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Abstract
More has yet to be indicated on the adsorption and degradation processes, determining herbicides recycling in the environ-
ment. The sorption and degradation of 2, 4-D, affected by organic carbon (1.92–2.81%), soil clay (20–30%) and pH of the 
citrus orchards of Mazandaran province, Iran was investigated using HPLC equipped with UV detector for the identification 
and quantification of soil 2, 4-D. The adsorption  (kd) and degradation  (Kdeg) coefficients were determined using Freundlich 
and the first-degree kinetic equations. Gardens C (2.45 mL  g−1), and B (0.3 mL  g−1), with the highest (8.2 g  day−1) and least 
(2.7 g  day−1) degradation coefficients, had the highest and lowest  Kd values.  Kd variations with pH indicated higher adsorption 
of 2, 4-D in acidic pH. Due to the high presence of functional groups and soil biological activities, organic carbon affected 
the adsorption and degradation rates more effectively, which is of economic and environmental significance.
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Although herbicides are not environmentally recommend-
able, and they have become weed resistant with time, they 
are used as one of the most important components of inte-
grated weed management, worldwide (Salehian and Moham-
madzadeh 2018). Accordingly, herbicides have always been 
consumed at a higher rate compared with the other pesticides 
in the world. The herbicide 2, 4-D was the fifth most widely 
used pesticide in 2012, globally (Atwood and Paisley-Jones 
2017). However, in Iran, among the 20 most important pes-
ticides, 2, 4-D was ranked 11th in 2017 (Zand et al. 2019).

Investigating the important phenomenon of pesticide 
recycling in the soil, which is controlled by the complex 
processes of adsorption and degradation, is of economic 
and environmental significance. The adsorption process is 
a function of plant and soil particles, leaching, runoff, and 
evaporation, while the degradation processes is affected by 

hydrolysis, photo-decomposition and oxidation–reduction 
reactions (Islam et al. 2018; Liu et al. 2018a).

The degradation of pesticide generally reduces its toxic-
ity but in some cases the metabolites are more toxic than 
the original compounds. The adsorption of herbicides on 
soil particles indicates the presence of biological activi-
ties. Organic matter and clay content can importantly con-
trol adsorption of most pesticides. Additionally, sugars and 
amino acids increase soil organic matter and microbial activ-
ity, affecting herbicides degradation (Wu et al. 2017; Mier-
zejewska et al. 2020). The processes of adsorption and deg-
radation are often interrelated; degradation may be limited to 
soil solution and the adsorbed molecules may be resistant to 
microbial mineralization (Ren et al. 2018; Liu et al. 2018b).

The adsorption mechanism of herbicides is controlled 
by their molecular structure, soil acidity and soil solute 
concentration. The adsorption and degradation of ionizing 
pesticides is often pH dependent as pH fluctuations of soil 
solution can alter the adsorption and degradation amount 
(Tulp et al. 2009). Due to higher bioactivity, the rate of pes-
ticide degradation by microorganisms is usually faster in 
alkaline pHs (Kah and Brown 2006; 2007). The herbicides 
with acidic or weak basic properties are affected by soil acid-
ity (Gámiz et al. 2019). For example, 2,4 -D is non-ionic at 
pH < 6 but ionic at pH > 6, and accordingly, due to negative 
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charges of soil particles, its adsorption at pH < 6 is higher 
(Qisse et al. 2020).

Research has indicated acidic herbicides are absorbed by 
soil colloids with less intensity than alkaline and non-ionic 
herbicides (Weber et al. 2007). The dominant forms of acidic 
herbicides are often anionic in pHs higher than acid-ioniza-
tion constant, and hence are not adsorbed by soil colloids 
with negative charge (Werner et al. 2013). With increasing 
acidity, the solubility of acidic herbicides increases resulting 
in the increased adsorption of acidic herbicides, due to pro-
tonation, neutralization of the acidic group or their reduced 
solubility. The anionic form of an herbicide is more soluble 
in water, increasing its adsorption by plant roots (Islam et al. 
2018).

