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Abstract
Wuyiling Nature Reserve is located at the edge of a frozen soil area and has abundant vegetation resources. It is an important 
area for evaluating the impact of frozen soil degradation on the environment. Analyzing the water quality and eutrophica-
tion characteristics of different swamps and water bodies can provide a basis for protecting the water environment of frozen 
soil areas. The pollution characteristics of different swamps and water bodies were analyzed and the Levenberg–Marquardt 
back-propagation neural network was used to evaluate water quality and eutrophication. Finally, the eutrophication evalua-
tion was compared with the nutritional status index. The results demonstrated that (1) the highest concentrations of the total 
phosphorus (TP), total nitrogen, ammonia nitrogen (AN), permanganate index (PI), chemical oxygen demand, and chlorophyll 
were all present in the Tangwang River, which could be caused by the effects of human and agricultural activities along the 
river. The maximum average concentrations of TP, AN, and PI in the four wetland swamps appeared in the shrub swamp; 
(2) The water quality category of shrub, grass, and forest swamps in Wuyiling Nature Reserve was Class II, and the water 
quality category of floating swamps and the Tangwang River was Class I. The nutrient levels of the four marsh swamp wet-
lands and the Tangwang River were in the mid-range for many nutrients; and (3) the LM–BP neural network model, which 
was used to evaluate water eutrophication, and the results of a comprehensive evaluation of a nutritional status index were 
similar, further demonstrating the credibility of the evaluation results.
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Wetlands serve as transition zones between terrestrial and 
aquatic ecosystems. Sometimes called “the cradle of life” or 
“the kidneys of the earth,” wetlands play an indispensable 
role in balancing hydrological and climatic cycles as well 
as in protecting biodiversity and water resources (Broeck 
et al. 2015; Li et al. 2020a, b). In cold areas of the northern 
hemisphere, the unique periodic freeze/thaw processes of 
water and soil have a significant impact on the hydrological 
processes of swamps that affects the development of high-
latitude and high-altitude swamp ecosystems (Grogan et al. 
2004; Sharma et al. 2006; Song et al. 2019). The Lesser 
Khingan Mountains possess one of the most concentrated 

areas of wetlands in the cold regions of China. Seasonal 
permafrost is widely distributed here and is very sensitive 
to climate change. With the increase of temperature and the 
intensification of human disturbance, permafrost has under-
gone serious degradation (Xiao et al. 2016; Wei et al. 2011), 
so it is important to understand the effects of permafrost 
degradation on wetland water quality. Most of the surface 
water in the Lesser Khingan Mountains, including a large 
amount of water in the marsh area, was previously frozen to 
a thickness of 90–130 cm during winter, and this water was 
slowly released from April to June of the following year; this 
was conducive to the retention of water in the swamps (Shen 
et al. 2019). At the same time, wetlands are highly sensi-
tive ecosystems that can retain and decompose pollutants 
from various sources, so are easily polluted when exposed 
to various types of pollution (Mao et al. 2014). In addition, 
most of the world’s freshwater resources have experienced 
eutrophication due to excessive inputs of nitrogen and phos-
phorus, primarily from human activity (Janssen et al. 2017; 
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Xu 2013). Therefore, scientists need to clearly understand 
the status and environmental quality of wetland ecosystems, 
necessitating the monitoring and analysis of the characteris-
tics of water pollution in these swamps. Studying the spatial 
distribution and eutrophication levels of different types of 
swamp water bodies will provide a basis for protecting wet-
land ecosystems.

