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Abstract
Detection and removal of pesticides have become increasingly imperative as the widespread production and use of pes-
ticides severely contaminate soil and groundwater and cause serious problems to non-target species such as human and 
animals. Recently, new two-dimensional materials beyond graphene (e.g., transition metal dichalcogenides, layered double 
hydroxides), called post-graphene two-dimensional materials (pg-2DMs), have exhibited promising potentials in detecting 
and removing pesticides due to their unique physiochemical attributes such as high photocatalytic activity and large specific 
surface area. This review summarizes the recent advances of utilizing pg-2DMs to detect, degrade and adsorb pesticides 
(e.g., thiobencarb, methyl parathion, paraquat). The current gaps and future prospects of this field are discussed as well.
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Abbreviations
2DMs	� Two-dimensional materials
TMDs	� Transition metal dichalcogenides
LDHs	� Layered double hydroxides
pg-2DMs	� Post-graphene two-dimensional materials
OPs	� Organophosphate
GO	� Graphene oxide
rGO	� Reduced GO
g-C3N4	� Graphitic carbon nitride
h-BN	� Hexagonal boron nitride
MXene	� Transition metal carbides and nitrides 

nanosheets
AuNPs	� Gold nanoparticles

AChE	� Acetylcholinesterase
ATCh	� Acetylthiocholine
TBC	� Thiobencarb
QDs	� Quantum dots
SERS	� Surface-Enhanced Raman Scattering
MP	� Methyl parathion
BCBF	� G-C3N4@Bi2O2CO3@CoFe2O4 composites
PQT	� Paraquat
RAPOP	� G-C3N4@amine-rich porous organic polymer
2,4-DCP	� 2,4-Dichlorophenol
2,4-D	� 2,4-Dichlorophenoxyacetic acid
2, 4-DB	� 4-(2, 4-Dichlorophenoxy) butyric acid
4-NP	� 4-Nitropheno
MCPA	� 4-Chloro-2-methylphenoxyacetic acid
DNP	� 2,4-Dinitrophenol
DNOC	� 2-Methyl-4,6-dinitrocresol
2,4,5-T	� 2,4,5-Trichlorophenoxyacetic acid

Pesticides are a group of chemicals, which are designed to 
kill and control the weeds and pests, and thus protect the 
agricultural production. According to their chemical com-
positions, pesticides can be classified into several categories, 
including organochlorines, organophosphate (OPs), substi-
tuted ureas, carbamate, biopesticides and miscellaneous pes-
ticides (Rani and Shanker 2018). Many pesticides exhibit 
harmful effects on the human health and seriously threaten 
the environmental safety as well (Eddleston et al. 2008; 
Casida and Durkin 2013; Henry et al. 2015). Among the 
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used pesticides, organochlorines are the most concerned per-
sistent organic pollutants (POPs) (Rani et al. 2017). Yet, to 
boost up the worldwide crop production, lots of agrochemi-
cals are still used extensively on crops every year without 
realizing their negative effects. For example, the consump-
tion of atrazine (a kind of herbicide commonly used in the 
corn fields) reached 57.39 million pounds in 2005 (Zhang 
et al. 2011). Now, the largest pesticide consumer in the world 
is Europe, which is followed by Asia (Khalid et al. 2020).

Since pesticides and their metabolites are toxic and 
prevalent in the environment, there is an urgent need to 
develop effective, low-cost and easy-to-handle approaches 
for their detection and removal (Pitarch et al. 2010; Rani 
et al. 2017). To meet this demand, a lot of nanomaterials 
(e.g., zero-valent Fe nanoparticles (El-Temsah et al. 2016), 
Fe–Pd bimetallic nanoparticles (Joo and Zhao 2008), TiO2 
nanocomposites (Zaleska et al. 2000)) have been utilized 
on account of their interesting properties, such as large 
specific surface area, high adsorption capacity and excel-
lent catalytic properties (more information can be found 
the related reviews (Rani et al. 2017; Rani and Shanker 
2018)). These advances stimulate the scientists to explore 
the potentials of other materials in solving the pesticide 
issue.

