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Abstract
This work is a study on the occurrence of emerging pollutants in the northeast Ecuadorian Amazon. Emerging contaminants 
(ECs)—caffeine, triclosan, estradiol, acetaminophen, nicotine, and ibuprofen—were quantified by gas chromatography–mass 
spectrometry in rivers and streams of the Amazon basin near the city of Tena, Ecuador. For that, a total of 16 natural water 
samples were taken in 8 locations. Sampling sites included areas impacted by discharges from inefficient sewage networks 
in urban areas, wastes from fish farming and non-functional landfill, a stream with few threats, tap water, and treated sewage. 
Caffeine was found in the 38% of the samples studied while trimethoprim and acetaminophen had an occurrence of 13%. 
Caffeine was detected at two sites receiving untreated sewage and one site receiving treated sewage with mean concentrations 
that ranged between 19 and 31.5 μg  L−1. Acetaminophen (50.4 μg  L−1) and trimethoprim (2 μg  L−1) were only detected in the 
river receiving treated sewage effluent. This is the first assessment of emerging contaminants in the upper Ecuadorian Amazon 
basin, and our observations highlight the need for better sewage treatment and water quality monitoring in Amazonian cities.
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There is a worldwide concern about the so-called emerging 
contaminants (ECs) present in natural and drinking water. 
The ECs are chemical compounds, including antibiotics, pes-
ticides, surfactants, caffeine, and illegal drugs, among other 
substances, that are not eliminated in conventional water 

treatments and, therefore, are released into the environment 
(Becerril 2009; Tran et al. 2018). Generally, ECs are found 
in low concentrations, but their continuous discharge into 
the environment is perceived as public health and environ-
mental risk. Studies around the world have detected ECs in 
a surface, underground, and drinking water (Ali et al. 2018; 
Alvarez et al. 2014; Barceló et al. 2009; Birch et al. 2015; 
Diaz-Sosa et al. 2020; Pinos-Vélez et al. 2019; Sorensen 
et al. 2015; Sousa et al. 2019; Trabalón et al. 2017; Zhang 
et al. 2015). Common ECs found in rivers, and other surface 
waters include triclosan, sulfamethoxazole, diclofenac, ibu-
profen, nicotine, acetaminophen, trimethoprim, and estradiol 
(Archundia et al. 2018; Jagini et al. 2019; Marques et al. 
2016; Robles-Molina et al. 2014, p.; Seabra et al. 2016). 
Among them, the compounds of most significant concern 
are antibiotics, due to bacterial resistance, and endocrine 
disruptors such as triclosan and estradiol; endocrine disrup-
tors are capable of mimicking the hormones and, therefore, 
altering the proper functioning of the body and negatively 
affecting our health (Lu et al. 2020; Sharman et al. 2016). 
In fact, some studies link cancers such as breast and prostate 
with its presence (Kim et al. 2020; Siddique et al. 2016). 
Endocrine disruptors are also related to hormonal alterations 
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in fauna; for instance, the presence of intersex fish, where 
male reproductive tissues show evidence of feminization 
(Niemuth and Klaper 2015). Many studies have found ECs 
in marine environments and inland waters of large cities 
related to the consumption habits of the population (Naidu 
et al. 2016). To our knowledge, there are no studies on the 
detection of ECs in the Amazonas basin, perhaps because 
the technologies needed to analyze these compounds are still 
expensive and barely accessible for some Latin American 
countries.

Lack of wastewater treatment is a problem throughout 
Latin American countries. Discharge of untreated wastewa-
ter into rivers is a serious environmental challenge, resulting 
in widespread environmental pollution. Less than 30% of 
the cities in Latin America have sewage treatment (Rojas-
Ortuste 2012; Hernández-Padilla et al. 2017). In the Ecua-
dorian Amazon region, only 25% of the wastewater is sub-
jected to some type of treatment, and 56% of the untreated 
wastewater is discharged directly into rivers. Additionally, 
the few existing sewage treatment plants include only pri-
mary and secondary treatments focusing on the removal of 
nutrients, microbial contaminants, heavy metals, and other 
regulated compounds such as pesticides (Rodriguez-Narvaez 
et al. 2017). The study of the occurrence and risks of ECs is 
important to select which should be regulated for discharges 
and considered for its remotion in water treatments.