Water quality research in regions with permafrost 
involves two types of water: surface water and groundwa-
ter. The geological origin of water (which may release ura-
nium and arsenic) has a significant impact on the quality of 
surface water in subarctic regions with permafrost (Elliott 
et al. 2020). Lindsay et al. (2019) simulated the effects of 
permafrost loss on wetlands, showing that for every 10% 
reduction in permafrost area, the total annual flow of ditch 
and tidal flats decreased by 2.5%. Marion et al. (2019) stud-
ied the hydrogeochemical characteristics of groundwater in 
regions with permafrost. The contribution of shallow and 
deep groundwater to surface water has changed significantly 
over time, characterized by decreased dissolved organic car-
bon and increased total amount of dissolved solids in the 
Big Fish rivers. This is related to the reduction of perma-
frost coverage. Jasmina et al. (2020) demonstrated that water 
quality changes related to the thawing of frozen soil signifi-
cantly affect zooplankton in small Arctic lakes. At present, 
past research on the eutrophication of wetlands and related 
water quality has mainly focused on lakes, rivers, reservoirs, 
and constructed wetlands (Yang et al. 2020; Anthony et al. 
2020; Chang and Yu 2020; Feng et al. 2018; Li et al. 2020a, 
b). Therefore, there is a very urgent need to understand the 
water quality characteristics and eutrophication of swamp 
wetlands in permafrost regions. Permafrost degradation has 
varying degrees of impact on water quality and eutrophi-
cation of marsh wetlands in the permafrost regions of the 
Wuyiling Nature Reserve. Analyzing the pollution levels in 
different marsh wetlands and water bodies will provide a 
reference for water quality evaluation in permafrost regions.

Materials and Methods

Wuyiling Nature Reserve, located in the northeastern part of 
Heilongjiang Province, lies in the northern part of the east-
ern section of the Lesser Khingan Mountains at 48°33–50ʹ 
N, 129°00–30ʹ E (Fig. 1). Low mountains and hills dominate 
the local terrain with an average elevation of 350–400 m. 
The temperate continental monsoon climate features an 
average annual temperature of − 1.1°C and a soil freez-
ing period of about 220 days. Areas of seasonally frozen 
soil and island-shaped permafrost layers have a maximum 
freezing depth of 250 cm. The zonal soil in the area is dark 
brown soil, and non-zonal soil includes meadow, swamp, 
and peat soil. The zonal vegetation is a mixed coniferous 

and broad-leaved deciduous forest dominated by Korean 
pine. The Wuyiling area has representative wetlands in 
the northeastern mountains, including forested, shrub, and 
grass swamps, in addition to swamps dominated by floating 
vegetation.

In August 2019, 20 water samples were collected along 
the Tangwang River in Wuyiling Nature Reserve; in addi-
tion, 20 water samples were collected in each of the four 
types of swamps. The samples were placed in light-proof 
bottles. A total of 100 samples were collected.

Water sample pretreatment and analysis tests were com-
pleted based on China’s surface water environmental quality 
standard GB3838-2002. Among them, TN was measured 
using alkaline potassium persulfate digestion ultraviolet 
spectrophotometry (detection limit, 0.001 mg/L), and TP 
was measured using potassium persulfate digestion ultra-
violet spectrophotometry (detection limit, 0.001 mg/L). 
Nessler’s reagent colorimetric method was used to measure 
AN (detection limit, 0.001 mg/L), and COD was measured 
using rapid catalytic digestion spectrophotometry (detection 
limit, 10 mg/L). Chl-a was measured using the frozen extrac-
tion method (detection limit, 0.01 µg/L), PI with the potas-
sium permanganate method (detection limit, 0.01 mg/L), 
dissolved oxygen (DO) with the iodometric method (detec-
tion limit, 0.01 mg/L), and suspended solids (SS) with the 
gravimetric method (detection limit, 1 mg/L).

An artificial neural network can be used for nonlinear 
mapping and has good fault tolerance, self-adaptation, 

Fig. 1  Aerial photo and layout of the study area showing the loca-
tion of collection sites; an inset map shows the location of the study 
site within an outline map of the provinces and other administrative 
regions of China
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self-organization, and self-learning abilities, among other 
positive characteristics. This type of network is suitable for 
solving high-dimensional and nonlinear system problems. 
A back-propagation (BP) network is undoubtedly one of the 
most commonly used neural network models for artificial 
neural networks and has been widely used in the study of the 
status of nutrients in lakes and reservoirs Deng et al. 2007). 
Since a standard gradient BP algorithm declines quickly in 
the first few steps, as it approaches an optimal value the 
gradient trends toward zero, resulting in a slow decline in 
the error function. Meanwhile, Newton’s law can produce 
an ideal search direction near the optimal value. The Lev-
enberg–Marquardt (LM) method is a combination of the 
gradient descent and Newtonian methods. Compared to a 
traditional BP network and other improved algorithms, an 
LM–BP network has the advantage of requiring fewer itera-
tions with faster convergence and higher accuracy.

