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Abstract
Methylmercury (MeHg) is a toxic and bioaccumulative organo-metallic compound that is naturally produced in many eco-
systems. Organisms that occupy the lower trophic positions in food webs may be key factors in the assessment of MeHg 
biomagnification between ecosystems. Here we present a review of the peer-reviewed literature examining MeHg bioac-
cumulation in freshwater invertebrates, focused principally on insects. This review aims to characterize the invertebrates 
that bioaccumulate higher MeHg concentrations and therefore pose a higher risk to upper trophic levels and to clarify which 
ecosystems are more susceptible to bioaccumulation in lower trophic levels. However, we found that few studies provided 
robust environmental data (notably water chemistry) as part of their papers, dramatically limiting our ability to test for fac-
tors that might contribute to different concentrations of MeHg in invertebrates. We highlight the importance of providing 
physical and chemical characteristics of study sites in publications examining MeHg bioaccumulation and biomagnification. 
Adopting the proposed recommendations will improve the available information for future mercury risk assessment analyses.
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Methylmercury (MeHg) is a toxic pollutant that is produced 
naturally in aquatic and terrestrial ecosystems such that it 
can be found in remote areas and at concentrations above 
background due to the atmospheric global dispersion of 
elemental mercury (Hg(0)) (Driscoll et al. 2013), which 
concentration is estimated to be 15 times higher than pre-
industrial values (Amos et al. 2015). The methylation of 
divalent mercury (Hg(II)) is primarily a microbial process 
that produces MeHg, a neurotoxin with the capacity to bio-
accumulate and biomagnify (Sakamoto et al. 2011; Lavoie 
et al. 2013). As a result, it can reach high concentrations 
in upper trophic levels. Concentrations of MeHg in a food 

web are affected by abiotic conditions that influence Hg(II) 
methylation and bioavailability, such as nutrients, dissolved 
organic matter (DOM) and pH (Paranjape and Hall 2017).

The input of nitrogen (N) and phosphorous (P) nutrients 
into an aquatic system may affect mercury (Hg) methyla-
tion (MacMillan et al. 2015; Kickbush et al. 2018). Nutrient 
sources to ecosystems may be anthropogenic (e.g. sewage 
and fertilizer) or natural sources such as biovectors (e.g. bird 
colonies nesting in an area) which may deposit guano con-
taining previously accumulated contaminants such as N, P 
and Hg (Blais et al. 2007; Mallory et al. 2015). Alternatively, 
the over-enrichment of N and P in aquatic ecosystems can 
cause algal blooms that reduce the Hg concentration at the 
base of the food web and result in lower Hg bioaccumulation 
in consumers (Pickhardt et al. 2002). The role of DOM in Hg 
speciation is multifaceted and includes Hg complexation and 
sensitization of Hg photochemical processes (Klapstein and 
O’Driscoll 2018). Its effects are also influenced by the pH 
of the aquatic systems which may reduce the binding of Hg 
to functional groups on DOM with acidic conditions and in 
turn may influence Hg(II) methylation (Ravichandran 2004). 
The apparent favoring of methylation in ecosystems with 
low pH (Ullrich et al. 2001) may partially explain the inverse 

 *	 Beatriz Malcata Martins 
	 beatriz.martins@tecnico.ulisboa.pt

1	 Centro de Química Estrutural, Instituto Superior 
Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 
1049‑001 Lisboa, Portugal

2	 Department of Earth and Environmental Science, K.C. Irving 
Environmental Science Center, Acadia University, Wolfville, 
NS B4P 2R6, Canada

3	 Department of Biology, Acadia University, Wolfville, 
NS B4P 2R6, Canada

http://orcid.org/0000-0001-8492-6676
https://orcid.org/0000-0002-8598-8251
https://orcid.org/0000-0003-2744-3437
https://orcid.org/0000-0002-5190-446X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00128-021-03274-9&domain=pdf


802	 Bulletin of Environmental Contamination and Toxicology (2021) 107:801–808

1 3

correlation between pH and MeHg in biota observed in some 
studies (Allen et al. 2005; Chételat et al. 2011).