It is an important research topic to investigate the key 
role of adsorption and degradation processes in the recycling 
of phenoxy herbicides including their storage and leaching 
in the soil, affecting groundwater pollution. Accordingly, 
since there is little data on the adsorption and degradation 
of 2, 4-D in the orchards, the objective was to investigate 
the effects of adsorption and degradation processes on the 
recycling of 2, 4-D in the orange orchards of Mazandaran 
province, Iran.

Material and Methods

For the present research, four citrus orchards (Citrus sinensis 
L. Qsbeck) were selected in four areas of Sari county (the 
capital of Mazandaran province in the north of Iran).

The soil samples of the orchards, highly variable in terms 
of organic carbon content (with amplitude of 41%), were 
taken from a depth of 0–15 cm in May 2020. The amount 
of clay was relatively small and its range was less compared 
to organic carbon (with a range of 33%) (Table 1). The ratio 
of clay percentage to the amount of organic carbon varied 
from 7.8 to 10.4.

Organic carbon of soil samples was measured by oxida-
tion using potassium bichromate and concentrated sulfuric 
acid (Hesse 1971). Soil pH was also determined in satu-
rated soil extract by pH meter (WTW-V30) (Rhoades 1982). 

Additionally, cation exchange capacity (Bower et al. 1952), 
bulk density (Black 1965) and soil texture (Bouyoucos 1962) 
were measured in the laboratory.

In this experiment 2, 4-D (Fig. 1) was used with water-
soluble (SL) formulation and 72% purity. It is a selective and 
post emergence herbicide used to control annual and per-
ennial broadleaf weeds in cereals, sugarcane and orchards. 
It has pKa = 2.97 and a solubility of 0.6 g  L−1 (Villaverde 
et al. 2008).

Freundlich equation was used to measure the adsorption 
coefficient (Eq. 1) (Muller et al. 2007):

S is the amount of herbicide adsorbed per unit weight of 
adsorbent (mg  kg−1) and C is the equilibrium concentration 
of herbicide in solution phase (mol  L−1).  Kd or adsorption 
coefficient (dispersion or distribution coefficient), expressed 
in L  Kg−1 (or mL  g−1), is an important and practical indica-
tor for the description and adsorption behavior of herbicides. 
To determine  Kd, the numerator and denominator of Eq. 1 
must be measured. S is the difference between the two initial 
concentrations of herbicide in the soil  (E1) and the amount 
of herbicide drained from soil  (E2).

The experiment was done by adding 550 g of soil (col-
lected from each garden) to each PVC cylindrical column 
(32 cm high). With respect to the number of gardens and 
three replications for each treatment, 12 cylinders were pre-
pared. Each column of soil  (E1) was treated with 2, 4-D 
(SL, 72%) to achieve a dose of 1.5 L  ha−1. Accordingly, in 
order to ensure the effect of the herbicide on the soil, after 
72 h, the drained solution was extracted and transferred to 
the laboratory.

High performance liquid chromatography (HPLC) system 
equipped with UV detector was used for the identification 
and quantification of 2, 4-D in the soil samples. The wave-
length of the UV detector was set at 230 nm, and using the 
buffer solution of 20 mM ammonium acetate adjusted to 
pH 4.0 by formic acid, the soil samples were measured. The 
mobile phase was a combination of 30% acetonitrile and 

(1)Kd =

S

C

Table 1  Mean adsorption  (Kd), degradation rate  (Kdeg), half-life  (DT50) and the physicochemical properties of the selected soils

a Textural classification FAO/UNESCO/ISRIC (L Loam, C Clay, S Sandy)
b The values, in the in the parenthesis, present standard deviations

Soils Texturea pH Clay (%) OC (%) CEC 
(meq 100  g−1)

