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Abstract
In this study we test the sensitivity of three sizes of golden mussel (Limnoperna fortunei), an introduced species in Argen-
tina, to a 96-h exposure to Cd2+ , Cr6+ , and Ni2+ . We also analysed the relative sensitivity of L. fortunei compared to other 
freshwater bivalve equivalent sensitivity data. The ANOVA results showed that both factors, heavy metal and size, had 
significant effects (p = 0.0013 and p = 0.0091, respectively) on the mortality of the golden mussel. Tukey’s test showed 
significant differences for Cr6+ treatment and the smallest size class (7 mm ±1 ). The relative sensitivity analysis showed that 
LC

50
 values for the smallest size class of L. fortunei exposed to Ni2+ and Cd2+ were in the low range, with values of 11.40 

mg/L and 12.65 mg/L, respectively. In the case of Cr6+ (1.66 mg/L), its LC
50

 was in the medium-low range of the freshwater 
bivalve sensitivity distribution.
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The pollution in aquatic ecosystems with heavy metals is 
a worldwide concern given the increase in their emissions 
(Vareda et al. 2019). Biomonitoring is a widely implemented 
technique that uses organisms in order to assess environ-
mental pollution levels (Zhou et al. 2008). Due to satisfying 
many of the conditions for an ideal monitoring organism, 
bivalve molluscs have been extensively utilized for several 
decades in freshwater and marine environmental monitor-
ing programs (Gupta et al. 2011). Elder and Collins (1991) 
pointed out the convenience of using introduced species 
as monitoring organisms because of their physiological 
tolerance range and their wide distribution. The freshwa-
ter golden mussel, Limnoperna fortunei (Dunker, 1857) 
(Bivalvia, Mytilidae), was introduced by ship ballast water, 
and reported for the first time in South America in 1991 
(Pastorino et al. 1993). Byssate juvenile and adult forms live 

in dense groups attached to hard surfaces, where they feed 
on plankton by filtration (Darrigran and Damborenea 2006). 
The life cycle of L. fortunei presents a planktonic larvae 
which facilitates a rapid dispersion, assisted by commercial 
ship traffic, which has enabled the species to colonise five 
countries in South America (Oliveira et al. 2015). L. fortunei 
has been tested as a suitable organism for biomonitoring, 
with most studies focusing on bioaccumulation and biomark-
ers (do Amaral et al. 2019; Belaich et al. 2006; Villar et al. 
1999), but very little has been reported regarding mortality 
of this species exposed to contaminants (Cataldo et al. 2003; 
Soares et al. 2009). The objectives of the present study were 
to (1) analyse the sensitivity (as mortality) of three sizes 
of L. fortunei to the acute exposure of three heavy metals 
of environmental relevance: Cd2+ , Cr6+ , and Ni2+ , and (2) 
establish the relative sensitivity range of L. fortunei among 
other freshwater bivalves used for toxicological assessment.

