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Abstract
Both soil heavy metals and the influencing factors are related to spatial location and are spatially heterogeneous. However, 
the global linear regression model assumes the regression coefficients to be spatially stationary throughout the study region 
and is unable to account for the spatially varying relationships between soil heavy metals and influencing factors. Thus, 
the objectives of this study were to estimate the spatial distribution of soil heavy metals using a geographically weighted 
regression kriging (GWRK) approach, and compare the GWRK results with those obtained from ordinary kriging (OK) and 
regression kriging (RK). A dataset of soil lead (Pb) concentrations in Daye city, China, that was sampled in 2019 was used. 
According to the results of spatial smoothness, variability, and interpolation accuracy, GWRK was the best method and 
could provide the most reasonable spatial distribution pattern and the highest spatial interpolation accuracy in comparison 
with OK and RK.

Keywords Soil heavy metal · Spatial interpolation · Geographically weighted regression kriging (GWRK) · Regression 
kriging (RK)

Obtaining a high-precision spatial distribution map of 
regional soil heavy metals is considered an important basis 
for further pollution and risk assessments and decision and 
policy making in environmental management and conser-
vation. To date, the main methods for the spatial interpo-
lation of soil heavy metals include geostatistical kriging 
methods (Ren et al. 2018), non-geostatistical methods (e.g., 
inverse distance weighting, global polynomials, multiple 
linear regression, geographically weighted regression, neu-
ral networks) (Guan et al. 2019; Zhang et al. 2020), and 
their combination [e.g., regression kriging (RK), Bayesian 
maximum entropy (BME)] (Fei et al. 2019). In generally, 
the combined methods can obtain the highest interpolation 

accuracy because they can incorporate the spatial autocor-
relation of soil heavy metals and their relationship with envi-
ronmental factors (Yang et al. 2016). Among these combi-
nation methods, RK is the most commonly used combined 
method, which combines global multiple linear regression 
(MLR) and ordinary kriging (Zhu and Lin 2010). However, 
both soil heavy metal and environmental factors are related 
to spatial location and are heterogeneous over space (Li 
et al. 2017). The MLR model assumes that the relationships 
between dependent variables and independent variables are 
homogenous (Su et al. 2012), leading to biased parameter 
estimates and low fitting accuracy (Guo et al. 2008). Thus, 
some studies have explored the spatially varying relation-
ships between soil heavy metals and environmental factors. 
That is, the underlying influence process of environmental 
factors on the content of heavy metals in soil varied across 
spatial area. For example, due to the prevailing wind, the 
relationship between soil heavy metals and the distance from 
pollution source to soil receptor varied in different directions 
around the pollution source. The geographically weighted 
regression (GWR) model (Wang et al. 2020), which was 
developed from the MLR model and further improved to 
take into account spatially varying relationships between the 
dependent variable and independent variables (Brunsdon 
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et al. 1996). In general, GWR can provide better results than 
conventional models in terms of improving the understand-
ing of the spatially varying relationships between soil heavy 
metals and environmental factors. Then, a geographically 
weighted regression kriging (GWRK) approach, replacing 
the RK method, was used to predict the spatial distributions 
of soil properties, such as organic carbon, total nitrogen, 
salinity, and available phosphorus (Kumar et al. 2012). The 
results of the above studies showed that GWRK can improve 
the precision for estimating soil properties compared to ordi-
nary kriging (OK), GWR and RK because GWRK takes 
into account the spatially varying relationships between soil 
properties and environmental factors and the spatial autocor-
relation of the residuals. Thus, compared with the common 
methods, GWRK method may improve the spatial interpola-
tion accuracy of soil heavy metal.

In this context, the objectives of this study are (1) to 
predict the spatial distribution of soil heavy metals using 
the GWRK method and (2) to compare the accuracy of the 
GWRK method with those obtained from the OK and RK 
methods.

Materials and Methods

The study was conducted in Daye city (29°40′–30°15′ 
N, 114°31′–115°20′ E), Hubei Province, China, which is 
a famous mining city with a long mining and smelting 

history in China. In September 2019, we collected 202 
topsoil samples (0–20 cm). After the standard analytical 
procedure (Hua et al. 2018), the concentrations of Pb in 
those soil samples were obtained. A total of 40 samples 
(see the red points in Fig. 1) were randomly selected to 
serve as the validation set, and the remaining 162 samples 
served as training points (see the black points in Fig. 1a).

The heavy metals in soils might be affected by various 
environmental factors, such as terrain, land cover, location 
factors, and soil attributes (Schwarz et al. 2012; Shen et al. 
2017; Chen et al. 2020). Thus, in this study, consider-
ing data availability, a total of 11 environmental factors 
in three categories were involved in the GWR model to 
obtain the trend value of each spatial position in the study 
area (see Table 1).