BD (g  cm−3) Kdeg ×  10–2 (g  day−1) DT50 (day) Kd (mL  g−1)

A L 7.1 24 2.81 16.3 1.43 6.5 (± 0.08) 10.6 1.67 (± 0.33)b

B L 7.9 20 1.92 12.2 1.11 2.7 (± 0.08) 25.6 0.3 (± 0.01)
C C L 6.5 30 3.26 16.3 1.20 8.2 (± 1.31) 8.4 2.45 (± 0.58)
D S C L 7.6 21 2.10 15.7 1.15 5.8 (± 0.87) 11.9 0.38 (± 0.02)



153Bulletin of Environmental Contamination and Toxicology (2022) 108:151–157 

1 3

70% buffer solution. All separations were carried out on a 
reversed-phase C18 column (250 mm × 4 mm, 5 µm) at 20°C 
with a flow rate of 1 mL  min−1.

Prior to the HPLC analyses, the samples were passed 
through 0.45 µm cellulose acetate syringe filters and were 
manually injected (50 µL) into the HPLC system. The cali-
bration curves prepared by the injection of 50 μL from each 
of the standard solutions were used to determine the corre-
sponding line equation (indicating the relationship between 
the peak area in the chromatogram and the concentration 
of the injected sample) and subsequent calculation of the 
residual 2, 4-D concentrations in the samples (Kashyap et al. 
2005).

The following method was used to determine the equi-
librium concentration of herbicide in solution phase (C) 
(m mol  L−1) (Hiller et al. 2012); following the removal of 
the first extract from the tested pot soils, a thick solution was 
left in the soil, which was placed in a shaker for 24 h, and 
then washed with 550 mL distilled water. The solution was 
left for 72 h and its extract (second extract) was taken to the 
laboratory and its 2, 4-D amount was measured like the first 
extract (Morillo et al. 2001). According to the measurement 
of S and C values, the amount of herbicide adsorption coef-
ficient  (Kd) was obtained using Eq. 1.

In each garden, an area of 4  m2, with no history of herbicide 
spraying, was sprayed with 2, 4-D at the rate of 1.5 L  ha−1 
using a manual sprayer. Using an auger with a drill diameter 
of 50 mm, soil samples were taken from a depth of 0–5 cm, 10 
 (T1), 20  (T2), 30  (T3), 40  (T4) and 50  (T5) days after herbicide 
application (Noshadi et al. 2014). The samples were immedi-
ately transferred to the laboratory, stored in dark environment, 
dried, weighed and sieved. Using glass containers, the samples 
were stored in the freezer at − 20°C until analysis. Prior to 

chemical extraction, the samples were taken out of the freezer 
and placed in the room for some time to equilibrate with room 
temperature.

Degradation of herbicides in the soil generally follows a 
first order kinetic equation (Villaverde et al. 2008). In this 
study, the first-order kinetic Eq. (2) was used to interpret the 
alteration of herbicide in the soil with time:

c: herbicide concentration (µg  cm−3 soil), t: time (day) and 
k: herbicide degradation coefficient.

Equation 3 is the integral of Eq. 2, if t = 0, and c =  C0,

C0 is the concentration of herbicide at the time of zero 
(µg  cm−3 soil). The values of  C0 and k parameters are obtained 
from the fit of the equation on the data of herbicide concentra-
tion in the soil at different times after the application of the 
herbicide. In order to determine the concentration of 2, 4-D in 
the soil (C), the method by Hiller et al. (2012) was used again.

