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Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil contaminants, and their bioaccessibility determines their envi-
ronmental risks in contaminated land. In the present study, the residual concentrations of PAHs in the soils of two industrial 
sites were determined, and their bioaccessibility was estimated by the hydroxypropyl-β-cyclodextrin extraction (HPCD) 
extraction method. The results showed heavy PAH contamination at both site S1 (0.38–3342.5 mg kg−1) and site S2 (0.2–
138.18 mg kg−1), of which high molecular weight (HMW) PAHs (4-, 5-, and 6-ring compounds) accounted for approximately 
80%. The average bioaccessibility of PAHs at sites S1 and S2 was 52.02% and 29.28%, respectively. The bioaccessibility of 
certain PAH compounds decreased with increasing ring number of the molecule. Lower PAH bioaccessibility was detected 
in loamy and silty soil textures than in sandy soil. Moreover, among the soil properties, the dissolved organic matter, total 
organic carbon, total potassium, and total manganese concentrations had significant effects on the bioaccessibility of PAHs. 
The toxicity analysis showed that the composition and bioaccessibility of PAHs could affect their potential toxicity in soil. 
We suggest that bioaccessibility should be taken into consideration when assessing the toxicity of PAHs in soil, and more 
attention should be given to low-ring PAHs with high bioaccessibility.

Keywords  Hydroxypropyl-β-cyclodextrin extraction · Molecular weight · PAH-contaminated sites · Dissolved organic 
carbon · Toxic equivalent

Polycyclic aromatic hydrocarbons (PAHs), a series of hydro-
phobic aromatic compounds composed of two or more ben-
zene rings, are carcinogenic, teratogenic and mutagenic 
(Cvancarova et al. 2013). Sixteen PAHs have been listed 
as priority pollutants by the U.S. Environmental Protection 
Agency (EPA) (Zelinkova and Wenzl 2015). Generally, 
PAHs are the products of pyrolysis or rearrangement of 
molecules during incomplete combustion of organic matter 
under oxygen-deficient conditions (Dat and Chang 2017). In 
addition to some natural sources such as biological releases, 
natural fires and volcanic eruptions (Tsibart and Gennadiev 
2013), many anthropogenic sources including the chemi-
cal industry, transportation, and domestic pollution have 
resulted in the current worldwide distribution of PAHs (Dat 
and Chang 2017; Duran and Cravo-Laureau 2016; Gao et al. 
2018; Wilcke 2007). The produced PAHs are semivolatile, 
lipophilic, and persistent and easily accumulate in the envi-
ronment, posing great risks to organisms including human 
beings.
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Soil is a major sink of PAHs in terrestrial ecosystems 
and serves as an important medium for the volatilization, 
deposition and degradation of PAHs in the environment. The 
average concentration of PAHs in topsoil in China was found 
to be approximately 730 ng g−1 (Zhang and Chen 2017). The 
sources of PAHs in the soil are mainly from coal combus-
tion, vehicular emissions, sewage disposal, and petroleum 
spills (Han et al. 2014). Therefore, PAHs are frequently 
detectable in soils located in areas with high urbanization 
and industrialization (Zhang et al. 2017). For example, the 
PAH content detected in 40 soil sampling points collected 
from a coke factory in Shandong Province, China, exceeded 
the heavy contamination standard (Han et al. 2014). Idowu 
et al. (2020) reported that the content of PAHs in the soils of 
a renowned industrial heritage city in Australia ranged from 
2.51 to 392.93 mg kg−1, hundreds of times higher than the 
local standards. In addition, the total PAH contents in the 
soil near a cement factory in Beijing reached 1134.3 μg kg−1, 
3.37 times higher than the local background value (Wang 
et al. 2018), leading to high health risks for children and 
adults near the cement factory. Moreover, the PAHs in soil 
can be revolatilized into the atmosphere (Jia et al. 2019), 
transported by the soil–plant system (Zhang et al. 2015), 
and leached into the deep soil profile or even groundwater 
(Widdowson et al. 2003), leading to serious ecological and 
environmental issues. Therefore, the contamination of PAHs 
in the environment is of great concern.