After standardizing the data, random interpolation was 
used to generate 30 samples between each grading thresh-
old. Next, 20 samples were randomly selected as training 
samples and 10 as test samples. A total of 120 samples were 
randomly interpolated in the calculation and evaluation of 
water quality, including 80 training samples and 40 test sam-
ples. A total of 150 samples were randomly interpolated in 
the calculation of eutrophication evaluation, including 100 
training samples and 50 test samples.

According to the existing monitoring data and the specific 
conditions of the evaluation indicators in GB3838-2002, this 
method selected the DO, PI, AN, TP, and TN evaluation 

index input model and used the expected output values to 
calibrate the model (Table 1).

The degree of eutrophication and pollution of lakes was 
mainly determined by the amount of nutrients present in 
the lake, such as nitrogen and phosphorus. Indicators that 
can directly or indirectly reflect or affect the nutritional sta-
tus of water bodies or lakes include Chl-a, TN, TP, and PI. 
This study selected these same four water quality evalua-
tion factors, which have been widely used to evaluate the 
eutrophication of wetland water bodies and to classify the 
nutritional status of water bodies (Wang et al. 2015; Xie 
et al. 2015). The standards (He 2010) are shown in Table 2, 
and the model was calibrated with the expected output value.

The indicators used to evaluate model performance in this 
paper were two statistical indicators: the average and maxi-
mum relative error. The smaller the evaluation indicators, 
the better the performance of the model. Equations (1) and 
(2) were used to calculate each statistic as follows:

where eMRE is the average error, eMaxRE is the maximum 
relative error, ŷi is the simulated value of the ith sample, yi 
is the measured value of the ith sample, i = 1, 2,..., n, and n 
is the number of simulated samples.

(1)eMRE =
1

n

n∑

i=1

||ŷi − yi
||

yi
× 100% ,

(2)eMaxRE =
max

1 ≤ i ≤ n

||ŷi − yi
||

yi
× 100% ,

Table 1  Water quality 
evaluation standards and 
expected output values of the 
model

DO dissolved oxygen, PI permanganate index, AN ammonia nitrogen, TP total phosphorus, TN total nitro-
gen

Water quality 
classification

Ranges (mg/L) Training/test 
sample

Expected 
output

DO PI AN TP TN

I 7.5–12 0–2 0.05–0.15 0–0.01 0–0.2 1–30 1
II 6–7.5 2–4 0.15–0.5 0.01–0.025 0.2–0.5 31–60 2
III 5–6 4–6 0.5–1 0.025–0.05 0.5–1 61–90 3
IV 3–5 6–10 1–1.5 0.05–0.1 1–1.5 91–120 4

Table 2  Water quality indicator status, classification standards, and expected output values of the model for water bodies

Chl-a chlorophyll a, TP total phosphorus, TN total nitrogen, PI permanganate index

Nutrition classification Chl-a (mg/m3) TP (mg/m3) TN (mg/m3) PI (mg/L) Training/test sample Expect 
output

I Poor nutrition  ≤ 2  ≤ 10  ≤ 100  ≤ 1 1–30 1
II Medium nutrition  ≤ 10  ≤ 50  ≤ 500  ≤ 4 31–60 2
III Mild eutrophication  ≤ 26  ≤ 100  ≤ 1000  ≤ 8 61–90 3
IV Moderate eutrophication  ≤ 64  ≤ 200  ≤ 2000  ≤ 10 91–120 4
V Severe eutrophication  > 64  > 200  > 2000  > 10 121–150 5
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Based on the MATLAB environment, this study created 
and trained an LM–BP model to evaluate water quality and 
lake nutritional status. The model has a structure of 5-10-1, 
and the transfer functions of the hidden and output layers 
adopted tansig and purelin, respectively. The learning rate (lr) 
was 0.01, and the expected error was set to 0.0001. The model 
reached a better evaluation effect when the maximum training 
cycle was 1000 times.