Materials and Methods

Individuals of L. fortunei were haphazardly collected during 
low tide at Palo Blanco Beach in Berisso ( 34◦51′19.1′′S , 
57◦50′17.3′′W ), Buenos Aires, Argentina. Individuals 
were acclimated in 100 L tanks with dechlorinated and 
oxygenated tap water (conductivity 1.0 mS/cm; hardness 
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215 mg/L CaCO3 ; alkalinity 180 mg/L CaCO3 ; pH range 
7.6 ± 0.2 ; temperature 20 ± 2  °C; photoperiod 16:8 
light:darkness) for at least 2 weeks before each assay. Dur-
ing acclimation, mussels were fed with a cultured Chlo-
rophyceae algal solution. Food was supplied according to 
mussel’s filtering activity in order to maintain a low green 
tinge in the water at the end of a 24 h period. Mussels were 
not fed during the assays. Individuals were measured along 
the maximum anterior-posterior axis (total length) with a 
digital calliper (precision 0.01 mm) and, based on the more 
abundant size intervals, were arranged in three size classes 
(SC): SC1(7 ± 1 mm), SC2 ( 13 ± 1 mm), and SC3 ( 19 ± 1 
mm). Three heavy metals of environmental relevance were 
selected: Cd2+ , Cr6+ , Ni2+ . Dilutions were prepared from 
stock solutions using analytical grade (ACS) 3CdSO4.8H2O 
(Merck), Cr2O7K2 (Analar), and Ni0 granules (Biopack) pre-
viously dissolved in HNO3 . Concentrations were tested and 
run in triplicate in polyethylene containers. Sets of samples 
were randomly taken at different days of renewal. Actual 
metal concentrations of the samples were measured using 
a Varian Spectr AA 330 atomic absorption spectrophotom-
eter with air-acetylene flame (APHA 1998 Method 3111 B). 
Quality assurance and control comprised the calibration of 
equipment using certified reference materials from Accu-
standard Inc. (Cd:AA08N-1, Cr:AA13N-1, Ni:AA37N-5), 
blanks and replicates of analytical samples, and bidistilled 
water. The detection limit for all three metals was 0.005 
mg/L. All labware was previously cleaned in a 10% HNO3 
bath, and assay samples were all refrigerated and acidified 
with HNO3 (Analar) analytical grade for storage. Since not 
every assay replicate and concentration was sampled at each 
medium renewal event, data of measured and nominal con-
centrations from each set of samples was used to calculate 
estimated concentrations by linear regression methods for 
each assay. Nominal concentrations in mg/L were: 5, 8, 14, 
23, 39, 64 for Cd2+ , 1, 2, 4, 8, 16, 32, 64 for Cr6+ , and 7, 12, 
20, 35, 60, 100, 165 for Ni2+ . Negative control contained the 
same water that was used to make dilutions. For each rep-
licate, 15 mussels were allocated in 0.5 L of dechlorinated 
and mechanically aerated water and kept for 24 h. After this 
settlement period, only 10 mussels that had attached to the 
walls of each container were kept for the assays. Those indi-
viduals that had failed to attach were considered unhealthy 
and therefore discarded. Finally, containers were emptied 
and refilled with 0.5 L of the corresponding dilution; each 
of the assays were 96-h static-renewal tests. Test dilutions 
were renewed every 24 h. Mortality was the selected end-
point. Mussels were considered dead if they remained with 
opened valves when removed from the container or if they 

did not show signs of activity in response to physical stim-
uli with a plastic stick. The integrity of all individuals was 
assessed under stereo microscope. Statistical endpoints LC50 
and LC10 were estimated by fitting measured concentration 
data to Finney’s Probit model (Finney 1971) using the Probit 
software from USEPA (1993), or the Trimmed Spearmen-
Karber method (TSK USEPA 1993) where needed. A two-
way ANOVA without replication (Microsoft Excel) was 
performed to assess the effects of the two factors, size class 
and heavy metal, on the sensitivity (Log LC50 ) of L. fortu-
nei. Post-hoc Tukey HSD test for multiple comparisons was 
applied to evaluate the differences between the levels of the 
two factors. In order to calculate the relative sensitivity (RS) 
of L. fortunei, we conducted a bibliography search and con-
sulted the USEPA ECOTOX database. Only mortality LC50 
values from 96 h exposure to the same heavy metals, and 
from freshwater bivalves in juvenile and adult stage were 
considered. The toxicity of Cd2+ and Ni2+ are water hardness 
dependent, however, there is no evidence for this effect on 
the toxicity of Cr6+ (USEPA 1996). Neither the data from 
ECOTOX, nor the original publications provided consist-
ently hardness-adjusted LC50 values. And in some cases, 
water hardness was not reported at all. Due to these limita-
tions, no adjustments were made to data in our analysis. We 
calculated the RS = Log(LC50Lf∕LC50i) (Santos-Medrano 
and Martinez 2019), where ‘ LC50Lf  ’ corresponds to the cal-
culated lethal concentration for L. fortunei, and ‘ LC50i ’ is 
any one species’ LC50 value recorded from our search. In 
those cases where there was more than one record for a given 
‘ LC50i ’, the arithmetic mean was calculated. With respect 
to ‘ LC50Lf  ’, only those from the size class (SC) that had 
yielded significant differences in the ANOVA were included 
in the relative sensitivity analysis. Finally, we charted the 
frequency distribution of all Log LC50 values, and graphi-
cally showed where the sensitivity of the three size classes 
of L. fortunei lie for each heavy metal.