The upper Amazon River system is one of the largest 
and most biodiverse aquatic systems in the Andean-Amazon 
region of Ecuador (Alexiades et al. 2019). It is considered 
that the rivers of the upper Amazon basin receive less agri-
cultural, industrial, and domestic pollution than their coun-
terparts in central Amazonia due to a lower population den-
sity and urbanization (Encalada et al. 2019). Nevertheless, 
local environmental impacts caused by the diversification of 
economic activities, the lack of proper waste management, 
and the flexibilization of environmental protection controls 
have intensified environmental pollution risks (Cappar-
elli et al. 2020; Galarza et al. 2021; Lessmann et al. 2019; 
Lucas-Solis et al. 2021). Considering the lack of informa-
tion regarding ECs in the Amazon basin, the aim of this 
study was to evaluate ECs in drinking water, wastewater, 
rivers, and streams of the upper Ecuadorian Amazon basin 
near the city of Tena to set a precedent for its environmental 
monitoring.

Materials and Methods

Study Area and Sampling Sites

The study area comprises about 7.000 ha in the Ecuado-
rian Amazonia, on the eastern Andean foothills, near the 
city of Tena (Fig. 1). Rivers and streams in the study area 

drain into the upper Napo River, which is the main North-
ern Ecuadorian Amazon River. The population in the study 
area is about 44,000, occupying both rural and urban areas, 
with a population density of 11.8 inhabitants/km2 (INEC, 
2010). Sampling points were chosen to reflect land uses and 
known pollution sources (Fig. 1): a small stream receiv-
ing fish farming wastes (1FF), a stream with few threats 
(2FTS), domestic tap water from the water distribution sys-
tem of Tena (3TW), effluents of wastewater treatment plants 
(4TWW and 7TWW), urban drainages (5UP and 6 UP) and 
a small stream receiving landfill drainages (8LF).

Sample Collection

Water samples were collected in March 2020 during a period 
of low flows and hydrological stability. No precipitation 
above 15 mm per day was recorded in the five days prior to 
sampling nor in the sampling day (Meteorological Station of 
Ikiam University, http:// meteo rolog ia. ikiam. edu).

Sampling sites were chosen based on the presence of dif-
ferent contamination sources mapped by Capparelli et al. 
2020. Wastewater and urban effluents (4TWW, 7TWW, 
5UP, and 6UP) were sampled from the outlet pipes. Drink-
ing water (3TW) was collected from the tap of a residence 
in the city of Tena. The streams that receive fish farming 
wastes (1FF) and landfill drainages (8LF) were sampled 
downstream of the effluent discharges. The stream with few 
threats (2FTS) was sampled at a location far from the urban 
center but downstream of small riverside communities with-
out wastewater treatment. FT sites were locations distant 
from the main contamination sources identified.

Two water samples (500 mL) were collected in amber 
glass bottles at all sampling locations. Physicochemical 
parameters—temperature, conductivity (SpC), pH, color, 
turbidity, total dissolved solids (TDS), and residual chlo-
rine—were measured in situ employing a HACH HQ11d. 
Samples were transported under refrigeration to the labora-
tory and were stored at 4°C for one day until analysis.

ECs Evaluated

Seven widely consumed compounds, whose characteris-
tics taken from PubChem (2020) are shown in Table 1, were 
chosen for this study. Caffeine and nicotine have been chosen 
as lifestyle products. Acetaminophen and ibuprofen are both 
included in the most sold pharmaceuticals without prescrip-
tion in Ecuador. Trimethoprim is a prescription antibiotic 
commonly used by the population and also used in veteri-
nary products. Estradiol is a hormone included in contracep-
tives. Triclosan is used as a preservative and additive as well 
as it is part of cleaning products as an antibacterial. All this 

http://meteorologia.ikiam.edu
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information was obtained through Subsecretaría Nacional de 
Gobernanza de la Salud Pública del Ecuador (2019).

Sample Preparation

Following the protocol from Glassmeyer et al. (2017), 
analytes were isolated by solid-phase extraction (SPE) 
using a vacuum pump (Millipore, WP6111560), a mani-
fold (27 × 17 × 9.5 cm), and Waters OASIS HLB cartridges 
with a capacity of 200 mg and 6 mL. The cartridges were 
conditioned at a flow rate of 10 mL/min using 4 mL of 
methanol followed by treatment with 6 mL of reagent 
water. After the elution of 500 mL of sample, the car-
tridges were dried for 10 min under vacuum, and ana-
lytes were eluted with 6 mL of methanol to glass tubes. 
Extracts were concentrated to 1 mL with nitrogen, filtered 
(0.22 μm), and transferred to vials for the chromatographic 
analysis. All samples were analyzed in duplicate. Quality 
controls included a field blank to check for contamination 

during sampling and extraction processes and a spiked 
sample of mean concentration level to evaluate the recov-
ery percentage of each component (Table 1).