To compare the coefficients of the different independent 
variables, before performing MLR and GWR modeling, 
all independent variables were normalized using the fol-
lowing formula:

 where xj,min and xj,max are the minimum value and maxi-
mum value of the j-th independent variable, respectively. 
Thus, a positive and large coefficient will indicate a positive 
and strong impact on the dependent variable, and vice versa 
(Yang et al. 2020).

(1)xj
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)
=
(
xj
(
p0

)
− xj,min
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(
xj,max − xj,min

)

Fig. 1  Spatial distribution of sampling points, elevation (a), and land cover (b) in Daye city



346 Bulletin of Environmental Contamination and Toxicology (2022) 108:344–350

1 3

In the GWRK model, the concentration value at position p0 
can be expressed as the sum of the trend and residual, as shown 
in the following equation:

 where ẑGWRK

(
p0

)
 is the estimated value at position p0 

obtained by the GWRK model, ẑGWR

(
p0

)
 is the trend value 

at position p0 fitted using the GWR model, and �̂OK
(
p0

)
 is 

the residual value at position p0 interpolated with the OK 
method. Specifically, the trend value ẑGWR

(
p0

)
 was obtained 

with the GWR model.
In the RK method, the concentration value at position p0 is 

obtained by the following equation:

 where ẑRK
(
p0

)
 is the estimated concentration of soil heavy 

metals at location p0, ẑMLR

(
p0

)
 is the fitted trend value of soil 

heavy metals at location p0 using a multiple linear regression 
model, and �̂OK

(
p0

)
 is the residual value interpolated with 

the OK method.
With the validation sampling points, using the three quan-

titative measures computed from the pairs of estimated-
observed soil heavy metals: the Pearson correlation coefficient 
(r), the mean error [ME, see Eq. (4)], and the mean absolute 
error [MAE, see Eq. (5)], the performance of GWRK was 
compared with the OK and RK methods.
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In Eqs. (4) and (5), z
(
pi
)
 is the measured value of soil heavy 

metals at location pi , and ẑT
(
pi
)
 is the predicted value using 

the T (OK, RK, or GWRK) method. In addition, the quantita-
tive indicator of relative improvement in MAE (Sumfleth and 
Duttmann, 2008) was employed to quantify the improvement 
in the prediction precision of one method relative to the other 
using the following equation:

 where MAEa and MAEb are the MAE values of methods a 
and b, respectively. When the RIb∕a value is positive, it indi-
cates that the b-method is more accurate than the a-method; 
when the RIb∕a value is negative, it indicates that the b-meth-
od’s prediction accuracy is lower than that of the a-method.

In addition, to quantitatively measure the smoothness 
effect of the spatial distribution, a smoothing index (SI) 
on the m-scale is defined as the mean value of the differ-
ence between the value of one grid and the values of its 
surrounding grids (see equation (7) and the diagram next 
to the equation).

(6)RIb∕a =
MAEa −MAEb

MAEa

× 100%

(7)

SIm =

−

∑

i,j

|||zi,j − zi+1,j
||| +

|||zi,j − zi−1,j
||| +⋯ +

|||zi,j − zi−1,j−1
|||

8 × zi,j

Table 1  The environmental 
factors involved in the RK and 
GWRK model

 The spatial distributions of those environmental factors are shown in Fig. 1, and Fig. S1 in the supplemen-
tary materials

Category Environmental factor Abbreviation and code

Topographical factors Elevation h, X1

Slope Slope, X2

Soil attributes Soil pH pH, X3

Soil organic matter content SOC, X4

Soil thickness Thickness, X5

Soil cation exchange capacity CEC, X6

Location factors Distance to farmland DtoFarmland, X7

Distance to mines or mineral smelters DtoMine, X8

Distance to residential areas DtoResident, X9

Distance to roads DtoRoad, X10

Distance to factory DtoFactory, X11
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 where m is the grid size and zi,j is the predicted value of 
grid (i, j). The smaller the SIm is, the smoother it is on the 
m-scale. Similarly, after rasterizing the training points, the 
SI values at multiple scales based on the sample points can 
be calculated.

Results and Discussion

The histogram and summary statistical results of the training 
sampling points for Pb are shown in Fig. S2. According to 
the comparisons of the mean value of Pb and its background 
values (26.7 mg/kg, CNEMC 1990), the soils in the study 
area were seriously polluted by Pb. Meanwhile, the Coeffi-
cient of variation (CV) value of Pb is 0.95, indicating intense 
spatial variability and serious effects of human activities.