Graphene, the representative star of two-dimensional 
materials (2DMs), has been intensively studied in the 
treatment of pesticides due to its unique physiochemical 
properties. For instance, Zhang et al. prepared the cellu-
lose/graphene composites, which exhibited strong adsorp-
tion behaviors towards six triazine pesticides (belonging 
to cationic pesticides) in the aqueous solutions. After six 
times of recycling, the adsorption efficiency of this com-
posites was still over 85% (Zhang et al. 2015). Moreover, 
nanocomposites containing reduced GO (rGO) and Fe3O4 
nanoparticles demonstrated a 93.61% adsorption effi-
ciency towards triazine pesticides (belonging to cationic 
pesticides), which was aroused by the strong electrostatic 
interaction between the nanocomposites and the pesticides 
(Boruah et al. 2017). Suo et al. synthesized an activated 
carbon derived from sieve-like cellulose/graphene oxide 
composites (ACCE/G). They found the adsorption capac-
ity of ACCE/G was up to 152.5 mg/g for chlorpyrifos 
(belonging to non-ionic pesticide) (Suo et al. 2018). It is 
believed that π–π stacking and van der Waals interactions 
are the major adsorption interactions between GO and 
pesticides (Wang et al. 2020). In fact, many other 2DMs 
beyond graphene, called post-graphene 2D materials (pg-
2DMs), have already garnered increasing attentions in the 
detection and removal of pesticides. However, to the best 
of our knowledge, the advances in this field are not sum-
marized yet. To fuel the development of this direction, 
the present review is motivated with emphasis on the pg-
2DMs-based methods for pesticide detection and removal.

Basic Introduction of Post‑graphene 2DMs

2DMs are layered materials that have large lateral size, but 
only one or few atoms in thickness (Sun and Wu 2018). 
The great success of graphene boosts the development of 
other 2DMs and they have displayed promising potentials 
in different fields, such as disinfection (Tian et al. 2019), 
catalysis, field effect transistors (Kong et al. 2017) and 
environmental remediation (Wang and Mi 2017). For 
example, few-layer MoS2 with lots of atomically sharp 
edges and active sites can efficiently inactivate microbes 
(Zheng, et al. 2020). Meanwhile, because sulfur is a kind 
of soft Lewis base and shows a high affinity to heavy metal 
ions (i.e., Ag+ and Hg2+), few-layer MoS2 nanosheets 
with numerous sulfur atoms on their surfaces exhibit 
high adsorption capacities towards heavy metals (Ai, 
et al. 2016; Gash et al. 1998). Until now, around 30,000 
2DMs related articles are published annually, suggesting 
2DMs are the hot spot in scientific research (Yin and Tang 
2016). Some members of pg-2DMs, like transition metal 
dichalcogenides (TMDs) (Liang et al. 2017), graphitic car-
bon nitride (g-C3N4) (Kumar et al. 2018), layered double 
hydroxides (LDHs) (Otero et al. 2012), hexagonal boron 
nitride (h-BN) (Atar and Yola 2018) and transition metal 
carbides and nitrides nanosheets (MXene) (Jiang et al. 
2018), have been used for the detection and removal of 
pesticides. The structures of these materials are shown in 
Fig. S1. To date, various methods have been developed to 
prepare pg-2DMs. These methods can be generally divided 
into two categories: top-down (e.g., mechanical exfoliation 
and liquid phase exfoliation) and bottom-up (e.g., chemi-
cal vapor deposition) methods (Agarwal and Chatterjee 
2018).

Applications of pg‑2DMs in the Detection 
and Removal of Pesticides

TMDs

TMDs are MX2-type compounds, in which X is a chalco-
gen (e.g., S, Se, and Te) and M is the transition metal from 
groups IV, V and VI (Chhowalla et al. 2013; Tang and 
Zhou 2013; Xu et al. 2013). There are quite strong intra-
layer covalent M–X bonds within bulk layered TMDs. 
Yet, the adjacent layers are connected by the weak van 
der Waals interactions.