Reagents and Chemicals

High purity analytical standards of acetaminophen, caf-
feine, estradiol, ibuprofen, nicotine, triclosan, and trimetho-
prim were obtained from Sigma–Aldrich and Supelco with 
a purity of 99.9%, 99, 96.8%, 99.7%, 98.9%, 99.9%, and 
99.8%, respectively.

Instrumental Analyses

Methanolic extracts were analyzed using a gas chro-
matograph coupled to a mass detector (GC–MS Agi-
lent 7890/5977) under EI mode. The column used was a 
DB-5 ms, 30 m × 320 μm × 1 μm. The temperature ramp 
was 5°C for 2 min, 28°C/min up to 170°C, 4.9°C/min up 

Fig. 1  a Location of Tena 
city and the Napo watershed 
in Ecuador. b Location of the 
study watershed within the 
Amazon basin. c Location of 
sampling points: 1FF, small 
stream downstream of fish 
farm (− 0.9331, − 77.8871); 
2FTS, stream with few 
threats, Pashimbi stream 
(− 0.9485, − 77.8643); 
3TW, domestic tap water 
(− 0.9840, − 77.8225); 4TWW, 
the effluent of wastewa-
ter treatment plant at Pano 
river (− 1.0006, − 77.8160); 
5UP and 6UP, urban drain-
ages at Paushiyacu stream 
(− 0.9996, − 77.8105); 7TWW, 
effluent of wastewater treat-
ment plant at Mishahuallí river 
(− 0.9872, − 77.8058); 8LF, 
small stream receiving landfill 
drainages (− 0.9393, − 77.8185)
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to 280°C, 6.3°C/min up to 30°C/min and then 300°C for 
10 min. Before sample analysis a SIM method was devel-
oped using standards for the following components: caffeine, 
triclosan, estradiol, acetaminophen, nicotine, ibuprofen. 
LOQ and LOD values are included in Table 1. All sam-
ples were analyzed in a single batch using a SCAN method 
(30–500 m/z) and the SIM method previously developed. 
Spectral deconvolution software (AMDIS) was used to 
process the data. Extracts from each sampling site were 
screened using the NISTDRUG library. Compounds with 
a matching factor (> 80) were considered for further analy-
sis; this non-targeted screening approach was performed to 
assess additional types of toxic and persistent pollutants that 
could be present.

Data Analyses

Physicochemical parameters were compared to water qual-
ity guidelines established by Ecuadorian legislation (MAE-
TULSMA 2015), the US Environmental Protection Agency 
(USEPA 1996), and the Canadian Environmental Quality 
Guidelines (CCME 2002). k-Nearest Neighbors (kNN): The 
non-parametric kNN (Kowalski and Bender 1972) technique 
classifies a sampling site based on its k closest neighbors in 
the space defined by physicochemical parameters and ECs 
concentration. kNN is an appropriate classification method 
when dealing with non-linear class separation. In this study, 
physicochemical parameters and ECs concentration were 
pretreated by means of autoscaling, and the Euclidean metric 

was used to measure distances between samples. Classifi-
cation performances were evaluated by means of the class 
precision (Pr) and sensitivity (Sn) (Ballabio et al. 2018). The 
precision of the g th class is defined as the purity of such 
class, i.e., the ability of the classifier to reject molecules 
from other classes. On the other hand, the sensitivity of the g 
th class (Sng) or true positive rate characterizes the model’s 
ability to correctly recognize sampling sites belonging to the 
class. From these two primary class measures, it is possible 
to calculate global indices to evaluate the performances of 
the kNN classifier, such as the average precision and average 
sensitivity also known as the non-error rate (NER). Classes 
are formed based on the level of similarity. Sites that do not 
have a high level of similarity can be considered “a class”, 
a group of the unclassified.