The Pearson correlation coefficients between the soil Pb 
and the standardized 11 environmental factors are listed in 
Table S1. Pb is significantly negatively correlated with the 

DtoMine (X8); that is, in general, the closer to the mines 
or smelters are, the higher the concentrations of Pb are in 
the soils, indicating that mines and mineral smelters are the 
main sources of Pb pollution in the soils of the study area. 
In addition, the soil CEC (X6) also exhibited a significant 
negative correlation with Pb. CEC, reflecting the amount 
of soil negative charge, can regulate Pb bioavailability by 
cation exchange for  H+ on the micelle surface. High CEC 
will increase the activity of heavy metal ions and then 
reduce the concentration of heavy metal in soil (Zheng et al. 
2020). Meanwhile, there are also significant or extremely 
significant correlations among the environmental factors 
themselves, such as elevation with pH, SOC, soil thickness, 
CEC, DtoResident, DtoRoad and DtoFactory; pH with soil 
thickness, CEC, DtoFarmland, DtoMine, and DtoResident; 
and SOC with soil thickness, DtoResident, and DtoFactory.

According to the Kolmogorov–Smirnov (K–S) values 
(see Fig. 2) obtained from the original data, the original 
Pb data in soils were not statistically normal. However, the 

Fig. 2  Spatial distributions of 
soil Pb obtained by OK (a), RK 
(b) and GWRK (c)
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logarithmically transformed data for Pb obtained a normal 
distribution. Thus, the logarithmically transformed training 
data were used in the following OK spatial interpolation. 
The experimental variogram and its fitted theoretical model 
for soil Pb are shown in Figure S3 (a) and Table S2. Based 
on the fitted theoretical model and the training soil sam-
ples, the spatial distribution generated by the OK method is 
shown in Fig. 2a.

The 11 environmental factors mentioned in section  envi-
ronmental factors were used as independent variables to fit 
the MLR in the RK method using stepwise regression, which 
can eliminate the independent variables that cause multicol-
linearity. As shown in Table S3, for Pb, only DtoMine (X8) 
was included in the global regression model and had a nega-
tive regression coefficient, once again indicating that mines 
and mineral smelters might be the main sources of soil Pb 
in the study area. The experimental variogram and its fitted 
theoretical models for the soil Pb residuals from the global 
multiple linear regression model are shown in Fig. S3 (b) 
and Table S2. The spatial distribution map generated by the 
RK method is shown in Fig. 2b.

All environmental factors were used as independent vari-
ables to fit the GWR model for the soil Pb with the help of 
GWR4.0 software. The optimal kernel size was determined 
through an interactive statistical optimization process to 
minimize the AIC. Summary statistics of the coefficients of 
the environmental variables in the GWR model are shown 
in Table S4. According to the absolute values of the mean 
regression coefficients, the spatial distribution of Pb was 
mainly affected by elevation (X1), soil thickness (X5), CEC 
(X6), and DtoMine (X8). The Moran’s I values ranged from 
0.63 to 0.98, indicating significant spatial autocorrelation 
in those regression coefficients. In addition to providing 
estimates of spatially varying regression coefficients, the 
GWR4.0 software also provides several statistical tests to 
determine whether the GWR model is more useful than the 
global MLR model. As shown in Table S5, the results of 
the statistical tests show that the RSS and AIC values for 
the GWR are far lower than those for MLR, indicating that 
the local model provides a better fit than the global model. 
Meanwhile, the R2 generated by the GWR is much higher 
than that generated by the stepwise regression model (see the 
last column in Table S3) and by the global MLR model (see 
Table S5), meaning that GWR exhibits a large improvement 
in the explained variance of the dependent variable. The 
experimental variogram and its fitted theoretical model for 
the residuals from the GWR model are shown in Fig. S3c 
and Table S1. The spatial distribution map generated by the 
GWRK method is shown in Fig. 2c.

As shown in Fig. 2, the results obtained by OK, RK and 
GWRK have similar spatial distribution trends. The high Pb 
concentrations were mainly distributed in the eastern and 
northern parts of the study area, where mines and mineral 

smelters are concentrated. Thus, as mentioned in the above 
sections, mining activities could be determined as the main 
source of Pb in the soil of the study area. Then, the results 
obtained by OK, RK and GWRK are compared in terms of 
spatial smoothness, variability and interpolation accuracy.