The LM–BP model had good evaluation accuracy for water 
quality and eutrophication evaluation of training samples and 
test samples (Table 3).

The comprehensive nutritional status index provides an 
evaluation method that can be used to analyze lake or reservoir 
eutrophication and is recommended by the China Environ-
mental Monitoring Station (Yang et al. 2007). Based on water 
quality indicators such as Chl-a, TP, TN, PI, and Secchi disk 
transparency, the degree of eutrophication of a water body can 
be evaluated using Eq. (3):

where TLI(∑) represents the comprehensive nutritional sta-
tus index, Wj represents the relative weight of the nutritional 
status index of the jth parameter; and TLI(j) represents the 
nutritional status index of the jth parameter.

Taking Chl-a as the reference parameter, the normalized 
correlation weight calculation formula of the jth parameter is

where rij represents the correlation coefficient between the 
jth parameter and the benchmark parameter Chl-a, and m 
represents the number of evaluation parameters.

The nutritional status index formulas are as follows (Yang 
et al. 2007):

(3)TLI
(∑)

=
∑

Wj ⋅ TLI(j),

(4)W j =
r2
ij

∑m

j=1
r2
ij

,

(5)TLI(chl − a) = 10(2.5 + 1.086lnchl − a),

(6)TLI(TP) = 10(9.436 + 1.624lnTP),

(7)TLI(TN) = 10(5.453 + 1.694lnTN),

where the SD unit is m, the Chl-a unit is mg/m3, and the 
other index units are mg/L. A series of continuous num-
bers from 0 to 100 was used to classify the nutritional status 
of the water body. The higher the index value, the greater 
the nutrient concentration. A TLI below 30 represents 
low nutrient levels, 30–50 represents moderate nutrition, 
and > 50 represents eutrophication, of which 50–60, 60–70, 
and > 70 indicate mild, moderate, and severe eutrophication, 
respectively.

The Kaiser–Meyer–Olkin (KMO) and Bartlett test meth-
ods in SPSS were used to conduct principal component 
analysis on the concentration of water quality indicators and 
the Shapiro–Wilk test method was used to test the normal 
distribution of the concentrations of water quality indicators 
in five swamp wetlands and water bodies. The first principal 
component contributed 52.4% of the variance in the data. 
TN and AN had higher positive loads on the first princi-
pal component at 0.78 and 0.65, respectively. Other water 
quality indicators had higher positive loads on the second 
principal component.

Results and Discussion

The spatial distributions of TP, TN, AN, COD, Chl-a, SS, 
DO, and PI concentrations in the Wuyiling wetland are 
shown in Fig. 2. The concentration of TP ranged from 
0.003 to 0.262 mg  L−1 (average, 0.043 mg  L−1). The high-
est concentration appeared in the Tangwang River, and the 
lowest appeared in the forest swamp. The concentrations 
in the four wetland types and the average concentration of 
Tangwang River showed a trend of scrub swamp > Tang-
wang River > grass swamp > floating swamp > forest 
swamp. The concentration of TN ranged from 0.001 to 
0.399 mg  L−1 (average, 0.117 mg  L−1). The highest con-
centration was recorded in the Tangwang River. Among the 
concentrations in the four wetland types and the average 
concentrations of Tangwang River, the TN concentration 

(8)TLI(SD) = 10(5.118 − 1.94lnSD),

(9)TLI(PI) = 10(0.109 + 2.66lnPI),

Table 3  Levenberg–Marquardt 
Back Propagation (LM–BP) 
model used to evaluate the 
accuracy of training and test 
samples