Results and Discussion

Details of the heavy metal estimated concentration 
adjusted by linear regression are shown in Table 1. Esti-
mations averaged 58%, 103%, and 86% of the respec-
tive Cd2+ , Cr6+ , and Ni2+ nominal values. There was no 
mortality in the negative control for all replicates. The 
estimated LC50 and LC10 values with their respective 95% 
confidence limits for each heavy metal assay are shown 
in Table 2. In the case of Ni2+ , mortality data for SC1 
did not show a monotonically increased response to the 
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treatments, and thus was fitted to a TSK method. Ni2+ LC10 
values for SC1 could not be calculated by TSK method. 
The LC50 values for SC1 showed the toxicity trend was 
Cr6+ > Ni2+ > Cd2+ , whereas for SC2 and SC3 the trend 
was Cr6+ > Cd2+ > Ni2+ . LC10 values for SC2 and SC3 
showed a consistent toxicity trend: Cr6+ > Cd2+ > Ni2+ . 
The two-way ANOVA results indicated significant effects 
( p < 0.05 ) on the mortality of L. fortunei for metals (p= 
0.0013) and mussel size class (p= 0.0095). Tukey HSD 
test yielded significant differences between mussels 
from SC1 and those of SC2 and SC3 (p = 0.0216 and 
p  =  0.0091, respectively). Heavy metal comparisons 
showed that sensitivity to Cr6+ was significantly different 
to that of Cd2+ (p = 0.0036), and Ni2+ (p = 0.0016). The 
combination of data from the USEPA ECOTOX database 
and bibliography searches yielded 29 Cd2+ LC50 entries 
corresponding to 13 species, 12 Cr6+ LC50 entries for 
9 species, and 16 Ni2+ LC50 entries for 11 species. The 
calculations of the relative sensitivity of L. fortunei SC1 
compared to that of other freshwater bivalves are shown 

in Table 3. In regard to Cd2+ and Ni2+ , it can be observed 
that L. fortunei SC1 is less sensitive than all freshwater 
bivalves. However, data for these two metals could not 
be normalised for water hardness. Villorita cyprinoides 
cochinensis is the organism with the highest RS scores 
of 3.67 and 2.27 for Cd2+ and Ni2+ , respectively. In the 
case of Cr6+ , L. fortunei SC1 showed to be more sensitive 
than Diplodon chilensis (RS -1.09) and Hyriopsis cumingi 
(RS -0.81), but scored a lower relative sensitivity than the 
rest of the test organisms included in the analysis. V. c. 
cochinensis (RS 2.16) was the most sensitive compared to 
L. fortunei SC1. A graphic representation of the RS val-
ues from Table 3 is depicted in Fig. 1. When compared to 
data from other freshwater bivalves, the sensitivity range 
of L. fortunei to Cd2+ (Fig. 2a) and Ni2+ (Fig. 2c) sits in 
the lower end of the distribution of sensitivities. Further-
more, the golden mussel’s sensitivity to Cr6+ falls within 
the medium-low range (Fig. 2b). Small juveniles of L. 
fortunei, such as those of SC1 in this study, represent the 
most numerous size class in natural populations of the 

Table 1  Estimated 
concentrations of heavy 
metals in mg/L. Values 
were adjusted by linear 
regression using the samples’ 
measured concentration and 
their corresponding dilution 
coefficients

*Average value of data from three sets of samples taken at different times.
All results are statistically significant ( p < 0.05 , N=44)

