 2020).

The experimental materials used in this study consisted 
of stainless steel or glass to avoid contamination by plastic. 
Glass and stainless-steel instruments were strictly cleaned 
before the analysis by (1) ultrasonication for 30 min, (2) 
drying, (3) soaking with a potassium dichromate lotion over-
night, and (4) rinsing with deionized water for 30 min. Glass 
instruments without scales were baked at a high tempera-
ture (400°C) to remove impurities. Three replicates were 
determined for each trial, and the blank and spiked samples 
were measured concurrently to validate the accuracy of the 
experiment. Results showed that the mass spectral separa-
tion times of DMP, DEP, DBP, BBP, DEHP and DOP were 
9.76, 10.97, 14.40, 18.48, 20.35 and 22.06 min (Fig. S2), 
respectively. The recovery rates of the six PAEs ranged from 
80.78% to 112.89% (mean 97.61%), and the method detec-
tion limit was 0.01 μg/kg, validating detection stability and 
accuracy.

An assessment model, recommended by the United States 
Environmental Protection Agency (USEPA 2013), was used 
to estimate the non-carcinogenic and carcinogenic risks of 
PAEs to adults and children in protected agriculture areas. 
DMP, DEP, DBP, and DOP considered non-carcinogenic 
compounds, whereas DEHP and BBP were considered car-
cinogenic to humans. According to the assessment model, 
the average daily doses (ADD) of non-dietary intake (i.e., 
soil ingestion, dermal contact, and inhalation) of PAEs in 
adults and children were first studied, and then the total risk 
to human health of PAEs in soil was investigated. The detail 
of calculation, parameter selection and parameter factors of 
the health risk assessment model were listed in supplemen-
tary materials (Table S3).

The date was statistically analyzed using the Statisti-
cal Package for Social Sciences (SPSS 22.0). Pearson 
correlation and network analyses were used to evaluate 
the relationship between the PAEs and the physical and 
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chemical properties of soil. The results were presented as 
mean ± standard deviation.

Results and Discussion

In the present investigation, DEHP, DBP, DOP, and BBP 
were detected in all soil samples, while DMP and DEP were 
negligible. Table S4 shows that ∑6PAEs concentrations 
ranged from 350.11 to 767.10 μg/kg, with a mean value of 
497.64 μg/kg. Additionally, DEHP was a predominant PAE, 
with concentration ranging from 199.82 to 564.04 μg/kg, 
and a mean value of 318.68 μg/kg, markedly higher than 
those of the other PAEs (Fig. 1). DBP concentrations were 
the second-highest among the homologs, with concentra-
tions ranging from 110.47 to 166.31 μg/kg, and a mean 
value of 137.56 μg/kg. The DOP and BBP concentration 
were comparable in the present study, with an average value 
of 20.12 μg/kg and 21.29 μg/kg, respectively. Compared 
with the soil from other regions in China, ∑6PAEs in this 
study was slightly higher than that in agricultural soils from 
Zhongshan but significantly lower than that in vegetable 
soil from Beijing (Table S5). In addition, previous studies 
have shown that PAEs were detected in agricultural soils 
from other countries, such as Denmark and the Netherlands 
(Table S5). These results indicated that PAEs contamination 
varied spatially in agricultural soil within China, reflected 
by regional differences in concentration. Niu et al. (2014) 
found that PAEs contamination was relatively high in soils 
from densely populated and economically developed areas, 
suggesting that economic development, population density, 

soil utilization type, and agricultural film usage would affect 
PAEs concentrations in soil.

However, the actual degree of soil contamination cannot 
be entirely dependent on the total concentration of PAEs, 
and the concentration of phthalate monomer compounds 
should be considered. The relative contribution of each 
PAEs was studied in this work, and the results showed that 
DEHP had the highest proportion, accounting for more than 
54% of the ∑PAEs concentration, followed (in decreasing 
order) by DBP>DOP>BBP. The latter three homologs 
collectively accounted for 46% the ∑PAEs concentration. 
These results suggested DEHP contamination in the pro-
tected agricultural soil may be more serious than that of the 
other PAEs measured in this study, consistent with meas-
urements in various environmental matrices (Kong et al. 
2013; Wang et al. 2013). Similar to protected agricultural 
soil, DEHP and DBP were also the most important PAE 
contaminations of in urban soils affected by intensive human 
activities (Yang et al. 2018; Zhao et al. 2018). PAEs are 
widely used synthetic additives that include many homologs 
with different properties, owing to their different alkyl chain 
lengths. DEHP and DOP, having long alkyl chains, are 
usually used as plasticizers in plastic products (Benjamin 
et al. 2015). In contrast, PAEs with short alkyl side chains 
(DMP and DEP) are mostly used as solvents for fertilizers 
and pesticides (Gao et al. 2014). Therefore, different PAE-
containing products may affect the PAE homologs profiles in 
agricultural soils (Sun et al. 2016). More importantly, DEHP 
and DBP have higher molecular weights and octanol–water 
partition coefficients than DMP and DEP, reducing their 
mobility, enhancing their persistence, and rendering them 
resistant to degradation in soils (Li et al. 2012).