The use of half-life  (DT50) is the most applicable method to 
express the persistence of herbicides and compare their deg-
radation potential in the soil (Bowman 1991). The value of 
 DT50 was calculated using Eq. 4, by the calculation of the k 
parameter in Eq. 3:

(2)C = − kt
dc

dt

(3)C = C
0
e
−kt

(4)DT50 =

Ln2

k

Fig. 1  The molecular structure 
and pH-dependent speciation of 
2, 4-D. By Monolemma—Own 
work, CC BY-SA 3.0, https:// 
commo ns. wikim edia. org/w/ 
index. php? curid= 19239 250

https://commons.wikimedia.org/w/index.php?curid=19239250
https://commons.wikimedia.org/w/index.php?curid=19239250
https://commons.wikimedia.org/w/index.php?curid=19239250
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Results and Discussion

Table 1 presents the adsorption coefficients for the soils 
of different gardens. The highest and the lowest  Kd values 
were obtained for gardens C, and B, respectively. The vari-
ations of  Kd with pH (Fig. 2a) indicated that the adsorption 
of 2, 4-D in acidic pH was higher. The adsorption coeffi-
cient was positively correlated with soil properties except 
pH (Table 2).

The effect of pH on the adsorption of 10 ionic pesticides 
by nine soils of southern England has been shown (Kah 
and Brown 2007). It has also been indicated at high pH, 
the adsorption of 2, 4-D is reduced by up to 10 times (Tulp 
et al. 2009; Werner et al. 2013). Organic matter at acidic 
pHs (4.5–7.5) highly adsorb anionic herbicides (Tulp et al. 
2009). Celis et al. (1999) obtained the adsorption coefficient 
for 2, 4-D in humic soil with a pH 2.9 equal to 60 L  Kg−1 
indicating the adsorption of 2, 4-D on soil organic matter is 
completely dependent on soil pH.

Faria et al. (2018) investigated the effects of soil pH on 
tebuthiuron leaching. The higher rate of organic matter and 
clay decreased the rate of herbicide leaching. The rate of 
leaching was noticeable (up to 50 cm depth) even at the 
higher rates of organic matter and clay. The authors indi-
cated the leaching of nonionic herbicides is affected by soil 
pH, and liming increased the herbicide leaching by increas-
ing soil pH.

The relatively high rate of adsorption by soil C can-
not be related only to pH as it has the highest amount of 
organic carbon (Table 1). Different research has indicated 

the quantity of organic matter determines the adsorption pro-
cess. Werner et al. (2013) in a review of 53 researches on 46 
soils of North America and Europe examined the adsorp-
tion of several phenoxy acid herbicides, and found that the 
adsorption coefficient had a positive correlation with the 
amount of organic matter and a negative correlation with 
soil pH.

Tulp et al. (2009) obtained the 2, 4-D adsorption coef-
ficient of 35.7 L  Kg−1 in one type of peat soil. Figure 2b 
shows a direct and positive correlation between  Kd and 
organic carbon, which was higher and more significant than 
clay (Table 2). A strong correlation between soil organic 
matter and the adsorption of phenoxy herbicides has also 
been indicated by other researchers (Hiller et al. 2012; Jiang 
et al. 2018). Accordingly, 2, 4-D adheres less to the soil par-
ticles and its adsorption has a positive correlation with the 
amount of soil organic matter and a negative correlation with 
soil pH (Fig. 2c) (Werner et al. 2013; Di Prima et al. 2018).

The ability of a particle to absorb molecules mainly 
depends on its surface area. Due to the association between 
inorganic and organic components of soil, it is difficult to 
separate their relative role in adsorption. According to the 
theory of blockage of clay particles by organic matter, when 
the ratio of clay to organic carbon is less than 30, the role 
of clay particles in adsorption is low (Morillo et al. 2004; 
James et al. 2019). In this experiment, the average ratio of 
clay to organic carbon in all soils was about 9.5. Research 
has also shown that when the share of soil organic carbon is 
more than 0.5%, sorption by the mineral part of the soil is 
reversed (Rebhun et al. 1992).

