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Abstract
Sulfate radical based-advanced oxidation process has received increasing interest in the remediation of wastewater and 
contaminated soil. In this study, degradation of 2, 4-dichlorophenol (2, 4-DCP) was investigated over peroxymonosulfate 
(PMS) activation by  MnO2, which was prepared by liquid-phase oxidation method. The prepared  MnO2 was characterized 
by transition electron microscopy, X-ray diffraction,  N2 adsorption–desorption, and X-ray photoelectron spectroscopy. Char-
acterization results showed that α-MnO2 exhibited the highest surface area and Mn (III) content. The PMS activation by 
 MnO2 in 2, 4-DCP degradation followed the order of α-MnO2 >  γ-MnO2 > β-MnO2, which is dependent on the properties 
of  MnO2 including crystal structure, surface area and Mn (III) content. Influences of initial concentration of 2, 4-DCP, PMS 
and  MnO2 dosage, pH and co-existing inorganic ions on the degradation were examined. Electron paramagnetic resonance 
(EPR) and quenching experiments with ethanol and tert-butanol suggested that sulfate radicals were the dominant radicals 
in the process. Findings in this study indicated that α-MnO2 was an attractive catalyst for activation of PMS to degrade 2, 
4-DCP in aqueous solution.
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Chlorophenols as chemical raw materials are typically used 
in leather, dyes, pesticide and fungicides (Chen et al. 2013; 
Zhou et al. 2018), which have been listed as priority pollut-
ants by the United States Environmental Protection Agency 
(Chen et al. 2018). The discharged chlorophenols in waste-
water have caused serious environmental concerns due to the 
toxicity, persistence and carcinogenicity (Zhang et al. 2015a; 
Zhao et al. 2016). Hence, it is highly demanded to develop 
effective methods for chlorophenols removal from water.

Many treatment techniques including adsorption (Chen 
et al. 2012; Xu et al. 2012), hydrodechlorination (Jin et al. 
2011; Zhou et al. 2014), photocatalysis (Bayarri et al. 2005; 
Liu et al. 2012), advanced oxidation processes (Jia et al. 

2015; Karci et al. 2012) and biological methods (Eker and 
Kargi 2008; Wang et al. 2015c), have been used to treat 2, 
4-DCP. In recent years, sulfate radical-based advanced oxi-
dation process has attracted great attention for the treatment 
of a wide range of organic pollutants (Anipsitakis and Dio-
nysiou 2003; Ghanbari and Moradi 2017; Zhou et al. 2018b). 
Sulfate radicals have higher redox potential (2.5–3.1 V), 
wider range of solution pH, and longer life time (30–40 μs) 
than hydroxyl radicals. Sulfate radicals could be generated 
from the activation of peroxymonosulfate (PMS) and per-
oxydisulfate (PDS) via UV, heat, carbon-based materials and 
ransition metals (Fang et al. 2015; Wang and Wang 2018).

Various transition metal catalysts  (Co2+,  Cu2+,  Ag+,  V3+ 
et al.) have been reported to activate PMS (Nfodzo and Choi 
2011; Wang and Wang 2018). Cobalt-based materials have 
been recognized as one of the most effective options for the 
activation of PMS. However, the leaching of cobalt oxides 
from cobalt-based materials posed risks to human health and 
environment. Consequently, it is necessary to develop envi-
ronmental-friendly catalysts for PMS activation. Manganese 
oxides, due to low toxicity, abundance in natural stock and 
environmental friendliness, have been widely used in oxi-
dation reaction for treatment of organic pollutants (Saputra 
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et al. 2013; Wang et al. 2015a; Zhou et al. 1998). Moreover, 
manganese dioxides are promising catalysts in activation 
persulfate for degradation of organic contaminants. Saputra 
et al. reported that  Mn2O3 was the best catalyst in activat-
ing PMS for phenol degradation (Saputra et al. 2013). As 
reported, α-MnO2 showed outstanding catalytic activity in 
activation of PDS and PMS for degradation of phenol and 
dye (Liu et al. 2016; Saputra et al. 2012; Zhao et al. 2016).