Fig. 1  The concentrations (a) and distribution ratio (b) of congener PAEs of sample sites in protected agriculture soil
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As shown in Fig. 2, DEHP was the most abundant PAE, 
and correlation analysis showed that there was a significant 
positive correlation between DEHP and the ∑PAEs concen-
tration. In addition, soil pH and organic matter (Table S6) 
had opposite effects on PAEs. Soil pH was negatively cor-
related with the ∑PAEs concentration and four homologs, 
whereas SOM was positively correlated with PAEs (p < 0.05, 
Fig. 2). Some studies have reported that soil pH and organic 
matter were the main factors affecting the chemical behavior 
of organic contaminants in soil (Li et al. 2016; Zheng et al. 
2016). Soil pH affects the adsorption behavior of hydropho-
bic organic pollutants in soil (Venkata Mohan et al. 2007). 
For instance, the adsorption of relatively polar PAEs in the 
soil increased with a decreasing pH, but as the pH increased, 
the ionization degree of soil organic matter increased and the 
soil’s affinity for hydrophobic organics, such as phthalates, 
decreased, resulting in the desorption of adsorbed organic 
contaminants (Yang et al. 2013; Zheng et al. 2016). Fur-
thermore, PAEs have low water solubility but can easily to 
dissolve in organic solvents, such as acetone and n-hexane. 
Studies have shown that the presence of SOM affects the 
solubilization of PAEs (e.g., surface sites of humic acid 
bind PAEs), and the increase of organic matter content may 
increase the number of adsorption sites, enhancing PAE 
adsorption (Cousins. and Mackay 2000; Cui et al. 2010). The 
relationship between PAEs, soil pH, and organic matter was 
also investigated in previous studies (Li et al. 2016; Zheng 
et al. 2016). However, various biological and non-biological 

environmental factors in terrestrial soil ecosystems may 
affect the behavior of PAEs in soil. The use and inadequate 
cleaning of agricultural films and atmospheric deposition 
could affect the concentration of PAEs in soil (Wang et al. 
2013). In addition, the application of pesticides and fertilizer 
impact soil properties, indirectly affecting the migration, 
transformation, and biodegradation. In summary, soil pH 
and organic matter may be the key mechanisms affecting the 
content of phthalates. Further study is warranted to improve 
understanding of the environmental fates of PAEs in the soil 
environment.

It is well known that terrestrial ecosystems become the 
depository of heavy metals and deleterious organic matter 
from human activities. Various contaminants are incorpo-
rated into the soil and promote detrimental effects on soil 
organisms (e.g., earthworms and vegetables) and humans 
through skin contact and oral inhalation. As the example, 
recent studies have shown that the concentration of PAEs in 
agricultural soils in some areas of China was relatively high 
and significantly exceeded the allowable concentrations rec-
ommended (Tables S5 and S7), and PAEs in agricultural soil 
with film was significantly higher than that in open-air soil, 
which also indicated that there was a higher environmental 
risk in protected agriculture (Wang et al. 2021a, b).

In this study, we assessed the environmental risks of six 
priority phthalate substances, and the results showed that 
DMP and DEP were not observed in any of the soil sam-
ples, indicating that the concentration of these congeners 

Fig. 2  Correlation analysis between PAEs and soil physical and 
chemical properties (a: blue means positive correlation while red 
means negative correlation, circle size means absolute value of corre-

lation; b: brown means negative correlation while red means positive 
correlation, the thickness of the line means the absolute value of the 
correlation)
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did not exceed the allowable concentration standards, which 
meant that they presented low environmental risk to human 
health. For other samples, the highest concentrations were 
564.04 μg/kg (DEHP), 166.31 μg/kg (DBP), 27.20 μg/kg 
(DOP), and 22.16 μg/kg (BBP), respectively. It was also 
observed that DEHP, DOP, and BBP in soil did not exceed 
the allowable concentration standard value, while DBP 
concentrations ranged from 110.47 to 166.31 μg/kg, sig-
nificantly exceeding the allowable concentration standard 
value of 81 μg/kg in all samples (i.e., exceedance rate of 
100%), which was similar to results of Shouguang (Zheng 
et al. 2016) and Shenyang (Li et al. 2017), but higher than 
those of Zhongshan (93.85%) (Li et al. 2015) and Shantou 
(6.30%) (Wu et al. 2015). However, it should be noted that 
the concentration of DBP was far lower than the “cleanup 
objective” value and environmental risk limits (ERLs) that 
were derived using data on ecotoxicology and environmental 
chemistry (van Wezel et al. 2000).