Owing to their catalytic activities, sensitive surface 
states and large junction areas toward the electrode or elec-
trolyte, some TMDs (i.e., MoS2 and WS2) have received 
considerable attention in fabricating electrochemical 
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sensors for pesticides. The inherent properties of these 
TMDs suggest high catalytic activities of edge planes, 
which can be attributed to their high surface energy (Sinha 
et al. 2019). However, to boost their inherent electrochemi-
cal capacities, some strategies (e.g., doping of non-metal 
(Song et al. 2018b) or rare earth (Sakthivel et al. 2018), 
synthesizing metallic 1T-polymorph (Nasir et al. 2017), 
fabricating 3D architecture (Sinha et al. 2019)) are often 
needed. Decorating TMDs with conducting nanomaterials 
also significantly enhances their electrocatalytic capaci-
ties and thus improves the accuracies and limits of detec-
tion (Govindasamy et al. 2017; Qi et al. 2018; Song et al. 
2018a; Zhao et al. 2018; Jia et al. 2020) (Table S1). For 
example, Zhao et al. prepared metallic 1T-phase MoS2 
nanosheets using the chemical lithium-intercalation 
method. 1T phase MoS2 nanosheets were further modi-
fied with gold nanoparticles (AuNPs) to fabricate an ace-
tylcholinesterase (AChE) based biosensor for the paraoxon 
detection (Fig. S2a). The biosensor exhibited a wide linear 
range (1.0–1000 μg/L) with a detection limit of 0.013 μg/L 
(Fig. S2b, c) (Zhao et al. 2018).

MoS2 with single or fewer layer or small planar dimen-
sions (also known as quantum dots (QDs)) shows intriguing 
optical properties and/or redox activities (Gopalakrishnan 
et al. 2015; Xiao et al. 2016). Because of this, MoS2 also 
demonstrates promising potentials in detecting pesticides by 
colorimetric sensing (Chen et al. 2017), fluorescence sens-
ing (Fahimi-Kashani et al. 2017), electrochemiluminescence 
sensing (Yang et al. 2017) and SERS sensor (Liang et al. 
2017). For example, Fahimi–Kashani and co-workers uti-
lized a simple hydrothermal method to synthesize MoS2 
QDs. They found that p-nitrophenol, the alkaline hydrolysis 
product of methyl parathion (MP), can induce the photolu-
minescence quenching of MoS2 QDs, by which they devel-
oped a sensitive fluorescence method to detect MP. This 
method exhibited a detection limit of 0.085 μg/mL (Fahimi-
Kashani et al. 2017).

Apart from the detection, TMDs can be utilized for the 
photocatalytic degradation of pesticides as well (Table S1). 
For instance, MoS2 has a strong absorption in the visible 
region of solar spectrum and is possible to use visible 
light for photocatalytic reactions due to its relatively small 
bandgap (Han and Hu 2016). Furthermore, some favorable 
properties of MoS2, such as atomic thickness, large distance 
between stacked layers and satisfying stability in both alka-
line and acidic media, let MoS2 be a promising photocata-
lyst (Anjum et al. 2018; Susarla et al. 2018). Up to now, 
many approaches, such as synthesizing multiphasic MoS2 
heterostructure (Chen et al. 2019) or MoS2 microsphere 
(Huang et al. 2018), incorporating MoS2 with other materi-
als (Jo et al. 2016a, b; Kumar et al. 2016; Long et al. 2016; 
Luo et al. 2018; Ahamad et al. 2019; He et al. 2019), have 
been developed to prepare MoS2-based hetrostructures for 

the photocatalytic degradation of pesticides. For instance, 
Huang et al. used sodium molybdate and l-cysteine as raw 
materials to prepared MoS2 microsphere by a hydrothermal 
method (Fig. S2d). Under visible light irradiation, without 
adding H2O2, thiocarbon can be successfully degraded in 
MoS2 microsphere suspension. Its degradation efficiency 
can reach 95% within 12 h (Fig. S2e) (Huang et al. 2018). 
Besides, MoS2 can also degrade the pesticides via the elec-
trocatalytic oxygen-reduction reaction (Qu et al. 2018), or 
serve as an efficient support for other materials and enrich 
the pesticides nearby, leading to a higher removal rate (Lu 
et al. 2017).