Evaluation index Training/test samples Average relative error 
(%)

Maximum 
relative error 
(%)

Water quality evaluation Training samples 0.29 2.53
Test samples 0.42 5.6

Eutrophication evaluation Training samples 0.33 3.41
Test samples 0.45 6.03



238 Bulletin of Environmental Contamination and Toxicology (2022) 108:234–242

1 3

was highest in grass swamps, followed by floating swamps, 
the Tangwang River, forest swamps, and shrub swamps. 
The concentration of AN ranged from 0.1 to 3.101 mg 
 L−1 (average, 1.124  mg  L−1). The highest concentra-
tion was present in the Tangwang River, four wetlands 
showing a trend of scrub swamp > grass swamp > floating 
swamp > forest swamp. The COD concentration ranged 
from 100 to 510 mg  L−1 (average, 190.75 mg  L−1). The 
highest concentration at the sampling point also appeared 
on the Tangwang River, but among the wetland types, 
the highest average concentration occurred in the forest 
swamps. Chl-a concentrations ranged from 0.87 to 5.73 μg 
 L−1 (average, 2.85 μg  L−1). SS concentrations ranged from 
10.8 to 43.55 mg  L−1 (average, 24.05 mg  L−1). The highest 
average concentrations of Chl-a and SS in wetlands were 
present in grass and forest swamps, respectively. The aver-
age concentrations of DO and PI were 3.75 mg  L−1 and 
1.87 mg  L−1, respectively. The maximum concentrations 
of DO appeared in grass and forest swamps, and the high-
est average concentrations of PI appeared in forest and 
shrub swamps.

The original monitoring data of the seven water quality 
indicators passed the KMO and Bartlett tests, with a KMO 
value of 0.651, which was greater than 0.5. The Bartlett test 
value was 172 (sig. = 0.000; p < 0.05), so the null hypoth-
esis of the Bartlett sphericity test was rejected, indicating 
that the data were suitable for principal component analysis 
(Shao et al. 2008). The cumulative contribution rate of the 
first two principal components was 73.5% of the total vari-
ance in the data, meaning these two principal components 
explained nearly 75% of the information in the original data 
(Fig. 3). Relatively high positive loads were observed for 
TN and AN on the first principal component. AN and TN in 
wetland water originate from agriculture and human activi-
ties (Asgher et al. 2021).

The eight water quality indicators in different types 
of wetlands and water bodies were significantly different 
(p < 0.05), while the TP concentration of shrub swamps was 
significantly higher than that of forest swamps (Fig. 4a). The 
TN concentration of grass swamps was significantly higher 
than that of shrub swamps (Fig. 4b). The concentration of 
AN in shrub swamps was significantly higher than that in 

Fig. 2  Spatial distribution maps of water quality indicators in Wuy-
iling wetlands: concentrations of a TP total phosphorus, TN total 
nitrogen; b AN ammonia nitrogen, COD chemical oxygen demand; c 

Chl-a chlorophyll, SS suspended solids; d DO dissolved oxygen, PI 
permanganate index
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forest swamps and floating swamps (Fig. 4c). The COD con-
centrations of forest and shrub swamps were significantly 
higher than those of floating swamps and the Tangwang 
River (Fig. 4d). The concentration of Chl-a in grass swamps 
was significantly higher than that in forest and shrub swamps 
(Fig. 4e). The concentration of SS in forest marshes was 
significantly higher than that in floating marshes (Fig. 4f). 
The DO concentration of forest swamps was significantly 
higher than that of grass and floating swamps (Fig. 4g). The 
concentrations of PI in forest and shrub swamps were sig-
nificantly higher than those in grass and floating swamps 
(Fig. 4h).