Fig. 2  Plots of adsorption coefficient (Kd) and soil properties (a) pH, (b) organic carbon, (c) clay

Table 2  Statistical correlations 
between Kd, Kdeg and selected 
soil properties

*, **Significant at the p level of 5 and 1%, respectively

Coefficients Organic carbon 
(%)

Clay (%) pH CEC (meq  100−1) Kdeg (g  day−1)

Kd (mL  g−1) 0.99** 0.96* − 0.97* 0.67 0.85
Kdeg (g  day−1) 0.89* 0.86* − 0.92* 0.93 1
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The minimum amount of organic carbon, was 1.92% 
(Table 1) indicating the importance of organic matter in the 
adsorption of 2, 4-D. However, determining the effect of a 
single component on sorption is difficult, as soil properties 
are often interrelated. Although research has indicated the 
contribution of clay to 2, 4-D adsorption might be signifi-
cant, the sorption of herbicide by clay particles in most soils 
is low, because clay particles, especially in highly fertile 
soils are covered with a relatively thick layer of organic mat-
ter (Haberhauer et al. 2000; Marin-Benito et al. 2018).

The correlation between the amount of sorption and 
degradation rate of 2, 4-D  (Kdeg), in the present research, 
was positive (Table 2) (Fig. 3). Park et al. (2001) showed in 
their proposed model, when 2, 4-D is adsorbed on soil par-
ticles, its degradation increases. The adsorption coefficient, 
organic carbon and biological activity are highly related. 
The herbicide adsorbed on the organic matter increases 
the activity of microorganisms (Zhang et al. 2020) as the 
predominant mechanism of 2,4-D degradation in the soil is 
through decomposition by bacteria (Shi et al. 2021). Accord-
ingly, it seems reasonable that soil C with higher rate of 
organic carbon resulted in higher 2, 4-D degradation related 
to the other soil types (Table 1) (Zhu and Guo 2020). Our 
results are confirmed by Ismail and Azlizan (2002) indi-
cating soil sterilization severely reduced the degradation of 
metsulfuron‐methyl.

The results of the present experiment indicated a signifi-
cant positive correlation between degradation rate with the 
amounts of clay, organic carbon and a negative correlation 
with soil pH (Table 2). The negative correlation of soil pH 
with degradation rate can be explained according to the fol-
lowing: as the pH increases, the sorption of 2, 4-D decreases 
and this compound is less exposed to biodegradation due to 
leaching (Nowak et al. 2011; Zhu and Guo 2020).

The activity of microorganisms including biodegradation 
is affected by environmental conditions such as acidity and 
soil type (Liang et al. 2020; Yang et al. 2020). Due to the 
non-uniformity of soil conditions, it is not logical to extend 
the herbicide half-life from one soil to another. Soil C had 

a 2, 4-D half-life of 8.4 days, which was less than other 
soils (Table 1). Such results can be attributed to the higher 
amount of organic carbon and clay.

Ghafoor et al. (2011) investigated pesticide half-life and 
its correlation with soil properties and found that half-life 
has a negative correlation with soil organic matter. Other 
studies have estimated the half-life of 2, 4-D in the soil to be 
around 10 days (IUPAC 2011). Experiments by Juhler et al. 
(2008) on herbicide MCPA in 23 samples indicated that the 
average half-life of this herbicide is 9 days. However, soil B, 
had the longest 2,4-D half-life (25.6 days). The long-term 
presence of 2, 4-D in the soil may be due to a lack of degra-
dability or a small population of microorganisms (Germaine 
et al. 2006).

Conclusion

Although the factors of organic carbon and soil clay had an 
effect on the adsorption of 2, 4-D., organic carbon content 
was the more effective one. Accordingly, organic carbon 
played a more decisive role in the adsorption of 2, 4-D. The 
results indicated pH was negatively correlated with herbicide 
sorption. Similar to the process of adsorption, the amount 
of 2, 4-D degradation was positively correlated with organic 
carbon and soil clay and negatively correlated with soil pH. 
With respect to the important processes of adsorption and 
degradation affecting the recycling and leaching potential 
of an herbicide, the use of 2, 4-D is recommendable in the 
regions with organic carbon of about 2%, clay of about 27%, 
and pH of less than 6.8.