However, to the best of our knowledge, there are few stud-
ies to compare the structure of  MnO2 on PMS activation 
and chlorophenols degradation in  MnO2/PMS system. In this 
study, three types of  MnO2 with different structural proper-
ties were synthesized and their performances in activation of 
PMS for 2, 4-dichlorophenol (2, 4-DCP) degradation were 
investigated. The dominant radicals were identified by elec-
tron paramagnetic resonance (EPR) spectra and free radical 
quenching studies. Furthermore, several influence factors 
were investigated, including 2, 4-DCP concentration,  MnO2 
dosage, PMS concentration, pH and co-existing inorganic 
ions.

Materials and Methods

2, 4-Dichlorophenol, 2-chlorophenol, phenol and 5, 5-dime-
thyl-1-pyrrolidine N-oxide (DMPO, 97%) were purchased 
from Sigma-Aldrich. Sodium PMS (available as a triple 
potassium salt with the commercial name of Oxone®, 
 2KHSO5·KHSO4·K2SO4) was obtained from Alfa Aesar. 
Ethanol (EtOH) and acetonitrile (chromatography grade) 
were purchased from Merck. Tertiary butanol (TBA) 
was obtained from Aladdin Chemistry Co. Ltd.  MnSO4, 
 (NH4)2S2O8,  (NH4)2SO4, HCl and NaOH were purchased 
from Nanjing Chemical Reagents Co. Ltd. All other reagents 
were chemical grade or higher and were used without further 

purification. Deionized water with a resistivity of 18 MΩ 
 cm−1 was used for preparing aqueous solutions.

The synthesis of  MnO2 was conducted based on liquid-
phase oxidation method according to literature (Wang and 
Li 2003). Details of synthesis and characterization are listed 
in Text S1 in Supporting Information (SI).

The degradation of 2, 4-DCP was carried out in a 
250 mL three-necked flask at 25 ±  0.5 °C with a water-
bath. Briefly, 50 mg of  MnO2 was added into 250 mL solu-
tion with 20 mg/L of 2, 4-DCP and 1.63 mM PMS under 
stirring (1400 rpm) and parallel experiment were carried 
out simultaneously. Control experiments with only  MnO2 or 
PMS were performed under the same condition. A 0.5 mL 
of samples were collected at selected time intervals (5, 10, 
15, 20, 30, 40, 50, 60, 90 and 120 min) and then mixed with 
0.5 mL ethanol to quench the reaction. After filtered with 
0.45 μm membrane filter, the concentration of solute in an 
aliquot was analyzed by high-performance liquid chroma-
tography (Agilent 1200, USA) with an ultraviolet detector 
at wavelength of 270 nm using a 4.6 × 150 mm HC-C18 
column. The mobile phase was 60% acetonitrile and 40% 
water (v/v).

Results and Discussion

Transmission electron microscope (TEM) images of three 
 MnO2 are presented in Fig. 1. Obviously, α-MnO2 is ribbon-
like nanowires with diameters around 10 nm and lengths 
ranging between 40 and 200 nm. TEM images of β-MnO2 
demonstrated that it was nanorods with average diameters 
of 100 nm, while γ-MnO2 showed a nanofiber structure with 
the diameters of 10–30 nm. The Brunauer–Emmett–Teller 
(BET) surface areas were 96.9, 15.2, and 72.3  m2/g for α-, 
β- and γ-MnO2, respectively. Clearly, α-MnO2 has the largest 
BET surface area.

Fig. 1  TEM images of different structures of  MnO2
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As shown in Fig. 2, the XRD patterns of the  MnO2 were 
in according with the inorganic crystallographic database 
of XRD patterns of α-MnO2 (JCPDS 44-0141), β-MnO2 
(JCPDS 24-0735) and γ-MnO2 (JCPDS 14-0664) (Huang 
et al. 2019; Wang and Li 2003; Wang et al. 2015b). For all 
the  MnO2, the strong bands at 473, 519 and 715 cm−1 were 
observed in FTIR spectra (Fig. S1), which were assigned to 
the Mn–O lattice vibration (Kang et al. 2007; Kim and Stair 
2004). The weak peak around 1105 cm−1 was assigned to the 
vibration of Mn (III)-O bond (Kang et al. 2007).