When compared with the Environmental Quality Stand-
ards for Surface Water of China (GB3838-2002), the average 
value of AN was higher than the standard limit for Class III 
surface water, while the COD and DO concentrations were 
higher than the standard limits for Class V and Class IV 
water bodies, respectively. The TP and PI concentrations did 
not exceed the surface water environment Class I standard. 
Table 4 shows the results of the above-trained LM–BP water 
quality evaluation model used to evaluate the water quality 
of different swamps and the Tangwang River. In 2019, the 
water quality category of shrub, grass, and forest swamps in 
Wuyiling Nature Reserve was Class II, and the water quality 
category of floating swamps and the Tangwang River was 
Class I, the best water quality classification available.

In this study, the main factors affecting water quality clas-
sification (Chl-a, TN, TP, and PI) were used as the main 
parameter indicators for establishing the evaluation model. 
The above-mentioned model, a trained LM–BP eutrophica-
tion evaluation model, was used to evaluate the degree of 
eutrophication of different swamp wetlands and the Tang-
wang River. The nutrient levels of the four marsh swamp 

wetlands and the Tangwang River were in the mid-range for 
various nutrients (Table 5).

A comprehensive nutritional status index method was 
calculated. Then, based on the evaluation criteria used to 
analyze eutrophication, the eutrophication levels of the four 
swamp wetlands in the Wuyiling Nature Reserve and Tang-
wang River were obtained (Fig. 5). Among them, the aver-
age degree of eutrophication for shrub and forest swamps 
was in the mid-range for various nutrients. The other two 
swamps and Tangwang River had low levels of nutrients. 
The degree of eutrophication in forest, shrub, and grass 
swamps was quite different, which may be caused by the 
different flooding conditions and the degree of permafrost 
degradation in the swamp wetlands.

Swamp wetlands provide important protective barriers 
for wetland ecosystems and have important functions in 
conserving water, protecting ecosystems, and developing 
permafrost. According to the restricted classification crite-
ria of nutrients in water proposed by Guildford and Hecky 
(2000), phosphorus and nitrogen restriction were indicated 
by the TN/TP ratios of ≥ 22.6 and TN/TP ≤ 9.0 (mass ratios), 
respectively. The four types of swamps and the Tangwang 
River were nitrogen-restricted, which was different from 
the typical phosphorus-limited swamp waters of the middle 
and low latitudes (Wahlstrom et al. 2020). Wuyiling Nature 
Reserve is surrounded by forests and a lesser amount of 
farmland. Nitrogen limitation in the swamps could be caused 
by permafrost melting in summer. In the present study, grass, 
floating carpet swamps, and the Tangwang River had higher 
nitrogen and phosphorus ratios, while forests and shrub 
swamps had lower ratios. In summer, plants grow vigor-
ously and require more nutrients. At the same time, they are 
also affected by the decomposition of plant litter and other 
complex factors that influence nutrient loading.

The highest concentrations of several water quality indi-
cators, including TP, TN, AN, and COD, all appeared along 
the Tangwang River. Compared to the other four types of 
wetlands, the Tangwang River is more polluted in some 
areas, which could be caused by the effects of human and 
agricultural activities along the river (Nicholas et al. 2015). 
The maximum average concentrations of TP, AN, and PI in 
the four wetland swamps appeared in the shrub swamp. This 
could be caused by the proximity of this habitat to the river, 
uneven drainage patterns, and the fact that nutrients are 
easily stored in this type of habitat. Due to the continuous 
increase of human activities, wetlands face serious threats. 
The impact of human activities on wetlands decreases with 
increasing elevation (Asgher et al. 2021). The water quality 
category of shrub, grass, and forest swamps in Wuyiling 
Nature Reserve was Class II, and the water quality category 
of floating swamps and the Tangwang River was Class I, 
the best water quality classification available. The nutrient 
levels of the four marsh swamp wetlands and the Tangwang 

Fig. 3  Principal component (PC) analysis diagram of water quality 
indicators in Wuyiling wetlands and water bodies; percentages show 
the amount of variance accounted for in each PC
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River were in the mid-range for various nutrients. Agricul-
ture, urbanization, and climatic warming have caused the 
degradation of water resources. The maximum average 

concentrations of TN and Chl-a appeared in grass swamps, 
which could be related to the degradation of permafrost. 
The maximum average concentrations of COD, DO, and SS 