Once organic contaminants enter the soil, they gradu-
ally exhibit diverse speciation, such as dissolved in soil 
solution, adsorbed on soil organic matter and minerals, or 
bound to the soil solid phase to form unextractable residues 
(Sabate et al. 2006). Since not all forms of contaminants 
pose threats to organisms, it is necessary to take into account 
the bioaccessibility of contaminants, which is described as 
the process of association and dissociation between the 
bound contaminant and released contaminant, and both of 
them transport to a biological membrane and finally across 
it (Semple et al. 2004). Considering the bioaccessibility of 
pollutants is conducive to predicting more realistic expo-
sure limits and providing more justifiable and prospective 
risk assessment (Ortega-Calvo et al. 2015). The evaluation 
methods and influencing factors of PAH bioaccessibil-
ity in soil have received extensive attention, among which 
chemical extraction is still the most commonly used indirect 
in vitro method to determine the bioaccessibility of PAHs 
in soils (Gao et al. 2019; Tao et al. 2006). It is worth men-
tioning that modified cyclodextrin with a cyclic structure 
has been broadly utilized to evaluate PAH bioaccessibility 
(Humel et al. 2020; Leech et al. 2020; Qin et al. 2020). Reid 
et al. (2000) showed that the optimized hydroxypropyl-β-
cyclodextrin (HPCD) extraction method could best predict 
the available microbial concentrations of soil-associated 
phenanthrene. A better correlation between HPCD-extracted 

PAHs and earthworm-accumulated PAHs than other chemi-
cal extraction methods in soil was also observed by Zhang 
et al. (2017). Moreover, studies have revealed that PAH 
bioaccessibility is affected by PAH properties, soil proper-
ties and environmental factors (Duan et al. 2014), such as 
the molecular weight of PAHs (Cheng et al. 2021; Li et al. 
2013), cocontaminants (Lin et al. 2008), soil composition 
(Portet-Koltalo et al. 2020), and soil organic matter (SOM) 
(Moeckel et al. 2014). However, the influence and degree of 
influence of various factors have been inconsistent in diverse 
studies, and the change in PAH bioaccessibility in different 
soil profiles of contaminated sites is still lacking sufficient 
research.

In the present study, we intended to investigate the influ-
encing factors that affect the bioaccessibility of PAHs in 
contaminated sites. Soil samples, including different profile 
depths, were collected from two industrial sites in China. 
HPCD extraction was chosen as the PAH bioaccessibility 
assessment method. The relationship between PAH bioac-
cessibility and soil properties was analyzed. Therefore, this 
study sheds light on the risk assessment of organic contami-
nants in soil.

Materials and Methods

The PAH-contaminated soils were sampled from a coal 
gasification plant site in Nanjing (S1) and a steel plant site 
in Chongqing (S2), China. According to the size of the 
contaminated sites, 5 and 15 sampling points in S1 and S2 
were sampled by Geoprobe (TecopSA TEC15DP, AMK, 
Spain) and a self-contained pump drilling rig (GK200-1, 
YiXin Machinery Corp., China), respectively. The soils in 
S1 were sampled at a depth of 6 m, while the soils in S2 
were sampled at a depth of 11 m with the horizon as a base 
depth. Finally, a total of 34 and 53 soil samples were col-
lected at S1 and S2, respectively. All the soil samples were 
air-dried at room temperature. After removing stones and 
root residues, all soil samples were ground evenly to pass 
through a 0.25 mm sieve, and their physicochemical proper-
ties were characterized, as shown in the supplemental mate-
rial (Table S1 and Fig. S1).