The XPS spectra of  MnO2 in the Mn 2p3/2 regions are 
presented in Fig. S2. The Mn 2p3/2 spectra were divided 
into two peaks at binding energies of 642.4 eV and 641.3 eV, 
which were assigned to Mn (IV) and Mn (III) species 
(Peng et al. 2017), respectively. The fitting results of Mn 
2p3/2 spectrums of Mn (III) and Mn (IV) are summarized 
in Table S1. Clearly, the abundance of Mn (III) species 
decreased in the order: α-MnO2 > γ-MnO2 > β-MnO2.

Batch experiments were performed to investigate the deg-
radation of 2, 4-DCP in  MnO2/PMS system. The result is 
presented in Fig. 3. Clearly, only about 4.6% of 2, 4-DCP 
was degraded in PMS system within 120 min, suggesting 
that 2,4-DCP could not be degraded effectively by PMS 
without activation. In the system with α-MnO2 alone, 
approximately 37.3% of 2, 4-DCP was removed from the 
solution, indicating that α-MnO2 has direct oxidation ability 
for degradation of 2, 4-DCP. The degradation of 2, 4-DCP 
with different dosages of α-MnO2 were compared in Fig. S3. 
The degradation efficiency increased from 52.2% to 88.1% 
as the dosage of α-MnO2 increasing from 0.20 to 1.0 g/L 
within 720 min, which further validated the direct oxidation 
of 2, 4-DCP by  MnO2. The direct oxidation mechanisms 
of  MnO2 have been well studied in previous studies (Im 
et al. 2015; Lin et al. 2009; Saputra et al. 2013; Septian and 
Shin 2019; Zhang et al. 2008; Zhang and Huang 2003; Zhu 

et al. 2019b). Thus, direct oxidation will not be discussed in 
our study. It is note that 99% of 2, 4-DCP was degraded in 
α-MnO2/PMS system within 120 min, which is significantly 
higher than the reported degradation efficiency (around 75%) 
for 2, 4-DCP with persulfate activation by α-MnO2 nanowire 
(Zhao et al. 2016). The results indicated that  MnO2 exhibited 
an excellent catalytic ability to activate PMS to degrade 2, 
4-DCP.

Degradation of 2, 4-DCP using α-, β- and γ-MnO2 as 
activation reagents were compared in Fig. 4. The degrada-
tion efficiency of 2, 4-DCP was 88.6%, 76.6% and 85.5% for 
α-, β- and λ-MnO2, respectively. This phenomenon may be 
related to the Mn (III) content and crystal structure of  MnO2. 
The sulfate radicals ( SO∙−

4
 ) and hydroxyl radicals ( ∙OH ) are 
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formed when PMS is activated by  MnO2 according to previ-
ous studies (Huang et al. 2019; Liu et al. 2016, 2015; Wang 
et al. 2018) as following reaction Eqs. (1–3)

Obviously, SO∙−

4
 is formed from PMS activation by 

Mn(III) and HSO∙−

5
 is formed by Mn(IV). Moreover, and 

SO
∙−

4
 has a higher redox potential than HSO∙−

5
 (Oh et al. 

2016). Hence, the higher the content of Mn (III), the more 
SO

∙−

4
 were produced for degradation reaction. As mentioned 

above, α-MnO2 has the highest content (62.3%) of Mn (III), 
leading to the highest degradation efficiency. Additionally, 
Mn (III) forms weaker and more flexible Mn–O bonds due to 
the occupation of the antibonding  eg orbital, which are more 
catalytically reactive (Robinson et al. 2013). In contrast, β- 
and γ-MnO2 with stronger Mn(IV)-O bonds are more stable 
and inflexible, leading to the low oxidation potential. This 
further explained why α-MnO2 showed the highest catalytic 
activity.

The unique tunnel structure of α-MnO2 is also responsi-
ble for the extraordinarily strong catalytic reactivity (Huang 
et al. 2019, 2018; Zhang et al. 2015b). α-MnO2 with (2 × 2) 
tunnel structure displayed larger tunnel sizes than γ-MnO2 
with (1 × 1) and (1 × 2) tunnel structure, and β-  MnO2 with 
(1 × 1) tunnel structure. Additionally, α-MnO2 exhibited the 
largest surface area, which would provide more active sites 
and enhance the catalytic performance.