Results and Discussion

Physicochemical Parameters

Physicochemical parameters were compared with the Ecua-
dorian standards of quality criteria for preserving aquatic and 
wildlife and the discharge of effluents into freshwater bodies 
(MAE-TULSMA 2015). The temperature values exceed the 
maximum permissible limit (25°C) at all sampling locations 
except for the treatment plant effluent (7TWW, 25°C). 1FF, 
5US, 6 UP, 7TWW and 8LF, are below 80% of dissolved 
oxygen (DO) which is the minimum permissible limit for 

Table 1  Properties of target emerging contaminants

ECs
(CAS)

Description Chemical structure Molar mass
g  mol−1

Water solubility at 
25°C, mg  L−1

pKa log
Kow

LOQ
µg  L−1

LOD
µg  L−1

Recovery
%

Acetaminophen 
(103-90-2)

Analgesic 151.17 14,000 9.38 0.46 0.4 0.14 72

Caffeine (58-08-2) Stimulant 194.19 21,600 14  − 0.07 0.02 0.007 92

Estradiol (50-28-2) Hormone 272.38 3.60 at 27°C 10.27 4.13 1.14 0.38 75

Ibuprofen (15687-
7-1)

Anti-inflammatory 206.28 21 4.91 3.97 0.14 0.05 76

Nicotine (54-11-5) Stimulant 162.23 1,000,000 miscible 8.5 1.17 0.14 0.05 85

Triclosan (3380-
34-5)

Antibacterial Fun-
gicide

289.54 10 at 20°C 7.9 4.76 0.14 0.05 88

Trimethoprim (738-
70-5)

Antibiotic 290.32 400 7.1 0.91 2.8 1 71
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the preservation of aquatic life, being 8LF the lowest (8%). 
Regarding SpC and TDS, none of the stations exceeded the 
maximum allowable limits; however, treatment plants, urban 
rivers, and sanitary landfill values (locations 4, 5, 6, 7 and 
8) were higher to locations 1, 2 and 3. The pH values from 
all samples were within the recommended range between 
6.5 and 9, except for sampling point 4TWW, which had an 
acid pH of 5. The urban rivers (5UP and 6UP), the treatment 
plant effluent (7TWW), and the landfill stream (8LF) exceed 
up to 18 times the maximum permissible turbidity limit (10 
NTU). Moreover, Ecuadorian regulations do not include the 
color of effluents in Pt–Co color units, but these values are 
high for urban rivers and the sanitary landfill according to 
international guidelines. Finally, the residual chlorine does 
not exceed the maximum permissible limit (0.5 mg  L−1), 
but concentrations between 0.03 and 0.05 mg   L−1 were 
observed for the 4TWW and 8LF locations, respectively. 
The sample 2TW, was evaluated with the standard for water 
for human consumption (NTE INEN 1108 2020); according 
to this guideline, the chlorine concentration is insufficient 
(0.3–1.5 mg  L−1).

Emerging Contaminants

Caffeine was detected at 5UP, 6UP, and 7TWW sites in mean 
concentrations that ranged between 19.3 to 31.5 µg  L−1. 
Acetaminophen and trimethoprim were only detected at 

site 7TWW, in mean concentrations 50.5 and 2 µg  L−1, 
respectively (Table 2). Caffeine found in sampling points 5 
and 6 may reflect local consumption habits as guayusa tea 
(Ilex guayusa Loes leaves), native to the Andean Amazon, 
has high caffeine concentrations (Sequeda-Castañeda et al. 
2016) and is massively consumed in the region. Besides, 
caffeine is one of the most frequently found compounds in 
emerging pollutants studies, usually in high concentrations 
(Pinos-Vélez et al. 2019), in fact it is considered ubiquitous. 
This compound can be found in coffee and other massively 
consumed beverages and it has a high solubility in water 
under ambient conditions. Sites 5 and 6 (UP) are located 
close to urban areas where previous studies showed high 
concentration of metals and poor quality of water (Cappar-
elli et al. 2020; Galarza et al. 2021).

The stream with few threats (2FTS) and tap water (3TW) 
did not show ECs. Site 2FTS receives water from riverside 
communities without sewage treatment. For this reason, it 
is suggested the continuous monitoring of these sites, as in 
the future they may experience an increase in the presence 
of contaminants and an overall worsening of water quality, 
if they continue without adequate sewage treatment. On the 
other hand, Tena has a single drinking water treatment plant, 
which distributes tap water to the city. The water is taken 
directly from a pristine area, which explains the good water 
quality and the lack of ECs in 3TW.