In this study, 16 priority PAHs proposed by the U.S. EPA 
were determined through the accelerated solvent extraction 
method (ASE 200, Dionex, USA). The ASE program was 
conducted under the following conditions (Zhang et al. 
2016): hexane/acetone (1:1, v/v) as the solvent, a tempera-
ture and pressure of 100°C and 10.34 MPa, respectively, 
and static extraction for 5 min. Then, the extract obtained 
from ASE was concentrated to 2 mL by a rotary evapora-
tor, transferred to a silica gel column packed with Florisil, 
silica gel and anhydrous Na2SO4, and eluted with 15 mL 
of n-hexane/dichloromethane solution (9:1, v/v). Then, the 
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eluate was concentrated and dissolved in 2 mL of acetoni-
trile, and the mixture was passed through a 0.22 μm pol-
ytetrafluoroethylene filter membrane. The final extract was 
determined by gas chromatography–mass spectrometry 
(Agilent 7890A/5975C, Santa Clara, CA) (Ni et al. 2018). 
The instrument limit of detection (LOD) and of quantifica-
tion (LOQ) was 0.03–0.15 μg kg−1 and 0.10–0.55 μg kg−1, 
respectively.

The specific steps of HPCD extraction are as follows. One 
gram of soil sample was placed into a 50 mL glass centri-
fuge tube, and 20 mL of 50 mmol L−1 HPCD solution was 
added. The extraction was carried out with oscillation (200 
r min−1) for 20 h at room temperature. Then, the mixture 
was centrifuged at high speed for 10 min (2000 r min−1) 
after static placement for 30 min. Next, the supernatant was 
discarded, and 20 mL of deionized water was added to the 
bottom soil, which was centrifuged again at high speed. The 
deposited soil was retained, and an appropriate amount of 
diatomite was added to the bottom soil sample, which was 
evenly stirred and loaded into the ASE extraction column. 
The sample was then extracted and determined following 
the same steps as for total PAH extraction. Finally, the PAH 
content extracted by HPCD was calculated by the subtrac-
tion method and regarded as the bioaccessible PAH content.

The potential toxic effects of PAHs were evaluated based 
on toxic equivalent (TEQ) analysis. In this study, the TEQ 
was computed according to the method from Richter-Brock-
mann and Achten (2018). The specific calculation is shown 
in Eq. (1).

where C(bio)i is the (bioaccessible) concentration of individ-
ual PAHs and TEFi is the corresponding toxic equivalent 
factor, representing the potential toxicity relative to that of 
benzo[a] pyrene (Nisbet and Lagoy 1992). The TEF values 
of 16 PAHs are presented in Table S2. Furthermore, to com-
pare the toxicity intensity of PAH in soils of different sites, 
the toxic concentration ratio (Rt/c) based on the TEQ was 
calculated as Eq. (2).

where C(bio-) TEQ is the (bioaccessible) TEQ concentration of 
PAHs in soil and Ctotal is the total PAH concentration in soil.

Stepwise linear regression (LR) analysis with soil prop-
erties as independent variables and PAH bioaccessibility as 
the dependent variable was carried out using the software 
Statistical Product and Service Solutions (SPSS). The F test 
was used for the linear regression model, and the t test was 
used for the regression coefficient significance test. The 
Kruskal–Wallis test and Mann–Whitney test were used to 
assess the difference between different sites. The content 
data of each PAH in the soil at different depths are expressed 

(1)TEQ =
∑

C(bio)i × TEFi

(2)(Bio- )Rt∕c = C(bio- )TEQ∕Ctotal

as the mean ± SD. Differences at p < 0.05 were regarded as 
statistically significant.

Results and Discussion

The residue concentrations of PAHs in soils are shown in 
Fig. 1. A total of fifteen kinds of PAHs were detected at site 
S1. The content of individual PAHs ranged from 0.41 to 
668.85 mg kg−1, and the mean value of individual PAHs was 
3.08–47.81 mg kg−1. Twelve kinds of PAHs were detected 
at site S2, with the concentrations ranging from 0.25 to 
21.4 mg kg−1, and the mean content of individual PAHs 
ranged from 0.77 to 3.24 mg kg−1. In addition, PAHs were 
barely detectable in soils deeper than 6 m at site S2. Overall, 
the PAH contents at site S1 were significantly higher than 
those at site S2 (p < 0.05). As shown in Fig. 1c, 4-ring PAHs 
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were the dominant fraction at both sites (33.6%–60.9%), fol-
lowed by 3-ring PAHs at site S1 and 5-ring PAHs at site S2, 
regardless of soil profile depth. Two-ring PAHs showed the 
lowest proportion and were almost undetectable at site S2. 
The high-ring PAHs (4-, 5-, and 6-ring PAHs) at the two 
sites accounted for approximately 80% of all PAH contents.