Acknowledgements The authors would like to thank very much, the 
international publisher, AbtinBerkeh Scientific Ltd. Company (https:// 
Abtin Berkeh. com), Isfahan, Iran, for editing the manuscript and revis-
ing it according to the journal format

Author Contributions All authors contributed equally to the 
manuscript.

Funding There was not any funding for the present research.

Declarations 

Conflict of interest The authors declare they do not have any conflict 
of interest.

References

Atwood D, Paisley-Jones C (2017) Pesticides industry sales and usage. 
US Environmental Protection Agency, Washington, p 24

Black CA (1965) Methods of soil analysis (V.I). American Society of 
Agronomy, Madison, p 1572

Bouyoucos GJ (1962) Hydrometer method improved for making par-
ticle size analyses of soils. Agron J 54:464–465

Fig. 3  Plot of degradation rate (Kdeg) and adsorption coefficient (Kd)

https://AbtinBerkeh.com
https://AbtinBerkeh.com


156 Bulletin of Environmental Contamination and Toxicology (2022) 108:151–157

1 3

Bower CA, Reitemeier RF, Fireman M (1952) Exchangeable cation 
analysis of saline and alkali soils. Soil Sci 73:251–262

Bowman BT (1991) Mobility and dissipation studies of metribuzin, 
atrazine and their metabolities in plainfield sand using field lysim-
eters. Environ Toxicol Chem 10:573–579

Celis R, Hermosin MC, Cox L, Comejo J (1999) Sorption of 
2,4-dichlorophenoxyacetic acid by model particles simulating nat-
urally occurring soil colloids. Environ Sci Technol 33:200–1206

Di Prima S, Rodrigo-Comino J, Novara A, Iovino M, Pirastru M, 
Keesstra S, Cerdà A (2018) Soil physical quality of citrus orchards 
under tillage, herbicide, and organic managements. Pedosphere 
28:463–477

Faria AT, Souza MF, de Jesus Passos ABR, da Silva AA, Silva DV, 
Zanuncio JC, Rocha PRR (2018) Tebuthiuron leaching in three 
Brazilian soils as affected by soil pH. Environ Earth Sci 77:214

Gámiz B, Velarde P, Spokas KA, Celis R, Cox L (2019) Changes in 
sorption and bioavailability of herbicides in soil amended with 
fresh and aged biochar. Geoderma 337:341–349

Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling 
DN (2006) Bacterial endophyte-enhanced phytoremediation 
of the organochlorine herbicide 2,4-D. FEMS Microbiol Ecol 
57:302–310

Ghafoor A, Moeys J, Stenstrom J, Tranter G, Jarvis NJ (2011) Mod-
eling spatial variation in microbial degradation of pesticides in 
soil. Environ Sci Technol 45:6411–6419

Haberhauer G, Pfeiffer L, Gerzabek MH (2000) Influence of molecular 
structure on sorption of phenoxyalkanoic herbicides on soil and its 
particle size fractions. J Agric Food Chem 48:3722–3727

Hesse PR (1971) A text book of soil chemical analysis. John Murray, 
London

Hiller E, Tatarkova V, Simonovicova A, Bartal M (2012) Sorption, 
desorption and degradation of 4-chloro-2-methylphenoxy acetic 
acid in representative soils of the Danubian lowland. Slovakia 
Chemosphere 87:437–444

Ismail BS, Azlizan BA (2002) Persistence and bioactivity of metsul-
furon-methyl in three soils. J Environ Sci Health B 37:345–353

Islam F, Wang J, Farooq MA, Khan MSS, Xu L, Zhu J, Zhao M, 
Munos S, Li QX, Zhou W (2018) Potential impact of the herbi-
cide 2,4-dichlorophenoxyacetic acid on human and ecosystems. 
Environ Int 111:332–351

IUPAC (2011) IUPAC FOOTPRINT pesticides properties database. 
Available at http:// sitem. herts. ac. uk/ aeru/ iupac/ index. htm. 
Accessed 02 April 2011.