Table 2  Emerging contaminants 
and physicochemical parameters 
of the analyzed water samples 
from each of the eight sampling 
points located on different Napo 
River tributaries in the Napo 
province, Ecuador (see Fig. 1 
for site location)

Collection sites are classified as fish farming (FF), a stream with few threats (FTS), waste discharge in 
urban areas (UP), landfills (LF), tap water (TW), and treated sewage (TWW). Values reported for ECs are 
the mean (n = 2)
*Below detection limit

Collection sites

1 FF 2 FTS 3 TW 4 TWW 5 UP 6 UP 7 TWW 8 LF

Compound (ug  L−1)
 Caffeine * * * * 19 30 31.5 *
 Acetaminophen * * * * * * 50.5 *
 Trimetropin * * * * * * 2 *
 Nicotine * * * * * * * *
 Ibuprofen * * * * * * * *
 Triclosan * * * * * * * *
 Estradiol * * * * * * * *

Parameters
 T (°C) 26 22 26 28 28 28 25 28
 DO (%) 78 121 114 94 50 30 50 8
 SpC (µS  cm−1) 43.6 27 37 377 340 282 300 312
 TDS (g  L−1) 21.5 14 18 188 169 141 175 156
 pH 6.9 7.5 7.5 5 7 7 7 7.5
 Turbidity (NTU) 7.8 0 0 0.32 180 20 78 16.8
 Color (Pt–Co units) 39 12 0 9 110 115 45 240
 Cloro (mg  L−1) 0 0 0 0.05 0 0 0 0.03
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The site 4TWW did not present ECs in the treated water, 
unlike site 7TWW, which received effluents with the pres-
ence of caffeine, paracetamol, and trimethoprim. It can be 
inferred that 7TWW may not have ECs treated efficiently. 
The physicochemical parameters (Table 2) suggest that the 
treatment plant might not be functioning properly, or it is 
linked to another source of untreated wastewater before 
joining the stream. Since site 7TWW had a lower DO level 
(50%), higher turbidity (78 NTU), and color (45 Pt–Co 
units) in comparison with site 4TWW, a low performance 
in the aeration and filtration process is deduced (Liu et al. 
2010; Zhao et al. 2009). In 2015, the Environmental Tech-
nical Processes Company (Protecmed 2015) installed two 
urban wastewater treatment plants (4TWW and 7TWW sam-
pling sites), using a membrane biological reactor (MBR) 
system, that treats 4300  m3 per day for the city of Tena. The 
sewage treatment using a MBR consists of membrane filtra-
tion, combined with biological degradation using sludge, 
achieving both the physical retention of pollutants and their 
biodegradation (Clemente et al., 2013). MBR treatments 
can reduce micropollutant concentrations by 20%–50%; 
nevertheless, studies have shown that this type of treatment 
can remove over 80% of emerging compounds such as hor-
mones, and some pharmaceuticals (e.g., acetaminophen and 
ibuprofen), lifestyle products (e.g., caffeine and nicotine), 
among others. However, MBRs are not effective to remove 
recalcitrant compounds such as antibiotics (e.g., trimetho-
prim) (Barceló et al. 2009; Grandclément et al. 2017). Given 
the characteristics of the studied compounds, it is justified 
that they have not been found at the sampling site since the 
treatment plant should be sufficient to eliminate them. Nev-
ertheless, we suggest more studies to verify the efficiency of 
MBRs to remove emerging contaminants.

Fish farming (FF) and sanitary landfills (LF) are impor-
tant sources of many types of contaminants in the studied 
region. High metal contamination (Capparelli et al. 2020) 
and low water quality (Galarza et al. 2021) were detected in 
these collection sites located at the drainage of the sanitary 
landfill. This landfill has already reached its upper capacity 
and the drainage system has exceeded its maximum limit, 
producing a leachate that flows directly into a small stream 
located nearby. Fish farming sites (FF) are in rivers that flow 
directly from the Colonso-Chalupas Biological Reserve 
(CCBR) and are used to fill and to receive about 20 fish 
farming pools (0.2 ha each). However, fish farming is not a 
source of ECs according to the data of the present study. The 
fact that some studies prove frequent use of ECs in aqua-
culture (Done and Halden, 2015) and that LF site contains 
untreated hospital effluents (Capparelli et al. 2020), leads 
us to suggest that these areas should be included in future 
monitoring.