Estimated concentration

Metal Estimated value (mg/L) Slope R
2 Std Error

Cd
2+ 2.9 4.64 8.12 13.34 22.61 37.11 0.5798∗ 0,9997∗ 0.5823∗

Cr
6+ 1.03 2.06 4.12 8.23 16.47 32.94 65.88 1.0293∗ 0,9957∗ 1.0878∗

Ni
2+ 5.99 10.27 17.11 29.95 51.34 85.57 141.19 0.8557 0,9976 1.5548

Table 2  LC
50

 , LC
10

 values, and 95% confidence values for the three heavy metals and size classes tested. Values are in mg/L. SC1 LC
10

 values 
could not be calculated by TSK method

∗ TSK method, ∗∗unable to be calculated with TSK method

Cd
2+

Cr
6+

Ni
2+

LC
50

Lower limit Upper limit LC
50

Lower limit Upper limit LC
50

Lower limit Upper limit

SC1 12.65 10.74 14.96 1.66 1.31 2.01 11.40* 4.57* 28.46*
SC2 24.23 20.77 29.18 4.97 3.84 6.38 61.25 44.09 136.43
SC3 42.23 32.52 73.3 5.22 3.83 7.05 82.85 68.19 106.01

LC
10

Lower limit Upper limit LC
10

Lower limit Upper limit LC
10

Lower limit Upper limit

SC1 5.33 3.88 6.62 0.71 0.41 0.96 –** –** –**
SC2 11.78 8.42 14.37 1.19 0.68 1.72 18.34 10.03 24.35
SC3 16.32 10.8 20.5 0.85 0.39 1.37 29.31 19.14 37.88
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Table 3  Results of the relative 
sensitivity (RS) quotient 
calculations for L. fortunei SC1. 
Values of LC

50
 were collated 

from the USEPA ECOTOX 
database and bibliography 
searches

∗ Average of multiple LC
50

 data records. ∗∗ RS=Log(LC
50Lf  / LC50i ). †Not adjusted to water hardness

Metal species Test organism 96h LC
50

 †
(mg/L)

Relative sen-
sitivity∗∗

References

Cd 2+

Actinonaias pectorosa 0.06∗ 2.34 Keller (2000)
Corbicula fluminalis 0.52 1.39 Abdel Gawad (2006)
Crassostrea rhizophorae 5.00 0.40 Chung (1980)
Lamellidens marginalis 10.00 0.10 Raj and Hameed (1990)
Lampsilis straminea
claibornensis

0.04 2.52 Keller (2000)

Lampsilis teres 0.02∗ 2.76 Keller (2000)
Lasmigona subviridis 0.06∗ 2.34 Black (2003)
Parreysia favidens 7.20 0.24 Bhamre et al. (1996)
Pisidium casertanum 0.85∗ 1.17 Mackie (1989)
Pisidium compressum 1.05∗ 1.08 Mackie (1989)
Utterbackia imbecillis 0.07∗ 2.26 Keller and Zam (1991), 

Black (2003) and Kel-
ler (2000)

Villorita cyprinoides
cochinensis

0.003 3.67 Abraham et al. (1986)

Villosa vibex 0.08 2.21 Keller (2000)
Cr

6+

Amblema plicata 0.23 0.85 Wang et al. (2016)
Diplodon chilensis 20.40 − 1.09 Silva et al. (2007)
Hyriopsis cumingii 10.60∗ − 0.81 Chin and Chou (1978)
Lampsilis siliquoidea 0.27 0.80 Wang et al. (2016)
Margeritifera falcata 0.62 0.42 Wang et al. (2016)
Megalonaias nervosa 0.14 1.08 Wang et al. (2016)
Rangia cuneata 0.21 0.90 Olson and Harrel (1973)
Utterbackia imbecillis 0.29∗ 0.76 Wang et al. (2016)

Keller and Zam (1991)
Villorita cyprinoides
cochinensis

0.01 2.16 Abraham et al. (1986)