Compared with those found in existing studies, the total 
PAH contents at sites S1 and S2 were all relatively high 
(Wang et al. 2017), indicating that the risks of PAH con-
tamination in the coal gasification plant and steel plant were 
high. PAHs naturally exist in coal due to diagenesis. The 
total amount of PAHs extracted from coal may range from 
tens to several thousand milligrams per kilogram (Hinders-
mann and Achten 2018); hence, the combustion of coal and 
coke has been an important source of PAHs in the environ-
ment and at industrial sites. Moreover, one study showed 
that PAHs in coal-rich soil were deficient in microbial deg-
radation (Achten et al. 2011).

The composition of PAHs with different ring numbers in 
soils differed substantially (Hindersmann and Achten 2018; 
Karaca 2016; Siemering and Thiboldeaux 2021). Studies 
have shown that 4-ring PAHs are dominant in heavy traf-
fic and industrial areas (Karaca 2016). High-ring (5- and 
6-ring) and 2-ring PAHs are distributed in the soil near 
petrochemical complexes (Nadal et al. 2004), while 3- and 
4-ring PAHs are mainly concentrated near chemical com-
panies. In this study, The S1 and S2 sampling sites were 
located at the former sites of the coal gasification plant and 
steel plant, respectively. After the plant stopped operating, 
the plant-derived LMW PAHs in the soil were relatively 
quickly degraded due to their comparably higher water solu-
bility, while the HMW PAHs persisted in the soil for a long 
time (Li et al. 2012). In addition, our diagnostic ratio results 
further corroborate that the dominant source of PAH in two 
sites was the combustion of coal and other fuels (Fig. S3), 
and there was source of traffic emission because the two sites 
were located in urban areas (Wu et al. 2021).

The bioaccessibility of PAHs (bioacc-PAHs) with differ-
ent ring numbers is shown in Fig. 2. The bioaccessibility of 
PAHs extracted by HPCD at site S1 ranged from 1.18% to 
92.93%, with an average of 52.02%, while those at site S2 
ranged from 0.84% to 77.86%, with an average of 29.28%. 
In general, the bioacc-PAHs at site S1 were significantly 
higher than that at site S2, and the average bioacc-PAHs 
for 3-ring PAHs were the highest in soils at both sites. The 
bioacc-PAHs of 5- and 6-ring at site S1 were significantly 
lower than that of the 3- and 4-ring PAHs. Although there 
was no significant difference among the bioacc-PAHs with 
different ring numbers at site S2, the average bioacc-PAHs 
for 6-ring (20.81%) at site S2 was apparently lower than 
that of 3–5 ring (29.21%–31.96%). This result is consistent 
with that reported by other studies. For example, Crampon 
et al. (2016) and Oleszczuk et al. (2017) both demonstrated a 

decline in bioacc-PAHs with increasing number of aromatic 
rings in soils. The amounts of PAHs retained by humin in 
soils increased with increasing number of aromatic rings, 
leading to decreased bioaccessibility (Han et al. 2020). 
Three-ring PAHs had the highest bioaccessibility for grains, 
i.e., the highest likelihood to be taken up, whereas the 5- and 
6-ring PAHs had the lowest likelihood (Tian et al. 2018). 
Such a tendency could be explained by the increased Kow of 
PAHs with high molecular weight (Oleszczuk et al. 2017); 
a higher Kow value represents stronger hydrophobicity and 
lipophilicity (Yu et al. 2018), leading to lower contents of 
water-soluble PAHs and poor migration ability of PAHs 
from soil particles to the soil solution. Therefore, PAHs 
with more aromatic rings and larger Kow values were more 
difficult to extract and more recalcitrant in soils than those 
with fewer aromatic rings (Cheng et al. 2021).