g‑C3N4

Graphite-like carbon nitride (g-C3N4) is a kind of organic and 
metal-free semiconductors, which consists of tri-s-triazines 
and has a well crystallized layered structure (Liu et al. 2015). 
Based on its unique electrocatalytic and optical properties, 
it has been used alone or coupled with other materials to 
detect pesticides (Wang et al. 2016a, 2016b, 2017; Xie et al. 
2018; Ouyang et al. 2018; Cao et al. 2019; Shetti et al. 2019; 
Yin et al. 2019) (Table S2). For instance, using g-C3N4 as 
the fluorescent probe and AuNPs as the colorimetric probe, 
Xie et al. developed a dual-signaling detection approach for 
sensing organophosphorus pesticides (Fig. S3a).The method 
displayed a wide linear range (2.0 × 10–11–6.0 × 10–9 M) with 
a detection limit of 6.9 × 10–12 M (Fig. S3b, c) (Xie et al. 
2018). Ouyang reported that g-C3N4@BiFeO3 nanocom-
posites with photocatalytic activity can be used as a single 
peroxidase-like catalyst to fabricate the colorimetric/chemi-
luminescent dual-readout immunochromatographic assay for 
detecting multiple pesticide residues (Ouyang et al. 2018).

g-C3N4 with narrow bandgap energy (2.7 eV) can utilize 
visible light efficiently (Wang et al. 2009). Because of this, 
g-C3N4 is used for not only detection but also photodegrada-
tion of pesticides (Desipio et al. 2018; Pang et al. 2019). Yet, 
pure g-C3N4 has some disadvantages, such as low surface 
area and high recombination rate of photoelectron-hole pair 
(Jiang et al. 2016; Muhmood et al. 2017; Zhao et al. 2017). 
Therefore, many researchers prepared numerous g-C3N4-
based composites by various methods, such as doping metal/
non-metal elements (Kesarla et al. 2019; Vigneshwaran et al. 
2019), combining with carbon materials (Chu et al. 2019; 
Dikdim et al. 2019) or semiconductors (Kumar et al. 2018; 
Abazari et  al. 2019; Ayodhya and Veerabhadram 2019; 
Balasubramanian et al. 2019; Humayun et al. 2019; Yas-
meen et al. 2019). For example, Kumar et al. fabricated the 
biochar supported ternary g-C3N4@Bi2O2CO3@CoFe2O4 
composites (BCBF), which was magnetically recoverable 
and showed a high catalytic activity under visible light. 
After visible radiation for 90 min, 99.3% of paraquat (PQT) 
was degraded by BCBF (Fig. S3d, e) (Kumar et al. 2018). 
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Vigneshwaran et al. prepared a novel catalyst based on 
the g-C3N4/chitosan composites. Owing to their efficient 
separation of electron hole pairs, these composites showed 
excellent photodegradation abilities towards chlorpyrifos 
(Vigneshwaran et al. 2019). Humayun et al. coupled cerium 
oxide (CeO2) with g-C3N4 to form CeO2/g-C3N4 (CeO/CN) 
composites with suitable band alignments. Under the visi-
ble-light irradiation, 57% of 2,4-dichlorophenol (2,4-DCP) 
was degraded by the CeO/CN composites after 2 h. The 
authors further proposed the photodegradation mechanism 
of 2,4-DCP based on the liquid chromatography tandem 
mass spectrometry analysis (Fig. S4a, b) (Humayun et al. 
2019).

g-C3N4 has excellent stability and high reactivity due to 
its special layered structure. These properties make it pos-
sible to serve as a skeleton material to improve the adsorp-
tion capacities of other materials (Liu et al. 2015; Ou et al. 
2018). For instance, Ou et al. prepared g-C3N4/amine-rich 
porous organic polymer composites (g-C3N4/RAPOP) via 
one-pot polymerization, which was then used as an adsor-
bent towards 2,4-DCP. When 2,4-DCP got close to the sur-
face of g-C3N4/RAPOP, the hydrogen bond interactions 
and π-π interactions caused the adsorption of 2,4-DCP (pH 
2–7). Within 40 s, the adsorption equilibrium of g-C3N4/
RAPOP was reached. The maximum adsorption amount 
was 270.27 mg/g. In alkaline environment, both 2,4-DCP 
and g-C3N4/RAPOP were negatively charged and 2,4-DCP 
was desorbed from g-C3N4/RAPOP because of the strong 
electrostatic repulsion. The authors conducted the adsorp-
tion–desorption cycles for five times, and they believed that 
g-C3N4/RAPOP could be effectively regenerated via the 
alkali treatment (Fig. S4c, d) (Ou et al. 2018).