Farming activities in protected agriculture (e.g., sow-
ing, fertilization, harvest, etc.) may increase the probability 
of human exposure to PAEs pollutants. In addition, these 
contaminants may pose potential long-term exposure health 
risks to humans through multiple pathways. Since there 
were not issued relevant standards for PAEs pollutants in 
agricultural soil in China, in this study, we calculated the 
carcinogenic and non-carcinogenic risks of different PAE 
homologs in protected agricultural soil for different popu-
lations of people (adults and children) according to a risk 
assessment method recommended by the US EPA. Results 
showed that dermal contact was the major exposure path-
way for adults and children to ingest PAEs, accounting for 
more than 75% of the total intake, followed by soil ingestion, 
accounting for 20.01%–24.61% of the total intake. While 
studies indicated that PAEs were also present in the air (Ma 
et al. 2020), the proportion of PAEs inhaled in this study was 
low, accounting for only 0.02%–0.14% (Table 1). It is worth 
considering about that although adults were mainly involved 
in agricultural production, children’s intake of PAEs was 
significantly higher than that of adults, suggesting that chil-
dren may be more likely to ingest contaminants from the soil 
environment. In addition, Fig. 3 shows the non-carcinogenic 
and carcinogenic risks of PAEs form protected agriculture 
to adults and children. The results indicated that the hazard 
quotient values of the four PAE monomers were all less than 
1, suggesting that their non-carcinogenic risk was relatively 
low. Furthermore, the hazard quotients of DEHP and DBP 
were higher than those of DOP and BBP, implying that these 
two pollutants have relatively higher health risks. Among 
the four PAE homologs, DEHP and DBP were considered 
potentially carcinogenic (Ji et al. 2014). In the present study, 
the carcinogenic risk of DEHP and DBP estimated was very 
low because their carcinogenic risk scores were lower than 
 10–6 (Fig. 3). These results indicated that PAEs in protected Ta
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agricultural soil posed an insignificant health risk to humans 
as they did not exceed the acceptable level. However, chil-
dren exhibited a higher non-carcinogenic risk and carcino-
genic risk than adults, illustrating that the toxic properties 
of PAEs may be more deleterious in children than in adults, 
possibly because detoxification and metabolism functions 
are weaker for children than those of adults.

PAEs are typical environmental endocrine-disrupting 
substances. Studies have reported that the levels of T3 and 
T4 in adult blood are negatively correlated with PAE metab-
olites in urine (Park et al. 2017), and positive correlation 
between urinary PAE levels and overweight/obesity found in 
children (Xia et al. 2018). Thus, these studies indicated that 
human health could be threatened by PAE exposure, possi-
bly for extended time. In this study, the risk assessment may 
be slightly underestimated because the health risks of PAEs 
under dietary routes were not considered. The ecological and 
health assessment of PAEs through the food chain requires 
further attention. Furthermore, studies on PAE toxicity to 
mammals are primarily focused on rats or mice (Ha et al. 
2016), and more experimental date on PAE toxicity (and 
their metabolites) to other animals after long-term exposure 
are needed to fully understand the health risks and mecha-
nisms of PAEs.

In general, the results showed that there were four ubiq-
uitous PAE homologs detected in the protected agricul-
tural soil of Fangcun. In this study, the concentration of 
DEHP was the highest, followed by DBP. Concentration of 
DOP and BBP were similar and relatively low, indicating 
that DEHP and DBP in protected agricultural soil domi-
nated the total PAE concentration. Among the four PAEs 
detected, only DBP exceeded the allowable concentration 
standard with a 100% exceedance rate, but it did not exceed 
the “cleanup objective” value or ERLs. Correlation analysis 

indicated that soil pH had a significant negative correlation 
with PAEs, whereas the soil organic matter might dramati-
cally promote PAE adsorption. Furthermore, dermal contact 
was identified as the primary route of PAE exposure under 
non-dietary conditions, followed by soil intake, while inha-
lation intake was almost negligible. The intake of PAEs by 
children was higher than that of adults, suggesting that chil-
dren may have a higher risk of exposure. Risk assessment 
results showed that carcinogenic and non-carcinogenic risks 
were at an acceptable level, but the risk assessment scores of 
children were significantly higher than those of adults, war-
ranting further attention. These research results will provide 
evidence for the ecological risk assessment of PAEs and 
enrich basic data for the establishment of PAE soil pollution 
standards and pollution restoration.
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