EPR studies were performed to identify the reactive 
radical species in  MnO2/PMS system. EPR spectroscopy 
coupled with DMPO as a spin-trapping agent was used to 
detect free radicals. As shown in Fig. 5, DMPO-OH (four 
lines, 1:2:2:1) signal with hyperfine splitting constants of 
aH = aN = 4.7G was observed in PMS system. The generation 
of DMPO-OH signals suggested ∙OH was formed in PMS 
solution at ambient temperature without activator, which was 
consistent with previous studies (Shukla et al. 2010).

However, no DMPO-OH and DMPO-SO4 signals were 
observed in  MnO2/PMS system. Instead, a typical seven line 
spectrum with the intensity ratio of 1:2:1:2:1:2:1 signal was 
detected, which was identified the characters of 5-tert-butox-
ycarbonyl-methyl-2-oxo-pyrroline-1-oxyl (DMPOX). The 
generation of DMPOX was possibly oxidation of DMPO by 
many strong oxidizing substances as reported in previous 
studies (Du et al. 2019; Xie et al. 2019). It is should be noted 
that the formation of DMPOX did not indicated that ∙OH 
and SO∙−

4
 were absent. It is mainly because that the DMPO 

(1)HSO
−

5
+ 2MnO2 → SO

∙−

5
+ OH

−
+ Mn2O3

(2)HSO
−

5
+ Mn2O3 → SO

∙−

4
+ H

+
+ 2MnO2

(3)SO
∙−

4
+ H2O → ∙OH + H

+
+ SO

2−

4

oxidation is difficult to be detected due to its low sensitivity 
or short life time (Wang et al. 2017; Xie et al. 2019; Zhu 
et al. 2019a).

Radical quenching experiments by adding EtOH 
and TBA were conducted to examine the main reac-
tive species. EtOH is a well-known quenching agent 
for both ∙OH ( k

∙OH = 1.2–2.8 × 109  M−1  s−1) and SO∙−

4
 

( kSO∙−

4

 = 1.6–7.7 × 107 M−1 s−1). TBA is used to quench ∙OH 
( k

∙OH = 3.8–7.6 × 108 M−1 s−1, kSO∙−

4

 = 4–9.1 × 105 M−1 s−1) 
(Huang et al. 2017; Liang and Su 2009). As shown in Fig. 
S4, the degradation of 2, 4-DCP was significantly inhibited 
after the addition of 0.02 M EtOH, but only slightly inhibited 
after addition of 0.02 M TBA. The results indicated that 
SO

∙−

4
 was the dominant reactive species for PMS activation 

by crystalline  MnO2, which was consistent with previous 
reports (Liu et al. 2016; Luo et al. 2015; Wang and Chen 
2015).

Reactant adsorption on catalyst surface is considered as 
the prerequisite step for heterogeneous catalysis reaction. 
Therefore, concentration of adsorbed reactants is related to 
the reaction rate. Degradation reactions with different initial 
2, 4-DCP concentration were compared in Fig. 6a. Clearly, 
the reaction rate was positively related to the concentration 
of 2, 4-DCP adsorbed on  MnO2. The results are fitted by the 
Langmuir–Hinshelwood model (Dong et al. 2019; Konstan-
tinou and Albanis 2004) as following reaction Eqs. (4, 5)

(4)r0 = k�
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where r0 is the initial reaction rate, C0is the initial 
2,4-DCP concentration, θs is the surface coverage of 2,4-
DCP adsorption, k is the reaction rate constant, and b is 
the adsorption constant for 2,4-DCP. As shown in Fig. 6b, 
the plot of 1/r0 versus 1/C0 presented a linear relation with 
a higher R2 (0.9989), reflecting that the degradation of 2, 
4-DCP well follows the Langmuir–Hinshelwood model.