Fig. 4  Analysis on different concentrations of water quality indica-
tors in Wuyiling wetlands and Tangwang River; concentrations of a 
TP total phosphorus; b TN total nitrogen; c AN ammonia nitrogen; 

d COD chemical oxygen demand; e Chl-a chlorophyll a; f SS sus-
pended solids; g DO dissolved oxygen; h PI permanganate index

Table 4  Levenberg–Marquardt Back Propagation (LM–BP) model 
water quality evaluation results of different swamp wetlands and 
Tangwang River

Types LM–BP out-
put value

Expected 
output value

LM–BP 
evaluation 
results

Floating swamp 1.0156 1 I
Grass swamp 1.9807 2 II
Scrub swamp 2.1033 2 II
Forest swamp 2.0561 2 II
Tangwang River 1.2543 1 I

Table 5  Levenberg–Marquardt Back Propagation (LM–BP) model 
eutrophication evaluation results of different marsh wetlands and 
Tangwang River

Types LM-BP 
output 
value

Expected 
output 
value

LM-BP evaluation results

Floating swamp 1.9013 2 Medium nutrition
Grass swamp 2.1301 2 Medium nutrition
Scrub swamp 2.4102 2 Medium nutrition
Forest swamp 1.1864 2 Medium nutrition
Tangwang River 2.0566 2 Medium nutrition
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all appear in forest swamps, indicating that the water here 
contains large amounts of reducing substances, primarily 
organic pollutants. The results of the water quality evalu-
ation show that although the maximum concentrations of 
some water quality indicators appeared along the Tangwang 
River so that the overall water quality was Class I, the water 
bodies of the Tangwang River and the four types of swamp 
wetlands had relatively high concentrations of some nutri-
ents in some sampling points. Discovering whether this is 
related to the degree of melting of underground permafrost 
will require further research. The results of the compre-
hensive nutritional status index showed that the Tangwang 
River, floating swamps, and grass swamps contained low 
levels of nutrients, which was consistent with the results of 
water quality evaluation. The majority of eutrophic water is 
located in Africa, Oceania, South America, North America, 
Europe, and Asia (Wang et al. 2018; Murphy et al. 2000), 
including Lake Victoria in Africa and Lake Erie in North 
America (Pearl and Huisman 2008). Oceania has the high-
est proportion of large lakes with oligotrophication (23.1%), 
Europe has the highest proportion of large lakes with meso-
trophication (35.2%), and Africa has the highest propor-
tion of large lakes with eutrophication (88.8%; Zhang et al. 
2021). The results of an evaluation of eutrophication based 
on a BP neural network model were consistent with the eval-
uation results of a comprehensive nutritional status index.

(1) The four types of swamps and the Tangwang River were 
nitrogen-restricted. Nitrogen limitation in the swamps 
could be caused by permafrost melting during the sum-
mer. Grass swamps, floating carpet swamps, and the 
Tangwang River had higher TN/TP ratios, while for-
est and shrub swamps had lower ratios. Compared to 
the other four types of wetland, the Tangwang River 
is more polluted in some areas, which could be due to 
the effects of human and agricultural activities along 

the river. The maximum average concentrations of TP, 
AN, and PI in the four wetland swamps appeared in the 
shrub swamps, which could be caused by the proximity 
of this habitat to the river, uneven drainage patterns, or 
the fact that nutrients are easily stored in this type of 
habitat.

(2) The water quality category of shrub, grass, and for-
est swamps in Wuyiling Nature Reserve was Class II, 
and the water quality category of floating swamps and 
the Tangwang River was Class I, the best water quality 
classification available. The nutrient levels of the four 
marsh swamp wetlands and the Tangwang River were 
in the mid-range for most nutrients. The comprehensive 
nutritional status index revealed that Tangwang River, 
floating swamps, and grass swamps had low levels of 
nutrients, which was consistent with the results of water 
quality evaluation.
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