Methylmercury bioaccumulation and biomagnification 
are also affected by the ecological characteristics of the 
organisms and their relationships in the food web (Kidd et al. 
2011). Studies show that MeHg concentration is influenced 
by life stage (higher concentrations in adults; Chételat et al. 
2008), and diet or trophic position, with MeHg concentra-
tions increasing with higher trophic level (Tremblay et al. 
1996a). However, the ecology can be more relevant to the 
MeHg concentration of the organisms than its trophic posi-
tion. An example is polychaete worms that, although consid-
ered a primary consumer, have high levels of MeHg because 
they create oxygenated burrows walls in anoxic sediments 
that accumulate DOM, leading to higher MeHg bioaccumu-
lation (Sizmur et al. 2013).

Stable isotopes of δ15N and δ13C are commonly used by 
researchers to link organism diet and trophic position with 
its MeHg concentration (e.g. Cremona et al. 2009; Chételat 
et al. 2020). Due to the preferential retention of 15 N and 
excretion of 14 N in most organisms, as trophic position 
increases δ15N values also tend to increase (Fry 2006). Since 
MeHg can biomagnify, the linear relationship between δ15N 
and MeHg is used as a quantitative indicator of average food 
web biomagnification (Lavoie et al. 2013). At the same time, 
δ13C can potentially assess the source of dietary carbon and 
its evolution through the food web (Fry 2006).

Recently, Chételat et al. (2020) conducted a thorough 
review of factors influencing MeHg exposure and magnifi-
cation in wildlife, which builds on earlier reviews of MeHg 
accumulation in food webs (Peakall and Burger 2003; Wie-
ner et al. 2003; Evers 2018). Most of these reviews noted 
ecological or physiological processes that influenced MeHg, 
rather than environmental characteristics. However, our 
focused review addresses a specific research gap related to 
Hg bioaccumulation in lower trophic levels of the food web, 
more precisely, freshwater invertebrates. These organisms 
are important food sources for higher trophic level organ-
isms such as birds and fish and may be important biovectors 
of contaminants, such as MeHg, from aquatic to terrestrial 
ecosystems (Paterson et al. 2006; Sullivan and Rodewald 
2012). This review focuses on what type of invertebrates are 
key vectors of MeHg in food webs, which aquatic ecosys-
tems are susceptible to bioaccumulation in invertebrates, and 
which physical and chemical descriptors most influence bio-
accumulation in invertebrates. We hypothesized that, across 
studies, MeHg would be higher in invertebrates occupying 
higher trophic positions, and from waterbodies with higher 
acidity.

Methodology

We performed a search of key databases (e.g. Google 
Scholar and Web of Science) for relevant articles using 
keywords such as “mercury”, “methylmercury”, “bioac-
cumulation”, “biomagnification, “invertebrate” and “fresh-
water”. The selection criteria included only studies that 
provided the values of MeHg in freshwater invertebrates. 
Collectively, we extracted data from 23 papers that were 
found to provide information on mean values of MeHg, 
total mercury (THg), percentage of total mercury in the 
form of MeHg (%MeHg), stable isotopes of nitrogen 
(δ15N) and carbon (δ13C) in invertebrates, as well as char-
acteristics of waterbodies where the invertebrates were 
collected (pH, total organic carbon [TOC], total nitrogen 
[TN]) (publications selected are listed in SI Table S1). 
However, across the 23 studies, the availability of sup-
porting physical/chemical information on waterbodies 
(i.e., environmental factors that could influence Hg expo-
sure in invertebrate biota such as pH, TOC, DOC and P 
and N concentration) varied dramatically from single to 
multiple variables. To maximize the number of studies 
used, we selected studies with waterbody pH and organism 
δ15N, as these have been shown previously to be impor-
tant parameters influencing MeHg content (Clayden et al. 
2014) and six articles provided this information. Almost 
all the research gathered was from North America, mainly 
from Canada.

Using data extracted from the papers, we examined 
the general pattern of MeHg bioaccumulation in the dry 
tissue of freshwater invertebrates. We compared MeHg 
in similar taxa of invertebrates from lakes and wetlands 
using Mann–Whitney U tests. These two ecosystems were 
selected based on the data available of the invertebrates 
chosen for the analysis, that were well-represented across 
studies. We log-transformed MeHg concentrations from 
invertebrates, and then ran a stepwise multiple regres-
sion to examine the potential influence of trophic position 
(as assessed by δ15N) and pH on MeHg concentrations 
in invertebrates, with MeHg as the response variable and 
δ15N and pH as independent factors. All analyses were 
conducted with SPSS Statistics, version 26.