Ni
2+

Actinonaias pectorosa 0.52 1.34 Keller (2000)
Amblema plicata 0.23 1.69 Wang et al. (2016)
Hamiota perovalis 0.31 1.56 Gibson (2015)
Lampsilis siliquoidea 0.43∗ 1.42 Wang et al. (2016)
Lampsilis straminea
claibornensis

0.13 1.94 Keller (2000)

Margeritifera falcata 0.27 1.63 Wang et al. (2016)
Megalonaias nervosa 0.17 1.82 Wang et al. (2016)
Utterbackia imbecillis 0.41∗ 1.44 Keller (2000), Keller 

and Zam (1991) and 
Wang et al. (2016)

Villorita cyprinoides
cochinensis

0.06 2.27 Abraham et al. (1986)

Villosa nebulosa 0.51 1.35 Gibson (2015)
Villosa vibex 0.30 1.58 Keller (2000)
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golden mussel (Bonel and Lorda 2015). They are easy to 
collect in the field, and given their encrusting nature they 
can establish colonies on artificial substrates that can be 
used as artificial units of habitat for manipulative experi-
ments. L. fortunei presents a short life cycle (2/3 years) 

with a planktonic larval development, and a long actively 
reproductive period with external fecundation (Darrigran 
and Damborenea 2006). Because of the aforementioned 
characteristics, and the ability of L. fortunei to tolerate a 
wide range of environmental conditions (Ricciardi 1998), 
this species is a versatile test organism for different experi-
mental scenarios and rearing in the laboratory. Conversely, 
most of the native species of freshwater bivalve families in 
Argentina live buried in sediments, with the exception of 
some epifaunal species such as Byssanodonta paranensis 
and Eupera platensis which have more specific distribu-
tion patterns (Darrigran and Lagreca 2005). Their life 
cycles include ectoparasitic larval stages (e.g. glochidia in 
Hyriidae, or lasidia in Mycetopodidae), or are ovovivipa-
rous with less prolific reproductive periods (e.g. Euperi-
nae) (Ezcurra de Drago et al. 2006; Ituarte 1988). Previ-
ous studies on L. fortunei tested for bioaccumulation and 
biomarkers in response to heavy metals such as mercury, 
copper, and cadmium (Belaich et al. 2006; do Amaral 
et al. 2019; Soares et al. 2009) and organic compounds 
(Iummato et al. 2018; Pereyra et al. 2011, 2012). This 
study provides new sensitivity data for L. fortunei under 
acute exposure to Cd2+ , Cr6+ , and Ni2+ . It also shows that 
the juveniles of the golden mussel present arange of sen-
sitivity suitable for a sentinel species (e.g. studies with 
biomarkers). Its encrusting epifaunal nature that enables 
simple sampling methods, widespread distribution (which 
allows inter-regional comparisons), and easy maintenance 
in the laboratory, make L. fortunei a suitable candidate for 
biomonitoring programs.

−3 −2 −1 0 1 2 3 4 5 6 7 8

V. c. cochiensis
L. teres

L. s. claibornensis
A. pectorosa
L. subviridis
U. imbecillis

V. vibex
C. fluminalis

P. casertanum
P. compressum
C. rhizophorae

P. favidens
L. marginalis
M. nervosa
R. cuneata
A. plicata

L. siliquoidea
M. falcata

H. perovalis
V. nebulosa

H. cumingii
D. chilensis

RS = log( LC50Lf/LC50i)

Metals
Cr6+

Cd2+

Ni2+

Fig. 1  Graphic representation of the relative sensitivity (RS) calcula-
tions from Table 3 for three heavy metals: Cd2+ , Cr6+ , Ni2+ . Positive 
values represent a greater RS, and negative values correspond to a 
lesser RS than L. fortunei SC1 (dotted line)
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Fig. 2  Representation of the sensitivity range of L. fortunei for a Cd2+ , b Cr6+ , and c Ni2+ . Frequency distribution data was collated from the 
USEPA ECOTOX database and bibliography searches
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