The impact of α-MnO2 dosage on 2, 4-DCP degrada-
tion is displayed in Fig. S5. The degradation of 2, 4-DCP 
was remarkably influenced by the dosage of α-MnO2. The 
degradation efficiency increased from 89.0% to 99.2% 
with the increase of α-MnO2 dose from 0.04 to 0.20 g/L. 
The enhancement of the degradation efficiency should be 
ascribed to more generation of radicals due to increased 
reactive sites with  MnO2 addition. The effect of PMS con-
centration for the degradation of 2, 4-DCP is present in Fig. 
S6. As shown in Fig. S6, the degradation efficiency of 2, 
4-DCP increased with the increasing of PMS concentra-
tion. This owes to more SO∙−

4
 generated with the increasing 

concentration of PMS, when the reactive sites on the surface 
of catalyst are sufficient to activate PMS (Feng et al. 2015; 
Liu et al. 2016; Tan et al. 2014).

The effect of solution pH on 2, 4-DCP degradation in 
α-MnO2/PMS system is presented in Fig. 7. The degrada-
tion efficiency was 96.3% at pH 7. However, the degradation 
efficiency were decreased to 85.7% and 24.7% at pH 3.0 and 
pH 10.0 in the same reaction process. Solution pH governed 
the dissociation of 2, 4-DCP (pKa = 7.85 (Schwarzenbach 
et al. 2003)) and PMS (pKa of 9.4 for  H2SO5 (Guan et al. 
2011)). Dissociated 2, 4-DCP may enhance electron donat-
ing strength for oxidants under acidic and neutral conditions. 
Similarly, PMS is mainly presented in the form of  HSO5

−, 
which is favorable for the reaction Eq. (1). In addition, solu-
tion pH affected surface charge of the α-MnO2 (point of 
zero charge of 4.5, (Prélot et al. 2003)), and then affected 
interaction between α-MnO2 surface and PMS (Wang et al. 
2018). The electrostatic repulsions interaction between the 
 MnO2 surface and  HSO5

− increased at alkaline condition, 
leading to suppressed generation of reactive free radicals 
(Liu et al. 2015), because. Moreover, PMS was unstable 
and self-decomposition of PMS occurred in the presence of 
high concentration of hydroxide ions (Ahmadi and Ghan-
bari 2019; Ghanbari and Martínez-Huitle 2019). Therefore, 
the degradation of 2, 4-DCP decreased significantly under 
alkaline conditions.

The impacts of selected inorganic ions  (Cl− and  NO3
−), 

which commonly occurr in the environment, on 2, 4-DCP 
degradation were examined. As shown in Fig. 8, the degrada-
tion efficiency of 2, 4-DCP was enhanced with the addition 
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of  Cl− and  NO3
−.  Cl− has different effects on the degrada-

tion of contaminants. For instance, Qin et al. reported that 
the presence of  Cl− greatly inhibited the degradation of 
DDT (Qin et al. 2016). While, Anipsitakis et al. reported 
opposite conclusion that  Cl− facilitated the degradation of 
phenolic compounds by SO∙−

4
 (Anipsitakis et al. 2006). As a 

fact,  Cl− could be oxidized by SO∙−

4
 to form Cl∙ according to 

following reaction (Eq. (6)), which favored the degradation 
of 2, 4-DCP (Liang et al. 2006).

In addition, the degradation efficiency of 2, 4-DCP sig-
nificantly increased from 85.7% to 94.6% after adding  NO3

−. 
The enhanced effect in the presence of  NO3

− is owing to the 
active oxygen produced in the degradation process (Hu and 
Long 2016; Huang et al. 2009; Zhu et al. 2019a).

In this study,  MnO2 with different structures were pre-
pared and activation of PMS for the removal of 2, 4-DCP 
from water was studied systematically. The prepared 
α-MnO2 showed excellent activity to activate PMS for 2, 
4-DCP degradation because of the larger tunnel size, higher 
BET surface area and Mn (III) content. The degradation 
mechanisms included direct oxidation by  MnO2 and catalytic 
oxidation by radicals ( ∙OH and SO∙−

4
 ). The degradation of 

2, 4-DCP was facilitated at lower solution pH and the pres-
ence of  Cl− and  NO3

−. Additionally, sulfate radicals were 
the main reactive species responsible for the degradation of 
2, 4-DCP in  MnO2/PMS system.

Supplementary Information The online version of this article (https ://
doi.org/10.1007/s0012 8-021-03109 -7) contains supplementary mate-
rial, which is available to authorized users.

(6)SO
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4
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−
→ SO
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4
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∙
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