Results and Discussion

Patterns of MeHg Concentration in Invertebrates

Across studies, palaemonids (Palaemonidae, grass 
shrimps), nepids (Nepidae, water scorpions) and cray-
fish (Decapoda, crayfish) had the highest reported MeHg 
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(Fig. 1; range of medians and means 249–435 ng/g dw), 
although the number of individual data points of each type 
of invertebrate (referred to as “n”) varied considerably 
among groups of invertebrates. Most of these taxa are 
predatory (Thorp and Rogers 2011), so their high MeHg 
concentration is expected due to MeHg capacity for bio-
magnification in food webs (Lavoie et al. 2013). Corixids 
(Corixidae, water boatmen) had unexpectedly high MeHg 
(median 210 ng/g dw, mean 340 ng/g dw), given that many 
are non-predatory, or feed on low trophic level organisms 
(Thorp and Rogers 2011) and all other invertebrates in 
high positions in Fig. 1 are commonly predators. Addition-
ally, corixids also showed high variation in mean values 
of MeHg, with a coefficient of variation (CV) of 115% 
(n = 16). This is likely attributable to the variability in 
ecologies and diet of species within this group, includ-
ing predation and scavenging (Hilsenhoff 2001; Hädicke 
et al. 2017).

Predatory invertebrates also showed the highest percent-
age of THg that was presented as MeHg, as expected (Riva-
Murray et al. 2020). Specifically, notonectids (Notonectidae, 
backswimmers), mesoveliids (Mesoveliidae, water treaders) 
and nepids (median and mean ≥ 93%; Fig. 2) presented the 
highest values of %MeHg, although the number of stud-
ies that reported both THg and MeHg was low (n ≤ 5 for 

any group). Notonectids not only showed a high mean and 
median value of %MeHg but also a low variation between 
the values collected (CV = 4.1%). This could potentially 
indicate that the MeHg concentration could be estimated 
by measuring THg, which is a simpler and less expensive 
laboratory analysis.

In contrast, the greatest variation in mean values of MeHg 
was registered in a primary consumer, the trichopterans 
(Trichoptera, caddisflies). These invertebrates showed a CV 
of 134% (n = 76) that could be related to the susceptibility 
to the concentration of MeHg in the sediments and vari-
ability in species ecology. Clarke (2018) found that MeHg 
was related to Hg in sediments, which could vary greatly for 
trichopterans because some families build their protective 
cases from materials often on the waterbody benthos. Also, 
biosynthesized silk is used in this process which can be 
important to remove Hg(II) from their body (Clarke 2018).

Additionally, consumers showed high variation in 
%MeHg, specifically mussels (Unionidae, mussels; 
CV = 92%, n = 3), chironomids (Chironomidae, midges; 
80%, n = 21) and ephemeropterans (Ephemeroptera, may-
flies; 58%, n = 31). Riva-Murray et al. (2020) suggested that 
the %MeHg of aquatic primary consumers is correlated with 
the aqueous MeHg concentration, that is significantly influ-
enced by the environmental conditions (Paranjape and Hall 

Fig. 1   Boxplots of MeHg concentration in the dry tissue of inverte-
brates separated by common name. The boxplots are ordered from 
lowest to highest median value. In each boxplot the median is repre-
sented with a black bar, the mean with a yellow plus sign, the outliers 
marked with circles and extreme outliers marked with asterisks. The 
former includes the values outside the range of the third/first quartile 
plus/minus 1.5 times the interquartile range (IQR) and the latter the 
ones outside the range of the third/first quartile plus/minus 3 times 

the IQR. The red lines represent the Canadian methylmercury tissue 
residue guideline for the protection of wildlife consumers of aquatic 
biota (CCME 2000), which is 33 μg/kg in wet weight (converted to 
dry weight values for 80% and 90% water content of invertebrates 
(Hall et  al. 1998; Lavoie et  al. 2010), which leads to an interval 
between 165  ng/g dw and 330  ng/g dw). The number of individual 
data points used for each boxplot (n) is also displayed. The data plot-
ted is from publications listed in SI Table S1
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2017). Thus, the high susceptibility of primary consumers 
to bioavailable MeHg concentration in the surrounding envi-
ronment may explain their high variability.