As shown in Fig. S2, the bioacc-PAHs varied greatly at 
different soil profile depths. A slight increasing trend with 
increasing depth was found in the bioacc-PAHs of the 3-, 4- 
and 6-ring PAHs at site S1, while at site S2, higher bioacc-
PAHs were found in the mid-deep soil layers (1.51–2.25 m, 
3.76–4.50 m) than in the deep layers (5.26–6.00 m) and 
upper soil layers (0–0.75 m), which could be attributed to the 
changes in soil properties. In general, the soil organic matter 
content reaches its highest value in the soil surface layer and 
decreases significantly with increasing depth, which affects 
the adsorption and desorption processes in the soil to a great 
extent (Gao et al. 2013). Several studies have also obtained 
similar results that the sorption of organic pollutants in deep 
soil is lower than that in surface soil (Knight et al. 2019; Gao 
et al. 2013; Si et al. 2009), which could explain the high 
bioaccessibility of contaminants in deep soil layers.

The organic matter content and mineral content of soils 
with different textures are very distinct, greatly influencing 
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the morphological distribution and toxicity of organic pol-
lutants in soil (Princz et al. 2018). There were four soil tex-
tures, i.e., sandy loam, loamy sand, silt loam and loam, in 
our studied sites (Fig. 3). In both sites, there was almost no 
significant difference in bioacc-PAHs among different soil 
textures. However, it is worth noting that the bioacc-PAH in 
silt loam soil in site S1 was significantly lower than that of 
loamy sand soil, and the bioacc-PAH of loam soil in site S2 
was significantly lower than that of sand loamy soil, which 
may be due to the fact that silt loam and loam are exactly 
the two of the four studied soils with higher silt particle 
(2–0.02 mm) proportion. Wilcke et al. (1996) reported that 
PAHs in soil were adsorbed the most on silt particles and the 
least on sand particles, resulting in the low bioaccessibility 
of PAHs in silt soils. Ritore et al. (2022) observed a decline 
trend in the removal efficiency of hydrophobic organic con-
taminants (HOCs) in the soil with the transformation of soil 
texture from sandy to silt loam and clay soil. Therefore, the 
abundant aromatic ring structures in the organic matter of 
silt particles leads to the adsorption and binding of HOCs 
in soil, thus decreasing their bioaccessibility (Wilcke et al. 
1996).

The correlations between the bioaccessibility of PAHs 
and soil properties were analyzed. As shown in Table S4, 
the total bioacc-PAHs had a positive LR coefficient 
(0.478) with soil dissolved organic carbon (DOC) and a 
negative coefficient (− 0.247) with total organic carbon 
(TOC). Compared to those on insoluble organic matter, 
PAHs adsorbed on dissolved organic matter (DOM) have 
higher mobility and bioaccessibility. The former matter 
can immobilize PAHs, while the latter can solubilize PAHs 
in the soil, which has been suggested by numerous studies 
(Li et al. 2022; Tao et al. 2006; Yu et al. 2018). Therefore, 

the decreasing DOC value in the soil samples found in this 
study led to a reduction in the bioaccessibility of PAHs.

There were significant positive LR coefficients between 
3, 4, and 6-ring bioacc-PAHs and pH. Studies have shown 
that pH affects bioacc-PAHs by influencing the content 
or morphological changes of DOM and SOM in soil (Yu 
et al. 2018). Under different pH conditions, SOM exists in 
diverse physical forms and has different adsorption capaci-
ties for PAHs (Yu et al. 2018). In addition, Yu et al. (2016) 
concluded that higher pH values promoted an increased 
DOM content in soils, thereby inhibiting the proportion 
of PAHs sequestered by the soil solid phase and improv-
ing their bioaccessibility. The cation exchange capacity 
(CEC) had a significant influence only on 6-ring PAHs. It 
was reported that an increased CEC in soil would deepen 
the sequestration degree of PAHs (Chung and Alexander 
2002). Soil salinity showed subtractive LR coefficients 
with 3-ring and total bioacc-PAHs, which was consistent 
with the results obtained by Anderson (2013) that saline 
soil could retain PAHs in soil to a certain extent.