LDHs

Layered double hydroxides (LDHs) are a kind of inor-
ganic layered materials, whose generic formula is 
[MII

1−xMIII
x(OH)2]z+(An−)z/n·yH2O. MII and MIII are diva-

lent and trivalent metal ions, respectively. An− is interlayer 
anions in the brucite-like layers (Wu et al. 2013).

LDHs usually have a large surface area and the interlayer 
spacing of LDHs can vary, which depends on the size and 
geometry of the interlayer anions. In the electrochemical 
detection of pesticides, LDHs have been used as host mate-
rials to construct new functional host–guest materials. For 
example, Gong et al. built a series of electrochemical sen-
sors using LDHs and some guest materials (including AChE 
(Gong et al. 2013), graphene (Liang et al. 2012), Ni/Al 
(Gong et al. 2009), NanoPt (Gong et al. 2010)) (Table S3).

Due to their high anion exchange capacities, high spe-
cific surface areas and flexible interlayer space, a variety of 
LDHs have long been used to fabricate efficient adsorbents 
for removing negatively charged contaminants in water such 

as anionic pesticides (Cornejo et al. 2008) and anionic dyes 
(Morimoto et al. 2011). Until now, many pesticides, such 
as 4-chloro-2-methylphenoxyacetic acid and 3,6-dichloro-
2-methoxy benzoic acid can be effectively adsorbed by 
LDHs (Inacio et al. 2001; You et al. 2002; Legrouri et al. 
2005; Li et al. 2005; Chaara et al. 2010, 2011; Otero et al. 
2012; Nejati et al. 2013; Pavlovic et al. 2013). For exam-
ple, Otero et al. investigated the adsorption behaviors of 
S-Metolachlor on the LDHs, which were intercalated with 
dodecylsulfate (HT-DDS) and tetradecanedioate (HT-TDD), 
respectively. They found that HT-TDD adsorbed more 
S-Metolachlor compared with HT-DDS. The amount of the 
adsorbed S-Metolachlor increased with temperature (Otero 
et al. 2012). Pavlovic et al. prepared the Mg–Al layered 
double hydroxide with caprylate (LDH-Cap) and studied its 
adsorption performances towards three pesticides, linuron, 
2,4-DB and metamitron. They found that ~ 90% of initial 
linuron and 2,4-DB were absorbed by LDH-Cap within the 
first 30 min. However, metamitron was absorbed in a more 
gradual manner. The adsorbed 2,4-DB and metamitron were 
probably intercalated between caprylate chains and the bru-
cite layers. Linuron may be adsorbed on the external surface 
of LDH-Cap. (Pavlovic et al. 2013).

In addition, LDHs also can be used as photocatalyst 
(Nguyen Thi Kim et al. 2016) or microbial immobilization 
matrix (Alekseeva et al. 2011) to mineralize pesticides via 
photodegradation or biodegradation. For instance, Phuong 
et al. prepared the calcined and Ti-doped LDHs (Mg@Fe@
Ti@LDH) by the co-precipitation method. They found that 
Mg@Fe@Ti@LDH exhibited perfect photo-Fenton-like 
activity, causing 80–95% degradation of 2,4,5-trichlorophe-
noxyacetic acid in 360 min (Nguyen Thi Kim et al. 2016).

Hexagonal Boron Nitride and MXene

Hexagonal boron nitride (h-BN) has graphene-like layered 
crystal structures. It contains equal numbers of boron and 
nitrogen atoms, which are arranged in a hexagonal structure. 
In each layer, the boron and nitrogen atoms are bonded by 
covalent bonds, whereas these layers stack together by the 
van der Waals force. A single-layer h-BN nanosheet can be 
regarded as a graphene analogue and thus it is also known 
as “white graphene”.