From the 23 studies that reported the MeHg concentration 
in freshwater invertebrates, it was clear that many individual 
invertebrates had MeHg concentrations that exceeded the 
Canadian guidelines for the protection of wildlife consum-
ers of aquatic biotas (CCME 2000; 33 ng/g ww or 330 ng/g 
dw assuming 90% of water content). The maximum val-
ues reported were 1519 ng/g MeHg in a corixid (Tremblay 
et al. 1996b), and 1370 ng/g MeHg in a notonectid (Sinclair 
et al. 2012), approximately the same as the maximum of 
1411 ng/g reported in anisopterans (Anisoptera, dragonflies) 
by Eagles-Smith et al. (2020). Clearly in some systems, cer-
tain invertebrates are capable of acquiring quite high MeHg 
concentrations, although mean values are ~ 60% lower 
(Fig. 1). We noted that the majority of high values for indi-
vidual invertebrates in Fig. 1 were from studies in wetlands 
and reservoirs, which could potently suggest a greater risk to 
top predators in these habitats. Jackson et al. (2015) assessed 
THg concentrations in songbirds inhabiting eastern North 
America and concluded that invertebrate-eating species had 
significantly higher concentrations when compared to omni-
vores, especially the ones that inhabited wetland habitats.

We note that the high variability in MeHg concentration 
and %MeHg we report in some of the invertebrates could be 
a consequence of the method by which we grouped organ-
isms. Some groups may be at a higher taxonomic level and 
inherently include greater diversity of ecologies and life 
stages. But even the groups of invertebrates that only include 
one family showed high variability, which is the case of the 
corixids. Analysing patterns at lower taxonomic levels may 

be preferable in some experimental designs to reduce the 
masking of species-specific values, but the identification of 
invertebrate species requires substantial time and expertise 
that may not be available in many contaminant studies. Ger-
wing et al. (2020) showed that in ecological studies there 
was no significant difference in the conclusions when iden-
tifying organisms by species or by family in coastal ecosys-
tems. Nevertheless, our review suggests that, for contamina-
tion studies, certain individual species’ behaviors may create 
outliers in the bioaccumulation data. In these cases, the iden-
tification by species could provide useful information.

Comparison Between Wetlands and Lakes

To compare MeHg bioaccumulation and biomagnification 
in wetlands and lakes, we chose a smaller set of data con-
taining information on only trichopterans, ephemeropter-
ans, anisopterans and zygopterans (Zygoptera, damselflies; 
Fig. 3). These groups were chosen because they provided the 
most data across the greatest number of studies, are easy to 
collect, and anisopterans and zygopterans have recently been 
identified in particular as important biomonitor species in 
aquatic and terrestrial systems (Buckland-Nicks et al. 2014; 
Eagles-Smith et al. 2020).

Ideally, biomonitor species should cover a wide range 
of mean MeHg concentrations and show a wide variation 
in MeHg between ecosystems in response to physical and 
chemical differences. In lakes, trichopterans had the low-
est median value of MeHg (40.0 ng/g dw, mean 54.3 ng/g 
dw) but exhibited the highest variation among mean val-
ues (CV = 94%). In contrast, anisopterans had the highest 
median MeHg (122.0 ng/g dw, mean 177.5 ng/g dw) yet 

Fig. 2   Barplots of median percentage MeHg relative to total mercury 
concentration in the dry tissues of the invertebrates. The invertebrates 
are separated by common name and ordered from lowest to highest 
median value. The mean values are represented with a yellow plus 

sign and the error bars with confidence level of 95% are also plotted 
when applicable. The number of individual data points used for each 
boxplot (n) is also displayed. The data plotted is from publications 
listed in SI Table S1
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lowest variation (76%) among values. In wetlands, trichop-
terans had the lowest median value, 47.7 ng/g dw (mean 
150  ng/g dw) and also the greatest variation in values 
(129%), as with lake studies. Wetland zygopterans had the 
highest median MeHg (340.0 ng/g dw, mean 385.3 ng/g dw) 
and lowest variation between values (71%).