The total potassium, total iron and total manganese 
contents all had significant negative effects on the bio-
acc-PAHs (Table S4). Previous studies have shown that 
the presence of metal ions can enhance the adsorption 
capacity of soil for PAHs with poor desorption reversibil-
ity, thereby reducing its bioavailability (Luo et al. 2010; 
Saeedi et al. 2018). On the one hand, metal ions interact 
with solid organic matter in the soil, such as by forming 
complexes with polar functional groups of organic mat-
ter, modifying its structure and improving its adsorption 
capacity for PAHs (Saison et al. 2004). The higher the soil 
organic carbon content is, the stronger the enhancement of 
the adsorption affinity by metal cation modification (Liang 
et al. 2016). On the other hand, quantum mechanics have 
proven that the cationic–π interaction between metal ions 
and PAHs may improve the adsorption of PAHs in SOC 
(Liang et al. 2016).

The proportion of soil silt and clay had no significant 
effect on the total bioacc-PAHs but had different effects 
on the 2-ring, 4-ring and 5-ring PAHs (Table S4). Numer-
ous studies have indicated the negative effects of the clay 
proportion in soil on the extractability of PAHs. However, 
its impact was limited, such as decreasing only the low 
molecular weight bioacc-PAHs (Portet-Koltalo et al. 2020) 
or having only a negative correlation in the soil in particu-
lar research areas (Pu et al. 2004). Theoretically, clay is 
rich in pores with a size less than 20 nm or even smaller 
and has a large surface area, which is difficult to invade by 
soil (micro)organisms or plant roots, making it an excellent 
place for pollutant storage (Whittaker et al. 2019). Moreover, 
with high surface areas, enhanced sorption to contaminants 
through weak physical interactions was verified in clay soil 
(Pu et al. 2004).
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The TEQ concentration based on total and bioaccessible 
PAH contents in 78 soil samples from the two sites was 
calculated (Table S3). The total TEQ concentration ranged 
from 0.0004 to 263.24 mg kg−1 at site S1 and 0.0002 to 
10.11 mg kg−1 at site S2, with mean values that were 7.5 
times higher at site S1 than at S2. The bioaccessible TEQ 
concentration ranged from 0 to 90.22 mg kg−1 at site S1 and 
0 to 13.34 mg kg−1 at site S2, with mean values that were 
9.2 times higher at site S1 than at S2. Due to the high PAH 
contents at site S1 (Fig. 1a), the total TEQ and bioaccessible 
TEQ were all higher at site S1 than at site S2. Therefore, a 
toxic concentration ratio (Rt/c) was calculated to normalize 
the PAH concentrations. It was shown that the Rt/c (CTEQ/
Ctotal) at site S2 was significantly higher than that at site S1 
(p < 0.01) (Fig. 4), which can be attributed to the fact that the 
proportion of HMW PAHs with high toxicity at site S2 was 
about 10% higher than that at site S1(Fig. 1b). This result 
indicates that higher PAH toxicity would be achieved at site 
S2 rather than S1 when the contaminated sites show the 
similar total PAH contents. However, the Bio-Rt/c (Cbio-TEQ/
Ctotal) based on the bioaccessible TEQ was significantly 
higher at site S1 than at site S2 (p < 0.01). This opposite 
result means that higher bioaccessible toxicity would be pre-
sent at site S1 than S2 under the condition of similar total 
PAH contents, even though the proportion of HMW PAHs 
was larger at site S2 than S1. Therefore, the proportion of 
HMW PAHs and the bioaccessibility of PAHs both dominate 
the toxicity of PAHs in contaminated soils. Since PAHs are 
likely sequestered by soil organic matter and minerals in soil 
(Umeh et al. 2019), blocking contact with organisms, we 

suggested that to avoid overestimating the toxicity of PAH 
in soil, it is necessary to take bioaccessibility into account.
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