Through the non-targeted screening analysis, we presume 
the possible presence of the following pharmaceuticals: 

diethyltoluamide (main compound of mosquito repellent), 
lidocaine (a commonly use local anesthetic), carbamazepine 
(a widely used anticonvulsant), phenacetin (a pain-relieving 
and fever-reducing drug). Additionally, we identified plant-
derived molecules: theobromine (alkaloid of the cacao 
plant), cannabinol (in cannabis plants), piperine (alkaloid 
from the P. longum fruits) and lupanine (alkaloid present in 
the genus Lupinus, locally consumed legume); these four 
compounds were only found in samples with a high contami-
nation load. Although this study was only focused on vola-
tile and semivolatile compounds, the presence of ECs at the 
studied sites highlights the need for a more detailed assess-
ment of ECs at lower quantification levels in the future.

k—Nearest Neighbors analysis allows grouping the stud-
ied sites into 2 classes. Class 1 is composed of sites 1FF, 
2 FTS, and 3TW. Class 2 comprises sampling locations 
4TWW, 5US, 6US, 7TWW and 8LF. In Fig. 2, a dendro-
gram with separation of the sites as a function of the distance 
between them is shown. The calculated precision and sen-
sitivity of the model are 1 and the non-error rate is also 1, 
thus this is a model with an ideal classification capacity. The 
locations with the worst physical–chemical water parameters 
were grouped, and in most cases presented ECs, which leads 
us to conclude that urban locations with a lack of adequate 
water treatment are the most susceptible to the presence and 
impacts of ECs and that should continue to be monitored.

Some studies conducted in Latin America have found 
ECs such as caffeine, acetaminophen, and trimethoprim 
in rivers; the highest concentrations have been found in 
sites close to the discharges of treated or untreated sewage 
being much higher when the water has not been treated 
(Pinos-Vélez et  al. 2019). The concentration reported 
for caffeine ranged between 0.05 µg  L−1 in Argentina to 
1000 µg  L−1 in Costa Rica (Elorriaga et al. 2013, Spong-
berg et al. 2011; Voloshenko-Rossin et al. 2014), values 
within the range of our study (Table 2, mean concen-
tration: 19–31.5 µg   L−1). For acetaminophen, the val-
ues ranged from 13 µg   L−1 for Costa Rica (Spongberg 
et al. 2011) to 31 µg  L−1 in Esmeraldas River, Ecuador 
(Voloshenko-Rossin et al. 2014), both much lower con-
centrations than found in our study (Table 1, mean of 
50.4 µg  L−1). Trimethoprim was found in Costa Rica at a 
maximum concentration of 0.12 µg  L−1 and in Bolivia a 
mean concentration of 0.16 µg  L−1 (Archundia et al. 2018). 
In our study, higher concentrations of trimethoprim were 
found despite Tena being a small city (Table 1, mean of 
2 µg  L−1). The presence of these compounds in the city of 
Tena, a low population density area, raises concerns about 
the occurrence of ECs and their magnitude in comparison 
to more contaminated and populated areas. Caffeine was 
found in 3 of the 8 studied sites. Although this compound 
is not considered to be highly toxic the effects of its pres-
ence in high concentrations in sensitive habitats such as 
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the Amazon are unknown. We recommend carrying out 
studies to assess the risk of this contaminant in Amazo-
nian species. The locality called treated sewage (TWW) 
was the one that presented most of the compounds found. 
Our assessment of the ECs contamination at Tena, Napo 
provides a baseline information about its occurrence in 
one small city at the upper Amazon basin, Ecuador. The 
presence of caffeine, acetaminophen, and trimethoprim 
requires controlling efforts to treat these compounds and 
raises the question about the need for proper sewage treat-
ment in Amazonian cities. More complete ECs monitoring 
in this area is urgently needed, as we report here a small 
part of an undocumented issue. This includes further stud-
ies on the ECs removal capacity of wastewater plants and 
management actions towards global sewage treatment. The 
absence of waste management in Amazonian cities may 
result in pervasive ECs contamination of freshwater eco-
systems and potential adverse effects to aquatic biota and 
human health. We strongly suggest the continuous moni-
toring of the ECs at the upper Amazon basin.
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