For all four groups of invertebrates, MeHg concentrations 
were significantly higher in wetlands than in lakes (Fig. 3; 
Mann–Whitney U tests, all p ≤ 0.05). Several studies have 
concluded that wetlands are hotspots for Hg methylation due 
to their high content of dissolved organic matter, anoxia, and 
low pH (Galloway and Branfireun 2004; Hall et al. 2008). 
For example, Eagles-Smith et al. (2020) found that THg 
averaged 35% higher in anisopterans from waterbodies with 
abundant wetland borders than those without wetlands. The 
study by Edmonds et al (2012), used in the analysis, also 
shows a negative correlation between the concentration of 
dissolved oxygen and pH in wetland ecosystems with the 
concentration of MeHg in biota, specifically in rusty black-
bird (Euphagus carolinus) and its invertebrate prey.

While these species appear to be important Hg bioindi-
cators, we observed that there is an underrepresentation of 
wetland invertebrates in studies when compared to lakes (14 
studies in lakes and only 3 in wetlands in this analysis). Even 
with these limited data, they suggest that wetlands pose a 
higher risk to upper trophic level organisms due to foraging 
on invertebrates with relatively elevated content of MeHg.

Combined Influence of Physical and Chemical 
Variables Predicting MeHg Bioaccumulation

Bioaccumulation and biomagnification of MeHg is sig-
nificantly affected by the physical and chemical character-
istics of the ecosystem (Eagles-Smith et al. 2018). Using 
data from all invertebrates, log-MeHg was predicted by 
waterbody pH and δ15N of the organism (F2,169 = 29.84, 
p < 0.001) but explained only 25% of the variation in MeHg. 
Consistent with expectations, MeHg was higher in inver-
tebrates from acidic (lower pH) waterbodies (ß = -0.541, 
p < 0.001) and higher for organisms at higher trophic levels 

Fig. 3   Boxplots of mean values of MeHg extracted from the litera-
ture of caddisflies, mayflies, dragonflies, and damselflies separated by 
type of invertebrate in lakes and wetlands. In each boxplot the median 
is represented with a black bar, the outliers marked with circles and 
extreme outliers marked with asterisks. The former includes the val-
ues outside the range of the third/first quartile plus/minus 1.5 times 
the interquartile range (IQR) and the latter the ones outside the range 

of the third/first quartile plus/minus 3 times the IQR. The mean value 
is marked with a plus sign in each boxplot. The invertebrates are 
sorted from lowest to highest median value in each type of ecosystem. 
The number of individual data points used for each boxplot (n) is also 
displayed. The p value from Mann–Whitney U tests is provided. On 
top, pictures of the invertebrates used in the analysis: a caddisfly b 
mayfly c damselfly d dragonfly (all photographs from pixabay.com)
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(ß = 0.238, p = 0.001). We followed this analysis with a sec-
ond regression restricted to the four invertebrate groups in 
Fig. 3, which allowed us to include aqueous total organic 
carbon (TOC) as a potential predictor. However, TOC was 
not retained in the stepwise regression analysis, which 
predicted log-MeHg (F2,62 = 51.0, p < 0.001) from pH 
(ß = − 0.691, p < 0.001) and δ15N (ß = 0.770, p < 0.001) and 
explained 62% of the variation. Collectively, these results 
across studies align with other publications concluding 
that MeHg is higher in organisms from more acidic sys-
tems (Yu et al. 2011; Edmonds et al. 2012) and organisms 
in higher trophic positions (Clayden et al. 2014). Curiously, 
TOC was removed as a significant predictor of MeHg, even 
though studies have demonstrated that MeHg is higher in 
waterbodies with greater organic carbon content (Hall et al. 
2005; Braaten et al. 2014). Dissolved organic matter can 
have several effects on Hg speciation and bioavailability that 
depend not only on its concentration but also its composition 
(Ravichandran 2004; Bravo et al. 2017) and research shows 
some contradictory results regarding its effects (Jiang et al. 
2018). Additionally, the selection of TOC as the parameter 
to account for changes in organic matter, and not dissolved 
organic carbon (DOC; which was reported in too few stud-
ies), may also have influenced our results. The TOC content 
includes dissolved and particulate organic carbon, and high 
TOC concentration usually, but not always, relates to higher 
DOC. With relatively few studies in our sample, using TOC 
may have masked a correlation between DOC and MeHg 
concentration in invertebrates. Specifically, only six stud-
ies that provided MeHg concentrations in the invertebrates 
also provided δ15N and the pH of the collection site which 
decreased to three studies when adding TOC to the analysis.