James TK, Ghanizadeh H, Harrington KC, Bolan NS (2019) Effect on 
herbicide adsorption of organic forestry waste products used for 
soil remediation. J Environ Sci Health B 54:407–415

Jiang R, Wang M, Chen W, Li X (2018) Ecological risk evaluation of 
combined pollution of herbicide siduron and heavy metals in soils. 
Sci Total Environ 626:1047–1056

Juhler RK, Henriksen TH, Ernstsen V (2008) Impact of basic soil 
parameters on pesticide disappearance investigated by multivari-
ate partial least square regression and statistics. J Environ Qual 
37:1719–1732

Kah M, Brown CD (2006) Adsorption of ionisable pesticides in soils. 
Rev Environ Con Toxicol 188:149–217

Kah M, Brown CD (2007) Prediction of the adsorption of ionizable 
pesticides in soils. J Agric Food Chem 55:2312–2322

Kashyap SM, Pandya GH, Kondawar VK, Gabhane SS (2005) Rapid 
analysis of 2,4-D in soil samples by modified Soxhlet apparatus 
using HPLC with UV detection. J Chromatog Sci 43:81–86

Liang Q, Yan Z, Li X (2020) Influence of the herbicide haloxyfop-
R-methyl on bacterial diversity in rhizosphere soil of Spartina 
alterniflora. Ecotoxicol Environ Saf 194:110366

Liu X, Wu H, Hu T, Chen X, Ding X (2018) Adsorption and leach-
ing of novel fungicide pyraoxystrobin on soils by 14 C tracing 
method. Environ Mon Assess 190:86

Liu Y, Lonappan L, Brar SK, Yang S (2018) Impact of biochar amend-
ment in agricultural soils on the sorption, desorption, and degra-
dation of pesticides: a review. Sci Total Environ 645:60–70

Marín-Benito JM, Sánchez-Martín MJ, Ordax JM, Draoui K, Azejjel 
H, Rodríguez-Cruz MS (2018) Organic sorbents as barriers to 
decrease the mobility of herbicides in soils. Modelling Leaching 
Process Geoderma 313:205–216

Mierzejewska E, Baran A, Urbaniak M (2020) Biodegradation potential 
and ecotoxicity assessment in soil extracts amended with phenoxy 
acid herbicide (2, 4-D) and a structurally-similar plant secondary 
metabolite (ferulic acid). Bull Environ Con Toxicol 104:200–205

Morillo E, Perez-Martinez JI, Gines JM (2001) Leaching of 2,4-D 
from a soil in the presence of β-cyclodextrin: laboratory columns 
experiments. Chemosphere 44:1065–1069

Morillo E, Undabeytia T, Cabrera A, Villaverde J, Maqueda C (2004) 
Effect of soil type on adsorption-desorption, mobility, and activ-
ity of the herbicide norflurazon. J Agric Food Chem 52:884–890

Muller K, Magesan GN, Bolan NS (2007) A critical review of the influ-
ence of effluent irrigation on the fate of pesticides in soil. Agric 
Ecosys Environ 120:93–116

Noshadi E, Homaee M, Mahmoudian Shooshtari M (2014) Transport 
and degradation of herbicides in soil under different herbigation 
systems. Iranian J Soil Water Res 45:255–266

Nowak KM, Miltner A, Gehre M, Schaffer A, Kastner M (2011) For-
mation and fate of bound residues from microbial biomass during 
2,4-D degradation in soil. Environ Sci Technol 45:999–1006

Park JH, Kay D, Zhaoa X, Boyd SA, Voice TC (2001) Kinetic mode-
ling of bioavailability for sorbed-phase 2,4-dichlorophenoxyacetic 
acid. J Environ Qual 30:1523–1527