As shown in Fig. 2, intuitively, the GWRK polygons were 
more fragmented than those of OK and RK. To quantita-
tively measure the smoothness effect of the spatial distribu-
tion for different methods, the SIs on multi-scales were cal-
culated based on results generated by different methods. As 
shown in Fig. 3a, the overall trend of the SI values increases 
with increasing grid size, indicating that with increasing 
spatial scale, the difference in Pb in nearby soils increases. 
In addition, the SI values of the OK method at all scales 
were much lower than those of the RK and GWRK methods, 
indicating that the OK method has a strong smoothing effect. 
However, the average SI values of the spatial distributions 
generated by RK and GWRK were close to those of the 
original soil samples (see the data recorded in the brack-
ets in Fig. 3a), showing that the RK and GWRK methods 
can maintain the variability of heavy metals in neighboring 
soils. Specifically, when the scale was less than 1600 m, the 
SI values of the spatial distributions generated by GWRK 
were greater than those of the spatial distributions gener-
ated by RK, resulting in the GWRK polygons being more 
fragmented than those of RK. That is, on small scales, the 
spatial distribution obtained by RK was smoother than that 
obtained by GWRK. This difference might be because in 
the RK method, only one environmental factor was selected 
into the linear regression model due to global collinearity, 
while in the GWR method, all environmental factors were 
involved in the regression model. Meanwhile, the mean SI 
values of RK, GWRK and the original sampling points are 
0.68, 0.64, and 0.57, respectively, showing that the spatial 
smoothness of the GWRK method is closer to that of the 
original sampling points than the RK method.

The spatial points were obtained based on the spatial dis-
tribution grid data generated by the OK, RK and GWRK 
methods. Then, based on the logarithmically transformed 
data, the experimental variograms of different lag distances 
were calculated. As shown in Fig. 3b, the spatial distribu-
tion generated by the OK method had the smallest vari-
ogram values, indicating that the OK method reduced the 
spatial variability. Furthermore, the variogram values of the 
spatial distributions generated by the GWRK method were 
larger than those generated by the RK method and closer to 
those obtained based on the original sampling points. Thus, 
GWRK could better maintain the spatial variability of soil 
heavy metals than OK and RK.

To assess the performances of OK, RK and GWRK, 40 
validation soil samples were used to test the spatial inter-
polation accuracies of the three methods. The comparison 
results are shown in Table 2. The results of OK prediction 
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show the poorest spatial interpolation because it has the 
largest bias (ME value), the largest error (RMSE), and the 
smallest correlation relationship with the observed valida-
tion soil samples. Conversely, GWRK has the smallest ME 
and RMSE values and the largest r values, indicating that 
the spatial interpolation accuracy of GWRK is higher than 
those of OK and RK. Specifically, according to the RI val-
ues, compared to the OK method, RK and GWRK improved 
the accuracies by 39% and 55%, respectively.

Conclusions

The relationships between soil heavy metals and envi-
ronmental factors are related to their spatial variations, 
and the limitation of the global regression model is that 
it assumes that the relationships are uniform or stationary 
throughout the whole study region. Thus, in this study, 
the GWRK approach, composed of the GWR and kriging 
model, was used to estimate the soil heavy metal Pb in 

Daye city. The 11 environmental factors in three categories 
that might affect the spatial distribution of soil Pb were 
selected for the study case. Two common geostatistical 
methods (OK and RK) were also used to generate the spa-
tial distributions of soil Pb and compared with the GWRK 
results in this study.

First, according to the SI values at multiple scales, the 
GWRK result was more consistent with the original data in 
terms of spatial smoothness. Second, according to the results 
of the experimental variogram of different lag distances, 
GWRK could maintain the spatial variability of the original 
sampling points better than OK and RK. Third, the GWRK 
approach yielded the minimum spatial interpolation error 
compared to those estimated from the OK and RK methods. 
Thus, in this case, GWRK generated the most reasonable 
spatial distribution pattern and higher accuracy results than 
OK and RK. The reasons may be as follows: (1) The study 
area in this case is a mining and metallurgy city, and heavy 
metals in soils are seriously affected by human activities 
(mining activities in this case). Thus, the spatial variability 
of soil heavy metals was too complex to characterize using 
one variogram model, which led to low interpolation accu-
racy in the OK method. (2) Compared with global MLR, 
the advantage of the GWR model is to describe the spatially 
varying relationships between the dependent variable and 
independent variables. In this case, GWR provided a bet-
ter fit between soil Pb and environmental factors than the 
global MLR model (lower RSS and AIC, along with higher 
R2), resulting in a higher spatial interpolation accuracy and 
more reasonable spatial distribution pattern of GWRK than 
those of RK.

Fig. 3  a The smoothness index at multiple scales for the soil Pb 
(the number in brackets is the mean value of the smoothness index 
obtained by the corresponding method), and b  Experimental vari-

ogram of log-transformed original soil samples and spatial distribu-
tions obtained by OK, RK, and GWRK for soil Pb

Table 2  Comparison of the spatial interpolation accuracies of OK, 
RK and GWRK

ME mean error, MAE mean absolute error; r Pearson correlation coef-
ficient

Method ME MAE r RI

OK − 5.07 21.78 0.71 /
RK − 3.9 13.19 0.90 39%
GWRK − 3.34 9.79 0.95 55%
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