Recommendations for Reporting and Application 
to Risk Assessment

In 2017, the Minamata Convention entered into force and 
the Parties agreed to address the anthropogenic emissions of 
Hg, notably atmospheric emissions (You 2015) which has a 
separate article in the Convention report (UNEP 2019). In 
comparison to atmospheric Hg, direct Hg releases in aquatic 
systems have been understudied (Kocman et al. 2017), which 
may explain the discrepancy in Hg trends in environmental 
compartments. Although there has been a decline in atmos-
pheric Hg over the past years (Zhang et al. 2016), this trend 
is not mirrored in aquatic biota, due to processes that affect 
Hg speciation, bioavailability and uptake that occur specifi-
cally in these ecosystems (Wang et al. 2019).

Consequently, Hg risk assessments may benefit from 
using monitoring data of Hg concentrations in aquatic 
invertebrates from field studies. Certain families of 
invertebrates are distributed globally and inhabit several 
types of ecosystems. Furthermore, the sampling of these 

organisms may be simpler than sampling upper trophic 
level organisms like fish or birds; fewer permits and sim-
ple equipment may be all that is required, and it can be 
facilitated through citizen science collections (e.g. Eagles-
Smith et al. 2020). However, additional data are required 
to refine what invertebrates may be most suitable (e.g. 
anisopterans; Eagles-Smith et al. 2020), and how their 
monitoring may or may not be more suitable than other 
biota. For example, examining the bioconcentration of 
MeHg from the water column to plankton can be a good 
predictor of the vulnerability of the ecosystems to MeHg 
biomagnification (Wu et al. 2019), and certainly upper 
trophic level organisms may be a better indicator of Hg in 
certain ecosystems (Bodaly et al. 1993; Evers et al. 1998; 
Harris et al. 2007). Nevertheless, with their diversity of 
habitat use and ecologies, invertebrates are a key linkage 
in food webs and could help identify specific pathways 
important for biomagnification in ecosystems.

Consequently, using invertebrates as biomonitors could 
be a good way to track Hg in aquatic environments. How-
ever, as we have shown, we lack a more fulsome set of 
the physical and chemical parameters of the study sites to 
maximize their utility. For example, for our comparisons 
above, we found data from 6 studies that provided data on 
MeHg in invertebrates in addition to pH and δ15N which 
decreased to 3 studies when adding TOC to the analysis 
(SI Table S1). We suspect that this limited sample pre-
cluded our ability to robustly test for the effects of TOC, 
and we could not find sufficient data in studies to test for 
other factors like nutrients (e.g. phosphorus), recently 
shown to influence MeHg concentrations in wetland water 
(Kickbush et al. 2018).

Based on this review, we recommend that researchers fol-
low some best practices for the analysis of bioaccumulation 
and biomagnification of Hg in invertebrate food webs. In 
particular, for presenting data on aquatic invertebrate Hg in 
manuscripts, we recommend that researchers also provide 
robust water chemistry parameters (pH, total or dissolved 
organic carbon, dissolved oxygen, phosphorus, waterbody 
area, and other cations and anions). The publication of these 
datasets with the paper text would be very helpful for future 
focused reviews. Furthermore, we also recommend that 
researchers identify invertebrates to the lowest taxonomic 
level possible, preferably genus or species, which would bet-
ter allow for discrimination between different organismal 
ecologies. Following these recommendations will provide 
the data needed for future insights of physical and chemical 
relationships with invertebrate Hg concentrations, and our 
ability to maximize their use as risk indicators, to provide 
stronger and more robust information to initiatives like the 
UN Global Mercury Assessment, the European Union Regu-
lation 2017/852, the Canadian Mercury Science Assessment 
or the Minamata Convention on Mercury.
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