Qisse N, Alouani ME, Azzouzi LE, Fadil IE, Saufi H, Belghiti MAE, 
Zrineh A, Azzouzi ME (2020) Adsorption of Imazalil herbicide 
onto Moroccan agricultural soils: kinetic and isotherm adsorption 
studies. Groundwater Sustain Develop 11:100468

Rebhun M, Kalabo R, Grossman L, Manka J, Rav-Acha CH (1992) 
Sorptions of organics on clay and synthetic humic-clay complexes 
simulating aquifer processes. Water Res 26:79–84

Ren X, Zeng G, Tang L, Wang J, Wan J, Liu Y, Yu J, Yi H, Ye S, Deng 
R (2018) Sorption, transport and biodegradation–an insight into 
bioavailability of persistent organic pollutants in soil. Sci Total 
Environ 610:1154–1163

Rhoades JD (1982) Soluble salts. Methods of soil analysis, Part 2. 
Chemical and microbiological Properties. American Society of 
Agronomy, Madison, pp 167–179

Salehian H, Mohammadzadeh M (2018) Weed ecology is affected by 
succession in differently aged gardens of Citrus sinensis and C. 
reticulata. Rend Lincei-Sci Fis 29:35–41

Shi A, Chakrawal A, Manzoni S, Fischer BM, Nunan N, Herrmann 
AM (2021) Substrate spatial heterogeneity reduces soil microbial 
activity. Soil Biol Biochem 152:108068

Tulp HC, Fenner K, Schwarzenbach RP, Goss KU (2009) pH-Depend-
ent sorption of acidic organic chemicals to soil organic matter. 
Environ Sci Technol 43:9189–9195

Villaverde J, Kah M, Brown CD (2008) Adsorption and degradation of 
four acidic herbicides in soils from southern Spain. Pest Manage 
Sci 64:703–710

Weber JB, Taylor KA, Wilkerson GG (2007) Soil and herbicide proper-
ties influenced mobility of atrazine, metolachlor, and primisulfu-
ron-methyl in field lysimeters. Agron J 98:8–15

Werner D, Garratt JA, Pigott G (2013) Sorption of 2, 4-D and other 
phenoxy herbicides to soil, organic matter and minerals. J Soils 
Sed 13:129–139

Wu X, Wang W, Liu J, Pan D, Tu X, Lv P, Wang Y, Cao H, Wang Y, 
Hua R (2017) Rapid biodegradation of the herbicide 2, 4-dichlo-
rophenoxyacetic acid by Cupriavidus gilardii T-1. J Agric Food 
Chem 65:3711–3720

http://sitem.herts.ac.uk/aeru/iupac/index.htm


157Bulletin of Environmental Contamination and Toxicology (2022) 108:151–157 

1 3

Yang Y, Singh RP, Song D, Chen Q, Zheng X, Zhang C, Zhang M, 
Li Y (2020) Synergistic effect of Pseudomonas putida II-2 and 
Achromobacter sp. QC36 for the effective biodegradation of the 
herbicide quinclorac. Ecotoxicol Environ Saf 30:109826

Zand E, Nezamabadi N, Baghestani MA, Shimi P, Mousavi SK (2019) 
A guide to chemical control of weeds in Iran. Jahad Daneshgahi 
Publication, Tehran, p 216

Zhang Y, Li W, Zhou W, Jia H, Li B (2020) Adsorption-desorption 
characteristics of pyraclonil in eight agricultural soils. J Soils Sed 
20:1404–1412

Zhu Y, Guo J (2020) Impact of dichlorprop on soil microbial commu-
nity structure and diversity during its enantioselective biodegra-
dation in agricultural soils. J Environ Sci Health B 55:974–982

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	The Adsorption and Degradation of 2, 4-D Affected by Soil Organic Carbon and Clay
	Abstract
	Material and Methods
	Results and Discussion
	Conclusion
	Acknowledgements 
	References