Owing to its unique properties like high mechanical 
strength and thermal conductivity, large surface area and 
high temperature stability, h-BN has been combined with 
other materials like metal nanoparticles to form nanocom-
posites for sensing pesticides (Atar and Yola 2018; Kiran 
et al. 2019; Tan et al. 2019; Zhan et al. 2019; Zhang et al. 
2019). For instance, Atar and co-workers built an electro-
chemical sensor based on Fe@AuNPs@h-BN nanocompos-
ites for the determination of cypermethrin in waste water 
samples. This electrochemical sensor exhibited a linear 
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range of 1.0 × 10–13–1.0 × 10–8 M and a detection limit of 
3.0 × 10–14 M (Atar and Yola 2018).

As another popular member in pg-2DMs, transition metal 
carbides and nitrides nanosheets (MXene) has garnered 
increasing attentions in various fields (Naguib et al. 2014). 
It can be prepared using the HF-based chemical method to 
selectively etch the A element in its raw Mn+1AXn (MAX). 
M represents an early transition metal and A is mainly an ele-
ment coming from group IIIA or IVA. X represents N or C 
element (Naguib et al. 2011). Due to its intriguing attributes 
like large specific surface area and excellent electrochemical 
activity, it has been utilized in sensing pesticides (Jiang et al. 
2018; Xie et al. 2019; Zhao et al. 2020) (Table S3). Zhao 
et al. used MXene@Au@Pd nanocomposites to fabricate 
an enzyme-based pesticide biosensor. They chose paraoxon 
as the model pesticide and found the as-prepared biosensor 
showed a detection limit of 1.75 ng/L and a linearity range 
of 0.1–1000 μg/L (Fig. S5a) (Zhao et al. 2020). To detect 
malathion, Jiang et al. modified MXene with silver nanopar-
ticles to prepare an AChE sensor (Fig. S5b), which showed 
a detection limit of 3.27 × 10–15 M and a linearity range of 
1.0 × 10–14–1.0 × 10–8 M. This biosensor utilized the unique 
synergistic effects and electrocatalytic properties between 
Ti3C2Tx nanosheets and silver nanoparticles, which not only 
improved the electron transfer, but also enlarged the surface 
area for malathion detection (Jiang et al. 2018).

Conclusion and Perspective

The rise of global population generates a need to increase 
crop productivity and yield, which causes a large amount 
of pesticides to be produced and consumed annually. The 
released pesticides go through many transformations such as 
biodegradation, oxidation and photodegradation (Martinez 
Vidal et al. 2009). Photodegradation is an important abiotic 
process in the dissipation of pesticides, however, its effi-
ciency is too low when it occurs naturally (Katagi 2004) To 
solve this problem, various nanomaterials have been used as 
photocatalysts to degrade pesticides in soil (Zeng et al. 2010) 
and water (Liu et al. 2016; Keihan et al. 2016) in the past 
decade. Recently, many pg-2DMs with unique properties 
has also been utilized in the treatment of pesticide. Although 
still in their infancies, the researches on the use of pg-2DMs 
have already demonstrated promising in, for example, the 
sensing, photodegradation and adsorption of pesticides. 
We believe more exciting results will be obtained in the 
future by investigating other newly emerged pg-2DMs with 
intriguing properties, such as black phosphorus and SnS2. 
However, there are also some unsolved questions in the cur-
rent research: (1) Many factors, such as ionic strength, pH 
and natural organic matters will influence the adsorption 
capacities of pg-2DMs based adsorbents toward pesticides. 

Yet, such effects are rarely investigated; (2) The products of 
pg-2DMs catalyzing decontamination of pesticides need to 
be explored; (3) Although some pg-2DMs, such as g-C3N4 
(Vigneshwaran et al. 2019) and MoS2 (Xu et al. 2013), 
already show high thermal and chemical stabilities in the 
photodegradation process, their stabilities still need to be 
confirmed at industrial scale; (4) Since increasing reports 
prove that graphene and other 2DMs exhibit toxicities to 
some extend (Tian et al. 2016; Li et al. 2018; Yu et al. 2019; 
Guiney et al. 2018), more efforts are needed to explore the 
environmental toxicities of these pg-2DMs when they are 
used for environmental remediation.
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